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Abstract 

Radial Basis Function (RBF) Networks, also known as networks 
of locally-tuned processing units (see [6]) are well known for their 
ease of use. Most algorithms used to train these types of net­
works, however, require a fixed architecture, in which the number 
of units in the hidden layer must be determined before training 
starts. The RCE training algorithm, introduced by Reilly, Cooper 
and Elbaum (see [8]), and its probabilistic extension, the P-RCE 
algorithm, take advantage of a growing structure in which hidden 
units are only introduced when necessary. The nature of these al­
gorithms allows training to reach stability much faster than is the 
case for gradient-descent based methods. Unfortunately P-RCE 
networks do not adjust the standard deviation of their prototypes 
individually, using only one global value for this parameter. 
This paper introduces the Dynamic Decay Adjustment (DDA) al­
gorithm which utilizes the constructive nature of the P-RCE al­
gorithm together with independent adaptation of each prototype's 
decay factor. In addition, this radial adjustment is class dependent 
and distinguishes between different neighbours. It is shown that 
networks trained with the presented algorithm perform substan­
tially better than common RBF networks. 
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1 Introduction 

Moody and Darken proposed Networks with locally-tuned processing units, which 
are also known as Radial Basis Functions (RBFs, see [6]). Networks of this type 
have a single layer of units with a selective response for some range of the input 
variables. Earn unit has an overall response function, possibly a Gaussian: 
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Here x is the input to the network, ri denotes the center of the i-th RBF and (Ii 
determines its standard deviation. The second layer computes the output function 
for each class as follows: 

m 

(2) 
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with m indicating the number of RBFs and Ai being the weight for each RBF. 
Moody and Darken propose a hybrid training, a combination of unsupervised clus­
tering for the centers and radii of the RBFs and supervised training of the weights. 
Unfortunately their algorithm requires a fixed network topology, which means that 
the number of RBFs must be determined in advance. The same problem applies to 
the Generalized Radial Basis Functions (GRBF), proposed in [12]. Here a gradient 
descent technique is used to implement a supervised training of the center locations, 
which has the disadvantage of long training times. 

In contrast RCE (Restricted Coulomb Energy) Networks construct their architecture 
dynamically during training (see [7] for an overview). This algorithm was inspired 
by systems of charged particles in a three-dimensional space and is analogous to 
the Liapunov equation: 
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where ~ is the electrostatic potential induced by fixed particles with charges -Qi 
and locations ri. One variation of this type of networks is the so called P-RCE 
network, which attempts to classify data using a probabilistic distribution derived 
from the training set. The underlying training algorithm for P-RCE is identical 
to RCE training with gaussian activation functions used in the forward pass to 
resemble a Probabilistic Neural Network (PNN [10]). PNNs are not suitable for 
large databases because they commit one new prototype for each training pattern 
they encounter, effectively becoming a referential memory scheme. In contrast, the 
P-RCE algorithm introduces a new prototype only when necessary. This occurs 
when the prototype of a conflicting class misclassifies the new pattern during the 
training phase. The probabilistic extension is modelled by incrementing the a-priori 
rate of occurrence for prototypes of the same class as the input vector, therefore 
weights are only connecting RBFs and an output node of the same class. The recall 
phase of the P-RCE network is similar to RBFs, except that it uses one global 
radius for all prototypes and scales each gaussian by the a-priori rate of occurrence: 

(4) 
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Figure 1: This picture shows how a new pattern results in a slightly higher activity 
for a prototype of the right class than for the conflicting prototype. Using only one 
threshold, no new prototype would be introduced in this case. 

where c denotes the class for which the activation is computed, me is the number 
of prototypes for class c, and R is the constant radius of the gaussian activation 
functions. The global radius of this method and the inability to recognize areas 
of conflict, leads to confusion in some areas of the feature space, and therefore 
non-optimal recognition performance. 

The Dynamic Decay Adjustment (DDA) algorithm presented in this paper was 
developed to solve the inherent problems associated with these methods. The con­
structive part of the P-RCE algorithm is used to build a network with an ap­
propriate number of RBF units, for which the decay factor is computed based on 
information about neighbours. This technique increases the recognition accuracy 
in areas of conflict. 

The following sections explain the algorithm, compare it with others, and examine 
some simulation results. 

2 The Algorithm 

Since the P-RCE training algorithm already uses an independent area of influence 
for each RBF, it is relatively straightforward to extract an individual radius. This 
results, however, in the problem illustrated in figure 1. The new pattern p of class 
B is properly covered by the right prototype of the same class. However, the left 
prototype of conflicting class A results in almost the same activation and this leads 
to a very low confidence when the network must classify the pattern p. 
To solve this dilemma, two different radii, or thresholds1 are introduced: a so-called 
positive threshold (0+), which must be overtaken by an activation of a prototype of 
the same class so that no new prototype is added, and a negative threshold (0-), 
which is the upper limit for the activation of conflicting classes. Figure 2 shows an 
example in which the new pattern correctly results in activations above the positive 
threshold for the correct class B and below the negative threshold for conflicting 
class A. This results in better classification-confidence in areas where training 

IThe conversion from the threshold to the radius is straightforward as long as the 
activation function is invertible. 
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Figure 2: The proposed algorithm distinguishes between prototypes of correct and 
conflicting classes and uses different thresholds. Here the level of confidence is 
higher for the correct classification of the new pattern. 

patterns did not result in new prototypes. The network is required to hold the 
following two equations for every pattern x of class c from the training data: 

3i : Rf(x) 2:: 8+ (5) 

Vk :/; c, 1 ~ j ~ mk : Rj(x) < 8- (6) 

The algorithm to construct a classifier can be extracted partly from the ReE algo­
rithm. The following pseudo code shows what the training for one new pattern x 
of class c looks like: 

/ / reset weights: 
FORALL prototypes pf DO 

Af = 0.0 
END FOR 
/ / train one complete epoch 
FORALL training pattern (x,c) DO: 

IF 3pi : Ri( x) 2:: 8+ THEN 
Ai+ = 1.0 

ELSE 
/ / "commit": introduce new prototype 
add new prototype P~c+1 with: 
~c+1 =x 
O'~ +1 = maJ:C {O' : R~ +1 (r7) < 8-} 

c k#cl\l~J::;mk c 

A~c+1 = 1.0 
mc+= 1 

ENDIF 
/ / "shrink": adjust conflicting prototypes 
FORALL k :/; c, 1 ~ j ~ mk DO 

O'j = max{O' : Rj(x) < 8-} 
ENDFOR 

First, all weights are set to zero because otherwise they would accumulate duplicate 
information about training patterns. Next all training patterns are presented to the 
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Figure 3: An example of the DDA- algorithm: (1) a pattern of class A is encountered 
and a new RBF is created; (2) a training pattern of class B leads to a new prototype 
for class B and shrinks the radius of the existing RBF of class A; (3) another pattern 
of class B is classified correctly and shrinks again the prototype of class A; (4) a 
new pattern of class A introduces another prototype of that class. 

network. If the new pattern is classified correctly, the weight of the closest prototype 
is increased; otherwise a new protoype is introduced with the new pattern defining 
its center. The last step of the algorithm shrinks all prototypes of conflicting classes 
if their activations are too high for this specific pattern. 

Running this algorithm over the training data until no further changes are required 
ensures that equations (5) and (6) hold. 

The choice of the two new parameters, (J+ and (J- are not as critical as it would 
initially appear2. For all of the experiments reported, the settings (J+ = 0.4 and 
(J- = 0.1 were used, and no major correlations of the results to these values were 
noted. Note that when choosing (J+ = (J- one ends up with an algorithm having 
the problem mentioned in figure l. 

Figure 3 shows an example that illustrates the first few training steps of the DDA­
algorithm. 

3 Results 

Several well-known databases were chosen to evaluate this algorithm (some can be 
found in the eMU Neural Network Benchmark Databases (see [13])). The DDA-

2Theoretically one would expect the dimensionality of the input- space to playa major 
role for the choice of those parameters 
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algorithm was compared against PNN, RCE and P-RCE as well as a classic Multi 
Layer Perceptron which was trained using a modified Backpropagation algorithm 
(Rprop, see [9]). The number of hidden nodes of the MLP was optimized manually. 
In addition an RBF-network with a fixed number of hidden nodes was trained 
using unsupervised clustering for the center positions and a gradient descent to 
determine the weights (see [6] for more details). The number of hidden nodes was 
again optimized manually. 

• Vowel Recognition: Speaker independent recognition of the eleven steady 
state vowels of British English using a specified training set of Linear Pre­
dictive Coding (LPC) derived log area ratios (see [3]) resulting in 10 inputs 
and 11 classes to distinguish. The training set consisted of 528 tokens, with 
462 different tokens used to test the network. 

algorithm II performance I #units I #epochs I 
Nearest Neighbour 56% - 1 

MLP (RPRUP) 57% 5 ..... 200 
PNN 61% 528 -

RBF 59% 70 ..... 100 
RCE 27% 125 3 

P-RCE 59% 125 3 
DDA-RBF 65_% 204 4 

• Sonar Database: Discriminate between sonar signals bounced off a metal 
cylinder and those bounced off a roughly cylindrical rock (see [4] for more 
details) . The data has 60 continuous inputs and is separated into two 
classes. For training and testing 104 samples each were used. 

algorithm II performance I #units I #epochs I 
MLP (RPROP) 90.4% 50 ..... 250 

PNN 91.3% 104 -
RBF 90.7% 80 ..... 150 
RCE 77.9% 68 3 

P-RCE 90.4% 68 3 
DDA-RBF 93.3% 68 3 

• Two Spirals: This well-known problem is often used to demonstrate the 
generalization capability of a network (see [5]). The required task involves 
discriminating between two intertwined spirals. For this paper the spirals 
were changed slightly to make the problem more demanding. The origi­
nal spirals radius declines linearly and can be correctly classified by RBF 
networks with one global radius. To demonstrate the ability of the DDA­
algorithm to adjust the radii of each RBF individually, a quadratic decline 
was chosen for the radius of both spirals (see figure 4) . The training set 
consisted of 194 points, and the spirals made three complete revolutions. 
Figure 4 shows both the results of an RBF Network trained with the DDA 
technique and the same problem solved with a Multi-Layer Perceptron 
(2-20-20-1) trained using a modified Error Back Propagation algorithm 
(Rprop, see [9]). Note that in both cases all training points are classified 
correctly. 
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Figure 4: The (quadratic) "two spirals problem" solved by a MLP (left) using 
Error Back Propagation (after 40000 epochs) and an RBF network (right) trained 
with the proposed DDA-algorithm (after 4 epochs). Note that all training patterns 
(indicated by squares vs. crosses) are classified correctly. 

In addition to these tasks, the BDG-database was used to compare the DDA al­
gorithm to other approaches. This database was used by Waibel et al (see [11]) to 
introduce the Time Delay Neural Network (TDNN). Previously it has been shown 
that RBF networks perform equivalently (when using a similar architecture, [1], [2]) 
with the DDA technique used for training of the RBF units. The BDG task involves 
distinguishing the three stop consonants "B", "D" and "G". While 783 training sets 
were used, 749 data sets were used for testing. Each of these contains 15 frames 
of melscale coefficients, computed from a 10kHz, 12bit converted signal. The final 
frame frequency was 100Hz. 

algorithm II performance I #epochs I 
TDNN 98.5% ",50 

TDRBF (P-RCE) 85.2% 5 
TDRBF (DDA) 98.3% 6 

4 Conclusions 

It has been shown that Radial Basis Function Networks can boost their performance 
by using the dynamic decay adjustment technique. The algorithm necessary to 
construct RBF networks based on the RCE method was described and a method 
to distinguish between conflicting and matching prototypes at the training phase 
was proposed. An increase in performance was noted, especially in areas of conflict, 
where standard (P-)RCE did not commit new prototypes. 

Four different datasets were used to show the performance of the proposed DDA­
algorithm. In three of the cases, RBF networks trained with dynamic decay ad­
justment outperformed known RBF training methods and MLPs. For the fourth 
task, the BDG-recognition dataset, the TDRBF was able to reach the same level 
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of performance as a TDNN. 

In addition, the new algorithm trains very quickly. Fewer than 6 epochs were 
sufficient to reach stability for all problems presented. 
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