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Abstract 

On large problems, reinforcement learning systems must use parame
terized function approximators such as neural networks in order to gen
eralize between similar situations and actions. In these cases there are 
no strong theoretical results on the accuracy of convergence, and com
putational results have been mixed. In particular, Boyan and Moore 
reported at last year's meeting a series of negative results in attempting 
to apply dynamic programming together with function approximation 
to simple control problems with continuous state spaces. In this paper, 
we present positive results for all the control tasks they attempted, and 
for one that is significantly larger. The most important differences are 
that we used sparse-coarse-coded function approximators (CMACs) 
whereas they used mostly global function approximators, and that we 
learned online whereas they learned offline. Boyan and Moore and 
others have suggested that the problems they encountered could be 
solved by using actual outcomes ("rollouts"), as in classical Monte 
Carlo methods, and as in the TD().) algorithm when). = 1. However, 
in our experiments this always resulted in substantially poorer perfor
mance. We conclude that reinforcement learning can work robustly 
in conjunction with function approximators, and that there is little 
justification at present for avoiding the case of general ).. 

1 Reinforcement Learning and Function Approximation 

Reinforcement learning is a broad class of optimal control methods based on estimating 
value functions from experience, simulation, or search (Barto, Bradtke &; Singh, 1995; 
Sutton, 1988; Watkins, 1989). Many of these methods, e.g., dynamic programming 
and temporal-difference learning, build their estimates in part on the basis of other 
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estimates. This may be worrisome because, in practice, the estimates never become 
exact; on large problems, parameterized function approximators such as neural net
works must be used. Because the estimates are imperfect, and because they in turn 
are used as the targets for other estimates, it seems possible that the ultimate result 
might be very poor estimates, or even divergence. Indeed some such methods have 
been shown to be unstable in theory (Baird, 1995; Gordon, 1995; Tsitsiklis & Van Roy, 
1994) and in practice (Boyan & Moore, 1995). On the other hand, other methods have 
been proven stable in theory (Sutton, 1988; Dayan, 1992) and very effective in practice 
(Lin, 1991; Tesauro, 1992; Zhang & Diett erich , 1995; Crites & Barto, 1996). What are 
the key requirements of a method or task in order to obtain good performance? The 
experiments in this paper are part of narrowing the answer to this question. 

The reinforcement learning methods we use are variations of the sarsa algorithm (Rum
mery & Niranjan, 1994; Singh & Sutton, 1996). This method is the same as the TD(>.) 
algorithm (Sutton, 1988), except applied to state-action pairs instead of states, and 
where the predictions are used as the basis for selecting actions. The learning agent 
estimates action-values, Q""(s, a), defined as the expected future reward starting in 
state s, taking action a, and thereafter following policy 71'. These are estimated for 
all states and actions, and for the policy currently being followed by the agent. The 
policy is chosen dependent on the current estimates in such a way that they jointly 
improve, ideally approaching an optimal policy and the optimal action-values. In our 
experiments, actions were selected according to what we call the £-greedy policy. Most 
of the time, the action selected when in state s was the action for which the estimate 
Q(s,a) was the largest (with ties broken randomly). However, a small fraction, £, ofthe 
time, the action was instead selected randomly uniformly from the action set (which 
was always discrete and finite). There are two variations of the sarsa algorithm, one 
using conventional accumulate traces and one using replace traces (Singh & Sutton, 
1996) . This and other details of the algorithm we used are given in Figure 1. 

To apply the sarsa algorithm to tasks with a continuous state space, we combined 
it with a sparse, coarse-coded function approximator known as the CMAC (Albus, 
1980; Miller, Gordon & Kraft, 1990; Watkins, 1989; Lin & Kim, 1991; Dean et al., 
1992; Tham, 1994). A CMAC uses multiple overlapping tilings of the state space to 
produce a feature ~epresentation for a final linear mapping where all the learning takes 
place. See Figure 2. The overall effect is much like a network with fixed radial basis 
functions, except that it is particularly efficient computationally (in other respects one 
would expect RBF networks and similar methods (see Sutton & Whitehead, 1993) to 
work just as well). It is important to note that the tilings need not be simple grids. 
For example, to avoid the "curse of dimensionality," a common trick is to ignore some 
dimensions in some tilings, i.e., to use hyperplanar slices instead of boxes. A second 
major trick is "hashing"-a consistent random collapsing of a large set of tiles into 
a much smaller set. Through hashing, memory requirements are often reduced by 
large factors with little loss of performance. This is possible because high resolution is 
needed in only a small fraction of the state space. Hashing frees us from the curse of 
dimensionality in the sense that memory requirements need not be exponential in the 
number of dimensions, but need merely match the real demands of the task. 

2 Good Convergence on Control Problems 

We applied the sarsa and CMAC combination to the three continuous-state control 
problems studied by Boyan and Moore (1995): 2D gridworld, puddle world, and moun
tain car. Whereas they used a model of the task dynamics and applied dynamic pro
gramming backups offline to a fixed set of states, we learned online, without a model, 
and backed up whatever states were encountered during complete trials. Unlike Boyan 
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1. Initially: wa(f) := ~, ea(f) := 0, 'ria E Actions, 'rifE CMAC-tiles. 

2. Start of Trial: s:= random-stateO; 
F := features(s); 
a := E-greedy-policy(F). 

3. Eligibility Traces: e,,(f) := )..e,,(f), 'rib, 'rIf; 
3a. Accumulate algorithm: ea(f) := ea(f) + 1, 'rIf E F. 

R. S. SUTION 

3b. Replace algorithm: ea(f) := 1, e,,(f) := 0, 'rIf E F, 'rib t a. 

4. Environment Step: 
Take action a; observe resultant reward, r, and next state, s' . 

5. Choose Next Action: 
F' := features(s'), unless s' is the terminal state, then F' := 0; 
a' := £-greedy-policy(F'). 

7. Loop: a := a'; s := s'; F := F'; if s' is the terminal state, go to 2; else go to 3. 

Figure 1: The sarsa algorithm for finite-horizon (trial based) tasks. The function £

greedy-policy( F) returns , with probability E, a random action or, with probability 1- £, 

computes L:JEF Wa for each action a and returns the action for which the sum is 
largest, resolving any ties randomly. The function features( s) returns the set of CMAC 
tiles corresponding to the state s. The number of tiles returned is the constant c. Qo, 
a, and)" are scalar parameters. 
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Figure 2: CMACs involve multiple overlapping tilings of the state space. Here we show 
two 5 x 5 regular tilings offset and overlaid over a continuous, two-dimensional state 
space. Any state, such as that shown by the dot, is in exactly one tile of each tiling. A 
state's tiles are used to represent it in the sarsa algorithm described above. The tilings 
need not be regular grids such as shown here. In particular, they are often hyperplanar 
slices, the number of which grows sub-exponentially with dimensionality of the space. 
CMACs have been widely used in conjunction with reinforcement learning systems 
(e.g., Watkins, 1989; Lin &. Kim, 1991; Dean, Basye &. Shewchuk, 1992; Tham, 1994). 
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and Moore, we found ro bust good performance on all tasks. We report here results for 
the puddle world and the mountain car, the more difficult of the tasks they considered. 

Training consisted of a series of trials, each starting from a randomly selected non
goal state and continuing until the goal region was reached. On each step a penalty 
(negative reward) of -1 was incurred. In the puddle-world task, an additional penalty 
was incurred when the state was within the "puddle" regions. The details are given in 
the appendix. The 3D plots below show the estimated cost-to-goal of each state, i.e., 
maXa Q(8, a). In the puddle-world task, the CMACs consisted of 5 tilings, each 5 x 5, 
as in Figure 2. In the mountain-car task we used 10 tilings, each 9 x 9. 

Puddle World Learned State Values 

60 68 

Trial 12 Trial 100 

Figure 3: The puddle task and the cost-to-goal function learned during one run. 

Mountain 
Car Goal 

Step 428 

Figure 4: The mountain-car task and the cost-to-goal function learned during one run. 
The engine is too weak to accelerate directly up the slope; to reach the goal, the car 
must first move away from it. The first plot shows the value function learned before 
the goal was reached even once. 

We also experimented with a larger and more difficult task not attempted by Boyan and 
Moore. The acrobot is a two-link under-actuated robot (Figure 5) roughly analogous 
to a gymnast swinging on a highbar (Dejong & Spong, 1994; Spong & Vidyasagar, 
1989). The first joint (corresponding to the gymnast's hands on the bar) cannot exert 
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The object is to swing the endpoint (the feet) above the bar by an amount equal to 
one of the links. As in the mountain-car task, there are three actions, positive torque, 
negative torque, and no torque, and reward is -Ion all steps. (See the appendix.) 

The Acrobat �1�0�0�~�~�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�,� 

Acrobot Learning Curves 
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Figure 5: The Acrobot and its learning curves. 

3 The Effect of A 
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A key question in reinforcement learning is whether it is better to learn on the basis of 
actual outcomes, as in Monte Carlo methods and as in TD(A) with A = 1, or to learn 
on the basis of interim estimates, as in TD(A) with A < 1. Theoretically, the former has 
asymptotic advantages when function approximators are used (Dayan, 1992; Bertsekas, 
1995), but empirically the latter is thought to achieve better learning rates (Sutton, 
1988). However, hitherto this question has not been put to an empirical test using 
function approximators. Figures 6 shows the results of such a test. 
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Figure 6: The effects of A and Ct in the Mountain-Car and Puddle-World tasks. 

Figure 7 summarizes this data, and that from two other systematic studies with differ
ent tasks, to present an overall picture of the effect of A. In all cases performance is an 
inverted-U shaped function of A, and performance degrades rapidly as A approaches I, 
where the worst performance is obtained. The fact that performance improves as A is 
increased from 0 argues for the use of eligibility traces and against I-step methods such 
as TD(O) and 1-step Q-Iearning. The fact that performance improves rapidly as A is 
reduced below 1 argues against the use of Monte Carlo or "rollout" methods. Despite 
the theoretical asymptotic advantages of these methods, they are appear to be inferior 
in practice. 
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