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Abstract

A simple model of coupled dynamics of fast neurons and slow inter-
actions, modelling self-organization in recurrent neural networks,
leads naturally to an effective statistical mechanics characterized
by a partition function which is an average over a replicated system.
This is reminiscent of the replica trick used to study spin-glasses,
but with the difference that the number of replicas has a physi-
cal meaning as the ratio of two temperatures and can be varied
throughout the whole range of real values. The model has inter-
esting phase consequences as a function of varying this ratio and
external stiinuli, and can be extended to a range of other models.

1 A SIMPLE MODEL WITH FAST DYNAMIC
NEURONS AND SLOW DYNAMIC INTERACTIONS

As the basic archetypal model we consider a system of Ising spin neurons ¢; €
{-1,1}, ¢ € {1,..., N}, interacting via continuous-valued symmetric interactions,
Jij, which themselves evolve in response to the states of the neurons. The neurons
are taken to have a stochastic field-alignment dynamics which is fast compared with
the evolution rate of the interactions J;;, such that on the time-scale of J;;-dynamics
the neurons are effectively in equilibrium according to a Boltzmann distribution,

Pyy;y ({oi}) o< exp [-BH (s, ({03})] (1)
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where

1<j
and the subscript {J;;} indicates that the {J;;} are to be considered as quenched
variables. In practice, several specific types of dynamics which obey detailed balance
lead to the equilibrium distribution (1), such as a Markov process with single-spin
flip Glauber dynamics [1]. The quantity 3 is an inverse temperature characterizing
the stochastic gain.

For the J;; dynamics we choose the form
d 1 1 -y
Tl = N G0y — wi+ i) (1<) (3)
where (...)(,,} refers to a thermodynamic average over the distribution (1) with

the effectively instantaneous {J;;}, and 5;;(t) is a stochastic Gaussian white noise
of zero mean and correlation

(mii @)ma(t)) = 2787 635, (k06 (t — ')
The first term on the right-hand side of (3) is inspired by the Hebbian process in

neural tissue in which synaptic efficacies are believed to grow locally in response to
the simultaneous activity of pre- and post-synaptic neurons [2]. The second term

acts to limit the magnitude of J;;; 3 is the characteristic inverse temperature of
the interaction system. (A related interaction dynamics without the noise term,

equivalent to # = oo, was introduced by Shinomoto [3]; the anti-Hebbian version of

the above coupled dynamics was studied in layered systems by Jonker et al. [4, 5].)

Substituting for (o;0;) in terms of the distribution (1) enables us to re-write (3) as
d

Nt Jij = aJuH ({7:5}) + VN (2) (4)
where the effective Hamiltonian H ({J;;}) is given by
1
H{Js}) = =525 ({J5]) + #NZ (5)

1<j
where Zg ({Ji;}) is the partition function associated with (2):

Zp ({Jij}) = Tr exp [-BH(,;} ({oi})].

g3

2 COUPLED SYSTEM IN THERMAL EQUILIBRIUM

We now recognise (4) as having the form of a Langevin equation, so that the equilib-
rium distribution of the interaction system is given by a Boltzmann form. Hence-
forth, we concentrate on this equilibrium state which we can characterize by a
partition function Z and an associated ‘free energy’ F 3

E/Hd.f,_, (25 (451)] " exp | - p-’VZ Fs=—A'InZ; (6)

i< i<y
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where n = /8. We may use Z;ﬁ as a generating functional to produce thermody-

namic averages of state variables ® ({o;}; {Ji;}) in the combined system by adding
suitable infinitesimal source terms to the neuron Hamiltonian (2):

H{J.J‘} ({Jl}) - H{J.j} ({61}) + A2 ({Ui}; {Jl.?})

. OF;
l%ﬁ =(® ({Gi};{JiJ'})){J.,}

= jni<i dJij (@ ({oi}; {Ji_f})){J,j}e‘ﬁm{J'ﬁ})
- [Tlie; dJi; PP

where the bar refers to an average over the asymptotic {J;;} dynamics.

(7)

The form (6) with n — 0 is immediately reminiscent of the effective partition
function which results from the application of the replica trick to replace In Z by
lim,_o (2" — 1) in dealing with a quenched average for the infinite-ranged spin-
glass [6], while n = 1 relates to the corresponding annealed average, although we
note that in the present model the time-scales for neuron and interaction dynamics
remain completely disparate. These observations correlate with the identification
of n with 8/, which implies that n — 0 corresponds to a situation in which the
interaction dynamics is dominated by the stochastic term 7;;(¢), rather than by the
behaviour of the neurons, while for n = 1 the two characteristic temperatures are
the same. For n — oc the influence of the neurons on the interaction dynamics
dominates. In fact, any real n is possible by tuning the ratio between the two f’s.
In the formulation presented in this paper n is always non-negative, but negative
values are possible if the Hebbian rule of (3) is replaced by an anti-Hebbian form
with (o;0;) replaced by —(o;0;) (the case of negative n is being studied by Mézard
and co-workers [7]).

The model discussed above is range-free/infinite-ranged and can therefore be an-
alyzed in the thermodynamic limit N — oc by the replica mean-field theory as
devised for the Sherrington-Kirkpatrick spin-glass [6, 8, 9]. This can be developed
precisely for integer n [6, 8, 9, 10] and analytically continued. In the usual manner
there enters a spin-glass order parameter

=)y,  (1#9)

where the superscripts are replica labels. q° is given by the extremum of

F({qﬁ}):_ E Z[q75]2+ln Tr exp %Za”qﬁaﬁ

2
2pnr 2 {07} o

while Z 5 is proportional to exp [NextrF' ({g7°})]. In the replica-symmetric region
(or ansatz) one assumes ¢7% = q.

We will first choose as the independent variables n and 8 and briefly discuss the
phase picture of our model (full details can be found in [11]). The system exhibits
a transition from a paramagnetic state (¢ = 0) to an ordered state (g > 0) at a
critical 8.(n). For n < 2 this transition is second order at 8, = 1, down to the SK
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spin-glass limit, n — 0, but for n > 2 the coupled dynamics leads to a qualitative,
as well as quantitative, change to first order. Replica symmetry is stable above a
critical value n.(f8), at which there is a de Almeida-Thouless (AT) transition (c.f.
Kondor [12]). As expected from spin-glass studies, n.(3) goes to zero as 3 | 1
but rises for larger 3, having a maximum of order 0.3 at 3 of order 2. Thus, for
n > n.(max) & 0.3 there is no instability against small replica-symmetry breaking
fluctuations, while for smaller n there is re-entrance in this stability. The transition
from a paramagnetic to an ordered state and the onset of local RS instability for
various temperatures is shown in Figure 1.

3 EXTERNAL FIELDS

Several simple modifications of the above model are possible. One consists of adding
external fields to the spin dynamics and/or to the interaction dynamics, by making

the substitutions
Hsgy (o)) = Hy,y (o)) = D bios

H({Ji}) = H({Ts)) = ) JisKij
i<j
in (2) and (5) respectively. These external fields may be viewed as generating fields
in the sense of (7); for example

N _—

_g_i = (04) - 6?;;9_,» =8 [(as)(aj) — (o) (o'j)] +8 [(g‘-gj) = (a‘.)(gj)]
_ - -

_8(9123- = Jij —% =B [Jii']k: — Jij J_MJ

For neural network models a natural first choice for the external fields would be
0; = hé; and Kj; = K&&;, & € {—1,1}, where the & are quenched random vari-
ables corresponding to an imposed pattern. Without loss of generality all the &;
can be taken as +1, via the gauge transformation o; — ¢;;, Ji; — J;;£:€;. Hence-
forth we shall make this choice. The neuron perturbation field h induces a finite
‘magnetization’ characterized by a new order parameter

m = (a7)
which is independent of « in the replica-symmetric assumption (which turns out
to be stable with respect to variation in this parameter). As in the case of the
spin-glass, there is now a critical surface in (k, n, 8) space characterizing the onset
of replica symmetry breaking. In introducing the interaction perturbation field K
we find that K/u is the analogue of the mean exchange Jp in the SK spin-glass
model, J2 = (8np)~" being the analogue of the variance. If large enough, this field
leads to a spontaneous ‘ferromagnetic’ order.

Again we find further examples of both second and first order transitions (details
can be found in [11]). For the paramagnetic (P; m = 0, ¢ = 0) to ferromagnetic
(F; m #£0, g # 0) case, the transition is second order at the SK value gJ; = 1 so

long as (8J)~2 > 3n— 2. Only when (3J)~2 < 3n — 2 do the interaction dynamics
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Figure 1: Phasediagram for J = 1. Dotted line: first order transition, solid line:
second order transition. The separation between Mattis-glass and spin-glass phase
is defined by the de Almeida-Thouless instability
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influence the transition, changing it to first order at a lower temperature. Regarding
the ferromagnetic to spin-glass (SG; m = 0, ¢ # 0) transition, this exhibits both
second order (lower Jg) and first order (higher Jo) sections separated by a tricritical
point for n less than a critical value of the order of 3.3. This tricritical point exhibits
re-entrance as a function of n.

4 COMPARISON BETWEEN COUPLED DYNAMICS
AND SK MODEL

In order to clarify the differences, we will briefly summarize the two routes that
lead to an SK-type replica theory:

Coupled Dynamics:

Fast Ising spin neurons + slow dynamic interactions,
d 1

Jij

K
375 = §(0i9i) ) + 5y — #di +GWN

Free energy:

- 1 ~
F=— gZ, Z= / dJ;; e PHUID
6N 11

Define: . _ .
Jo=K/u, J=[ppl™?

Thermodynamics:

N —-o0: f= —ﬁ%extr G ({¢°};{m"}) + const.

SK spin-glass:

Ising spins + fixed random interactions,
P(J:J) = [211'.}2]_'26 Q[Ju—-fo]zf.fz
Free energy:
:—"'"-lOgZZ—-_-__ llm [Zn_l]
n

Selt-averaging:

Physical scaling:

=Jo/N, J=J/VN
Thermodynamics:
N —00: f=- lin%J ﬁLnextr G ({g°}; {m"}) + const.









