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Abstract 

The Bayesian analysis of neural networks is difficult because a sim­
ple prior over weights implies a complex prior distribution over 
functions . In this paper we investigate the use of Gaussian process 
priors over functions, which permit the predictive Bayesian anal­
ysis for fixed values of hyperparameters to be carried out exactly 
using matrix operations. Two methods, using optimization and av­
eraging (via Hybrid Monte Carlo) over hyperparameters have been 
tested on a number of challenging problems and have produced 
excellent results. 

1 INTRODUCTION 

In the Bayesian approach to neural networks a prior distribution over the weights 
induces a prior distribution over functions. This prior is combined with a noise 
model, which specifies the probability of observing the targets t given function 
values y, to yield a posterior over functions which can then be used for predictions. 
For neural networks the prior over functions has a complex form which means 
that implementations must either make approximations (e.g. MacKay, 1992) or use 
Monte Carlo approaches to evaluating integrals (Neal , 1993) . 

As Neal (1995) has argued , there is no reason to believe that, for real-world prob­
lems, neural network models should be limited to nets containing only a "small" 
number of hidden units . He has shown that it is sensible to consider a limit where 
the number of hidden units in a net tends to infinity, and that good predictions can 
be obtained from such models using the Bayesian machinery. He has also shown 
that a large class of neural network models will converge to a Gaussian process prior 
over functions in the limit of an infinite number of hidden units. 

In this paper we use Gaussian processes specified parametrically for regression prob­
lems. The advantage of the Gaussian process formulation is that the combination of 
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the prior and noise models can be carried out exactly using matrix operations. We 
also show how the hyperparameters which control the form of the Gaussian process 
can be estimated from the data, using either a maximum likelihood or Bayesian 
approach, and that this leads to a form of "Automatic Relevance Determination" 
(Mackay 1993j Neal 1995). 

2 PREDICTION WITH GAUSSIAN PROCESSES 

A stochastic process is a collection of random variables {Y (x) Ix EX} indexed by a 
set X. In our case X will be the input space with dimension d, the number of irlputs . 
The stochastic process is specified by giving the probability distribution for every 
finite subset of variables Y(x(1)), . .. , Y(x(k)) in a consistent manner. A Gaussian 
process is a stochastic process which can be fully specified by its mean function 
J.1.(:x:) = E[Y(x)] and its covariance function C(X ,X/) = E[(Y(x) - J.1.(x))(Y(x /)­
J.1.( Xl))]; any finite set of points will have a joint multivariate Gaussian distribution. 
Below we consider Gaussian processes which have J.1.( x) == O. 

In section 2.1 we will show how to parameterise covariances using hyperparametersj 
for now we consider the form of the covariance C as given. The training data 
consists of n pairs of inputs and targets {( xCi) , t(i)) , i = 1 .. . n} . The input vector 
for a test case is denoted x (with no superscript). The inputs are d-dimensional 
Xl, . .. , Xd and the targets are scalar. 

The predictive distribution for a test case x is obtained from the n + 1 dimensional 
joint Gaussian distribution for the outputs of the n training cases and the test 
case, by conditioning on the observed targets in the training set. This procedure is 
illustrated in Figure 1, for the case where there is one training point and one test 
point. In general, the predictive distribution is Gaussian with mean and variance 

kT (x)K- 1t 

C(x,x) - kT(x)K- 1k(x), 

(1) 

(2) 

where k(x) = (C(x, x(1)), ... , C(x, x(n))f , K is the covariance matrix for the 
training cases Kij = C(x(i), x(j)), and t = (t(l), ... , t(n))T . 

The matrix inversion step in equations (1) and (2) implies that the algorithm has 
O( n3 ) time complexity (if standard methods of matrix inversion are employed) ; 
for a few hundred data points this is certainly feasible on workstation computers, 
although for larger problems some iterative methods or approximations may be 
needed. 

2.1 PARAMETERIZING THE COVARIANCE FUNCTION 

There are many choices of covariance functions which may be reasonable. Formally, 
we are required to specify functions which will generate a non-negative definite 
covariance matrix for any set of points (x(1 ), ... , x(k )). From a modelling point of 
view we wish to specify covariances so that points with nearby inputs will give rise 
to similar predictions. We find that the following covariance function works well: 

d 

Vo exp{ -t L WI(x~i) - x~j))2} 
1=1 

d 

+ao + a1 Lx~i)x~j) + V18(i , j), 
1=1 

(3) 
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Figure 1: An illustration of prediction using a Gaussian process. There is one training 
case (x(1), t(1)) and one test case for which we wish to predict y. The ellipse in the left­
hand plot is the one standard deviation contour plot of the joint distribution of Yl and 
y . The dotted line represents an observation Yl = t(1). In the right-hand plot we see 
the distribution of the output for the test case, obtained by conditioning on the observed 
target. The y axes have the same scale in both plots. 

where (} = log(vo, V1, W1, . . . , Wd, ao, ad plays the role of hyperparameters1. We 
define the hyperparameters to be the log of the variables in equation (4) since these 
are positive scale-parameters. 

The covariance function is made up of three parts; the first term, a linear regression 
term (involving ao and aI) and a noise term V1b(i, j). The first term expresses the 
idea that cases with nearby inputs will have highly correlated outputs; the WI pa­
rameters allow a different distance measure for each input dimension. For irrelevant 
inputs, the corresponding WI will become small, and the model will ignore that in­
put. This is closely related to the Automatic Relevance Determination (ARD) idea 
of MacKay and Neal (MacKay, 1993; Neal 1995). The Vo variable gives the overall 
scale of the local correlations. This covariance function is valid for all input dimen­
sionalities as compared to splines, where the integrated squared mth derivative is 
only a valid regularizer for 2m > d (see Wahba, 1990). ao and a1 are variables 
controlling the scale the of bias and linear contributions to the covariance. The last 
term accounts for the noise on the data; VI is the variance of the noise. 

Given a covariance function , the log likelihood of the training data is given by 

1= - ~ logdet I< - ~tT I<-lt - !!.log27r. (4) 
222 

In section 3 we will discuss how the hyperparameters III C can be adapted, in 
response to the training data. 

2.2 RELATIONSHIP TO PREVIOUS WORK 

The Gaussian process view provides a unifying framework for many regression meth­
ods. ARMA models used in time series analysis and spline smoothing (e.g. Wahba, 
1990 and earlier references therein) correspond to Gaussian process prediction with 

1 We call () the hyperparameters as they correspond closely to hyperparameters in neural 
networks; in effect the weights have been integrated out exactly. 
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a particular choice of covariance function2 . Gaussian processes have also been used 
in the geostatistics field (e .g. Cressie, 1993) , and are known there as "kriging", but 
this literature has concentrated on the case where the input space is two or three 
dimensional , rather than considering more general input spaces. 

This work is similar to Regularization Networks (Poggio and Girosi, 1990; Girosi, 
Jones and Poggio, 1995), except that their derivation uses a smoothness functional 
rather than the equivalent covariance function. Poggio et al suggested that the 
hyperparameters be set by cross-validation. The main contributions of this paper 
are to emphasize that a maximum likelihood solution for 8 is possible, to recognize 
the connections to ARD and to use the Hybrid Monte Carlo method in the Bayesian 
treatment (see section 3). 

3 TRAINING A GAUSSIAN PROCESS 

The partial derivative of the log likelihood of the training data I with respect to 
all the hyperparameters can be computed using matrix operations, and takes time 
O( n 3 ) . In this section we present two methods which can be used to adapt the 
hyperparameters using these derivatives. 

3.1 MAXIMUM LIKELIHOOD 

In a maximum likelihood framework, we adjust the hyperparameters so as to max­
imize that likelihood of the training data. We initialize the hyperparameters to 
random values (in a reasonable range) and then use an iterative method, for exam­
ple conjugate gradient, to search for optimal values of the hyperparameters. Since 
there are only a small number of hyperparameters (d + 4) a relatively small number 
of iterations are usually sufficient for convergence. However, we have found that 
this approach is sometimes susceptible to local minima, so it is advisable to try a 
number of random starting positions in hyperparameter space. 

3.2 INTEGRATION VIA HYBRID MONTE CARLO 

According to the Bayesian formalism, we should start with a prior distribution P( 8) 
over the hyperparameters which is modified using the training data D to produce 
a posterior distribution P(8ID). To make predictions we then integrate over the 
posterior; for example, the predicted mean y( x) for test input x is given by 

y(x) = J Y8(x)P(8I D)d8 (5) 

where Y8( x) is the predicted mean (as given by equation 1) for a particular value of 
8. It is not feasible to do this integration analytically, but the Markov chain Monte 
Carlo method of Hybrid Monte Carlo (HMC) (Duane et ai, 1987) seems promising 
for this application. We assign broad Gaussians priors to the hyperparameters, and 
use Hybrid Monte Carlo to give us samples from the posterior. 

HMC works by creating a fictitious dynamical system in which the hyperparameters 
are regarded as position variables, and augmenting these with momentum variables 
p. The purpose of the dynamical system is to give the hyperparameters "inertia" 
so that random-walk behaviour in 8-space can be avoided. The total energy, H, of 
the system is the sum of the kinetic energy, J{, (a function of the momenta) and the 
potential energy, E. The potential energy is defined such that p(8ID) ex: exp(-E). 
We sample from the joint distribution for 8 and p given by p(8,p) ex: exp(-E-

2Technically splines require generalized covariance functions. 
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I<); the marginal of this distribution for 8 is the required posterior. A sample of 
hyperparameters from the posterior can therefore be obtained by simply ignoring 
the momenta. 

Sampling from the joint distribution is achieved by two steps: (i) finding new points 
in phase space with near-identical energies H by simulating the dynamical system 
using a discretised approximation to Hamiltonian dynamics, and (ii) changing the 
energy H by doing Gibbs sampling for the momentum variables. 

Hamiltonian Dynamics 

Hamilton's first order differential equations for H are approximated by a discrete 
step (specifically using the leapfrog method). The derivatives of the likelihood 
(equation 4) enter through the derivative of the potential energy. This proposed 
state is then accepted or rejected using the Metropolis rule depending on the final 
energy H* (which is not necessarily equal to the initial energy H because of the 
discretization). The same step size c is used for all hyperparameters , and should be 
as large as possible while keeping the rejection rate low. 

Gibbs Sampling for Momentum Variables 

The momentum variables are updated using a modified version of Gibbs sampling, 
thereby allowing the energy H to change. A "persistence" of 0.95 is used; the new 
value of the momentum is a weighted sum of the previous value (with weight 0.95) 
and the value obtained by Gibbs sampling (weight (1 - 0.952)1/2) . With this form 
of persistence, the momenta change approximately twenty times more slowly, thus 
increasing the "inertia" of the hyperparameters, so as to further help in avoiding 
random walks. Larger values of the persistence will further increase the inertia, but 
reduce the rate of exploration of H . 

Practical Details 

The priors over hyperparameters are set to be Gaussian with a mean of -3 and a 
standard deviation of 3. In all our simulations a step size c = 0.05 produced a very 
low rejection rate « 1 %). The hyperparameters corresponding to V1 and to the 
WI ' S were initialised to -2 and the rest to O. 

To apply the method we first rescale the inputs and outputs so that they have mean 
of zero and a variance of one on the training set. The sampling procedure is run 
for the desired amount of time, saving the values of the hyperparameters 200 times 
during the last two-thirds of the run . The first third of the run is discarded; this 
"burn-in" is intended to give the hyperparameters time to come close to their equi­
librium distribution. The predictive distribution is then a mixture of 200 Gaussians. 
For a squared error loss, we use the mean of this distribution as a point estimate. 
The width of the predictive distribution tells us the uncertainty of the prediction. 

4 EXPERIMENTAL RESULTS 

We report the results of prediction with Gaussian process on (i) a modified version 
of MacKay's robot arm problem and (ii) five real-world data sets. 

4.1 THE ROBOT ARM PROBLEM 

We consider a version of MacKay's robot arm problem introduced by Neal (1995). 
The standard robot arm problem is concerned with the mappings 

Y1 = r1 cos Xl + r2 COS(X1 + X2) Y2 = r1 sin Xl + r2 sin(x1 + X2) (6) 
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Method No. of inputs sum squared test error 
Gaussian process 2 1.126 
Gaussian process 6 1.138 

MacKay 2 1.146 
Neal 2 1.094 
Neal 6 1.098 

Table 1: Results on the robot arm task. The bottom three lines of data were obtained 
from Neal (1995) . The MacKay result is the test error for the net with highest "evidence". 

The data was generated by picking Xl uniformly from [-1.932, -0.453] and [0.453, 
1.932] and picking X2 uniformly from [0 .534, 3.142]. Neal added four further inputs, 
two of which were copies of Xl and X2 corrupted by additive Gaussian noise of 
standard deviation 0.02, and two further irrelevant Gaussian-noise inputs with zero 
mean and unit variance. Independent zero-mean Gaussian noise of variance 0.0025 
was then added to the outputs YI and Y2 . We used the same datasets as Neal and 
MacKay, with 200 examples in the training set and 200 in the test set . 

The theory described in section 2 deals only with the prediction of a scalar quantity 
Y , so predictors were constructed for the two outputs separately, although a joint 
prediction is possible within the Gaussian process framework (see co-kriging, §3 .2.3 
in Cressie, 1993). 

Two experiments were conducted, the first using only the two "true" inputs, and 
the second one using all six inputs. In this section we report results using max­
imum likelihood training; similar results were obtained with HMC. The log( v),s 
and loge w )'s were all initialized to values chosen uniformly from [-3 .0, 0.0], and 
were adapted separately for the prediction of YI and Y2 (in these early experiments 
the linear regression terms in the covariance function involving aa and al were not 
present) . The conjugate gradient search algorithm was allowed to run for 100 iter­
ations, by which time the likelihood was changing very slowly. Results are reported 
for the run which gave the highest likelihood of the training data, although in fact 
all runs performed very similarly. The results are shown in Table 1 and are encour­
aging, as they indicate that the Gaussian process approach is giving very similar 
performance to two well-respected techniques. All of the methods obtain a level of 
performance which is quite close to the theoretical minimum error level of 1.0 . ...Jt is 
interesting to look at the values of the w's obtained after the optimization; for the 
Y2 task the values were 0.243,0.237,0.0639,7.0 x 10-4 , 2.32 x 10-6 ,1.70 x 10-6 , 

and Va and VI were 7.5278 and 0.0022 respectively. The w values show nicely that 
the first two inputs are the most important, followed by the corrupted inputs and 
then the irrelevant inputs. During training the irrelevant inputs are detected quite 
quickly, but the w's for the corrupted inputs shrink more slowly, implying that the 
input noise has relatively little effect on the likelihood. 

4.2 FIVE REAL-WORLD PROBLEMS 

Gaussian Processes as described above were compared to several other regression 
algorithms on five real-world data sets in (Rasmussen, 1996; in this volume). The 
data sets had between 80 and 256 training examples, and the input dimension 
ranged from 6 to 16. The length of the HMC sampling for the Gaussian processes 
was from 7.5 minutes for the smallest training set size up to 1 hour for the largest 
ones on a R4400 machine. The results rank the methods in the order (lowest error 
first) a full-blown Bayesian treatment of neural networks using HMC, Gaussian 
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processes, ensembles of neural networks trained using cross validation and weight 
decay, the Evidence framework for neural networks (MacKay, 1992), and MARS. 
We are currently working on assessing the statistical significance of this ordering. 

5 DISCUSSION 

We have presented the method of regression with Gaussian processes, and shown 
that it performs well on a suite of real-world problems. 

We have also conducted some experiments on the approximation of neural nets (with 
a finite number of hidden units) by Gaussian processes, although space limitations 
do not allow these to be described here. Some other directions currently under 
investigation include (i) the use of Gaussian processes for classification problems by 
softmaxing the outputs of k regression surfaces (for a k-class classification problem), 
(ii) using non-stationary covariance functions, so that C(x , Xl) f:- C(lx - XII) and 
(iii) using a covariance function containing a sum of two or more terms of the form 
given in line 1 of equation 3. 

We hope to make our code for Gaussian process prediction publically available in the 
near future. Check http://www.cs.utoronto.ca/neuron/delve/delve.html for details. 
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