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Abstract 

An incremental network model is introduced which is able to learn 
the important topological relations in a given set of input vectors by 
means of a simple Hebb-like learning rule. In contrast to previous 
approaches like the "neural gas" method of Martinetz and Schulten 
(1991, 1994), this model has no parameters which change over time 
and is able to continue learning, adding units and connections, until 
a performance criterion has been met. Applications of the model 
include vector quantization, clustering, and interpolation. 

1 INTRODUCTION 

In unsupervised learning settings only input data is available but no information 
on the desired output. What can the goal of learning be in this situation? 

One possible objective is dimensionality reduction: finding a low-dimensional sub
space of the input vector space containing most or all of the input data. Linear 
subspaces with this property can be computed directly by principal component anal
ysis or iteratively with a number of network models (Sanger, 1989; Oja, 1982). The 
Kohonen feature map (Kohonen, 1982) and the "growing cell structures" (Fritzke, 
1994b) allow projection onto non-linear, discretely sampled subspaces of a dimen
sionality which has to be chosen a priori. Depending on the relation between 
inherent data dimensionality and dimensionality of the target space, some informa
tion on the topological arrangement of the input data may be lost in the process. 
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This is not astonishing since a reversible mapping from high-dimensional data to 
lower-dimensional spaces (or structures) does not exist in general. 

Asking how structures must look like to allow reversible mappings directly leads to 
another possible objective of unsupervised learning which can be described as topol
ogy learning: Given some high-dimensional data distributionp(e), find a topological 
structure which closely reflects the topology of the data distribution. An elegant 
method to construct such structures is "competitive Hebbian learning" (CHL) (Mar
tinetz, 1993). CHL requires the use of some vector quantization method. Martinetz 
and Schulten propose the "neural gas" (NG) method for this purpose (Martinetz 
and Schulten, 1991). 

We will briefly introduce and discuss the approach of Martinetz and Schulten. Then 
we propose a new network model which also makes use of CHL. In contrast to 
the above-mentioned CHL/NG combination, this model is incremental and has 
only constant parameters. This leads to a number of advantages over the previous 
approach. 

2 COMPETITIVE HEBBIAN LEARNING AND 
NEURAL GAS 

CHL (Martinetz, 1993) assumes a number of centers in R n and successively inserts 
topological connections among them by evaluating input signals drawn from a data 
distribution p(e). The principle of this method is: 

For each input signal x connect the two closest centers (measured 
by Euclidean distance) by an edge. 

The resulting graph is a subgraph of the Delaunay triangulation (fig. 1a) corre
sponding to the set of centers. This subgraph (fig. 1b), which is called the "induced 
Delaunay triangulation", is limited to those areas of the input space R n where 
p(e» O. The "induced Delaunay triangulation" has been shown to optimally 
preserve topology in a very general sense (Martinetz, 1993). 

Only centers lying on the input data submanifold or in its vicinity actually develop 
any edges. The others are useless for the purpose of topology learning and are often 
called dead units. To make use of all centers they have to be placed in those regions 
of R n where P (e) differs from zero. This could be done by any vector quantization 
(VQ) procedure. Martinetz and Schulten have proposed a particular kind of VQ 
method, the mentioned NG method (Martinetz and Schulten, 1991). The main 
principle of NG is the following: 

For each input signal x adapt the k nearest centers whereby k is 
decreasing from a large initial to a small final value. 

A large initial value of k causes adaptation (movement towards the input signal) 
of a large fraction of the centers. Then k (the adaptation range) is decreased until 
finally only the nearest center for each input signal is adapted. The adaptation 
strength underlies a similar decay schedule. To realize the parameter decay one has 
to define the total number of adaptation steps for the NG method in advance. 
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a) Delaunay triangulation b) induced Delaunay triangulation 

Figure 1: Two ways of defining closeness among a set of points. a) The Delau
nay triangulation (thick lines) connects points having neighboring Voronoi poly
gons (thin lines). Basically this reduces to points having small Euclidean distance 
w.r.t. the given set of points. b) The induced Delaunay triangulation (thick lines) 
is obtained by masking the original Delaunay triangulation with a data distribu
tion P(~) (shaded) . Two centers are only connected if the common border of their 
Voronoi polygons lies at least partially in a region where P(~» 0 (closely adapted 
from Martinetz and Schulten, 1994) 

For a given data distribution one could now first run the NG algorithm to dis
tribute a certain number of centers and then use CHL to generate the topology. 
It is, however, also possible to apply both techniques concurrently (Martinetz and 
Schulten, 1991). In this case a method for removing obsolete edges is required since 
the motion of the centers may make edges invalid which have been generated ear
lier. Martinetz and Schulten use an edge aging scheme for this purpose. One should 
note that the CHL algorithm does not influence the outcome of the NG method in 
any way since the adaptations in NG are based only on distance in input space and 
not on the network topology. On the other hand NG does influence the topology 
generated by CHL since it moves the centers around. 

The combination of NG and CHL described above is an effective method for topol
ogy learning. A problem in practical applications, however, may be to determine 
a priori a suitable number of centers. Depending on the complexity of the data 
distribution which one wants to model, very different numbers of centers may be 
appropriate. The nature of the NG algorithm requires a decision in advance and, 
if the result is not satisfying, one or several new simulations have to be performed 
from scratch. In the following we propose a method which overcomes this prob
lem and offers a number of other advantages through a flexible scheme for center 
insertion. 
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3 THE GROWING NEURAL GAS ALGORITHM 

In the following we consider networks consisting of 

• a set A of units (or nodes). Each unit c E A has an associated reference 
vector We E Rn. The reference vectors can be regarded as positions in input 
space of the corresponding units. 

• a set N of connections (or edges) among pairs of units. These connec
tions are not weighted. Their sole purpose is the definition of topological 
structure. 

Moreover, there is a (possibly infinite) number of n-dimensional input signals obey
ing some unknown probability density function P(~). 

The main idea of the method is to successively add new units to an initially small 
network by evaluating local statistical measures gathered during previous adapta
tion steps. This is the same approach as used in the "growing cell structures" model 
(Fritzke, 1994b) which, however, has a topology with a fixed dimensionality (e.g., 
two or three). 

In the approach described here, the network topology is generated incrementally 
by CHL and has a dimensionality which depends on the input data and may vary 
locally. The complete algorithm for our model which we call "growing neural gas" 
is given by the following: 

o. Start with two units a and b at random positions Wa and Wb in Rn. 

1. Generate an input signal ~ according to P(~). 

2. Find the nearest unit 81 and the second-nearest unit 82. 

3. Increment the age of all edges emanating from 81. 

4. Add the squared distance between the input signal and the nearest unit in 
input space to a local counter variable: 

Aerror(8t} = IIWSl - ell 2 

5. Move 81 and its direct topological neighbors1 towards ~ by fractions 
Eb and En, respectively, of the total distance: 

AWs1 = Eb(e - W S1 ) 

AWn = En(~ - w n ) for all direct neighbors n of 81 

6. If 81 and 82 are connected by an edge, set the age of this edge to zero. If 
such an edge does not exist, create it.2 

7. Remove edges with an age larger than amaz • If this results in points having 
no emanating edges, remove them as well. 

IThroughout this paper the term neighbors denotes units which are topological neigh
bors in the graph (as opposed to units within a small Euclidean distance of each other in 
input space). 

2This step is Hebbian in its spirit since correlated activity is used to decide upon 
insertions. 
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8. If the number of input signals generated so far is an integer multiple of a 
parameter A, insert a new unit as follows: 

• Determine the unit q with the maximum accumulated error. 
• Insert a new unit r halfway between q and its neighbor f with the 

largest error variable: 

Wr = 0.5 (wq + wf)' 

• Insert edges connecting the new unit r with units q and f, and remove 
the original edge between q and f. 

• Decrease the error variables of q and f by multiplying them with a 
constant 0:. Initialize the error variable of r with the new value of the 
error variable of q. 

9. Decrease all error variables by multiplying them with a constant d. 

10. If a stopping criterion (e.g., net size or some performance measure) is not 
yet fulfilled go to step 1. 

How does the described method work? The adaptation steps towards the input 
signals (5.) lead to a general movement of all units towards those areas of the input 
space where signals come from (P(~) > 0). The insertion of edges (6.) between 
the nearest and the second-nearest unit with respect to an input signal generates a 
single connection of the "induced Delaunay triangulation" (see fig. 1b) with respect 
to the current position of all units. 

The removal of edges (7.) is necessary to get rid of those edges which are no longer 
part of the "induced Delaunay triangulation" because their ending points have 
moved. This is achieved by local edge aging (3.) around the nearest unit combined 
with age re-setting of those edges (6.) which already exist between nearest and 
second-nearest units. 

With insertion and removal of edges the model tries to construct and then track 
the "induced Delaunay triangulation" which is a slowly moving target due to the 
adaptation of the reference vectors. 

The accumulation of squared distances (4.) during the adaptation helps to identify 
units lying in areas of the input space where the mapping from signals to units 
causes much error. To reduce this error, new units are inserted in such regions. 

4 SIMULATION RESULTS 

We will now give some simulation results to demonstrate the general behavior of our 
model. The probability distribution in fig. 2 has been proposed by Martinetz and 
Schulten (1991) to demonstrate the non-incremental "neural gas" model. It can be 
seen that our model quickly learns the important topological relations in this rather 
complicated distribution by forming structures of different dimensionalities. 

The second example (fig. 3) illustrates the differences between the proposed model 
and the original NG network. Although the final topology is rather similar for both 
models, intermediate stages are quite different. Both models are able to identify the 
clusters in the given distribution. Only the "growing neural gas" model, however, 
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Figure 2: The "growing neural gas" network adapts to a signal distribution which 
has different dimensionalities in different areas of the input space. Shown are the 
initial network consisting of two randomly placed units and the networks after 600, 
1800, 5000, 15000 and 20000 input signals have been applied. The last network 
shown is not the necessarily the "final" one since the growth process could in prin
ciple be continued indefinitely. The parameters for this simulation were: A = 100, 
Eb = 0.2, En = 0.006, a = 0.5, amaz = 50, d = 0.995. 

could continue to grow to discover still smaller clusters (which are not present in 
this particular example, though). 

5 DISCUSSION 

The "growing neural gas" network presented here is able to make explicit the impor
tant topological relations in a given distribution pee) of input signals. An advantage 
over the NG method of Martinetz and Schulten is the incremental character of the 
model which eliminates the need to pre-specify a network size. Instead, the growth 
process can be continued until a user-defined performance criterion or network size 
is met. All parameters are constant over time in contrast to other models which 
heavily rely on decaying parameters (such as the NG method or the Kohonen feature 
map). 

It should be noted that the topology generated by CHL is not an optional feature 
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Figure 3: The NG/CHL network of Martinetz and Schulten (1991) and the author's 
"growing neural gas" model adapt to a clustered probability distribution. Shown 
are the respective initial states (top row) and a number of intermediate stages. 
Both the number of units in the NG model and the final number of units in the 
"growing neural gas" model are 100. The bottom row shows the distribution of 
centers after 10000 adaptation steps (the edges are as in the previous row but not 
shown). The center distribution is rather similar for both models although the 
intermediate stages differ significantly. 
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of our method (as it is for the NG model) but an essential component since it is 
used to direct the (completely local) adaptation as well as insertion of centers. It is 
probably the proper initialization of new units by interpolation from existing ones 
which makes it possible to have only constant parameters and local adaptations. 

Possible applications of our model are clustering (as shown) and vector quantization. 
The network should perform particularly well in situations where the neighborhood 
information (in the edges) is used to implement interpolation schemes between 
neighboring units. By using the error occuring in early phases it can be determined 
where to insert new units to generate a topological look-up table of different density 
and different dimensionality in particular areas of the input data space. 

Another promising direction of research is the combination with supervised learning. 
This has been done earlier with the "growing cell structures" (Fritzke, 1994c) and 
recently also with the "growing neural gas" described in this paper (Fritzke, 1994a). 
A crucial property for this kind of application is the possibility to choose an arbitrary 
insertion criterion. This is a feature not present, e.g., in the original "growing neural 
gas". The first results of this new supervised network model, an incremental radial 
basis function network, are very promising and we are further investigating this 
currently. 
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