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Abstract 

Transition point dynamic programming (TPDP) is a memory­
based, reinforcement learning, direct dynamic programming ap­
proach to adaptive optimal control that can reduce the learning 
time and memory usage required for the control of continuous 
stochastic dynamic systems. TPDP does so by determining an 
ideal set of transition points (TPs) which specify only the control 
action changes necessary for optimal control. TPDP converges to 
an ideal TP set by using a variation of Q-Iearning to assess the mer­
its of adding, swapping and removing TPs from states throughout 
the state space. When applied to a race track problem, TPDP 
learned the optimal control policy much sooner than conventional 
Q-Iearning, and was able to do so using less memory. 

1 INTRODUCTION 

Dynamic programming (DP) approaches can be utilized to determine optimal con­
trol policies for continuous stochastic dynamic systems when the state spaces of 
those systems have been quantized with a resolution suitable for control (Barto et 
al., 1991). DP controllers, in lheir simplest form, are memory-based controllers 
that operate by repeatedly updating cost values associated with every state in the 
discretized state space (Barto et al., 1991). In a slate space of any size the required 
quantization can lead to an excessive memory requirement, and a related increase 
in learning time (Moore, 1991). This is the "curse of dimensionality". 
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Q-Iearning (Watkins, 1989, Watkins et al., 1992) is a direct form of DP that avoids 
explicit system modeling - thereby reducing the memory required for DP control. 
Further reductions are possible if Q-Ieal'l1ing is modified so that its DP cost values 
(Q-values) are associated only with states where control action changes need to be 
specified. Transition point dynamic programming (TPDP), the control approach 
described in this paper, is designed to take advantage of this DP memory reduction 
possibility by determining the states where control action changes must be specified 
for optimal control, and what those optimal changes are. 

2 GENERAL DESCRIPTION OF TPDP 

2.1 TAKING ADVANTAGE OF INERTIA 

TPDP is suited to the control of continuous stochastic dynamic systems that have 
inertia. In such systems "uniform regions" are likely to exist in the state space 
where all of the (discretized) states have the same optimal control action (or the 
same set of optimal actions l ). Considering one such uniform region, if the optimal 
action for that region is specified at the "boundary states" of the region and then 
maintained throughout the region until it is left and another uniform region is 
entered (where another set of boundary states specify the next action), none of the 
"dormant states" in the middle of the region need to specify any actions themselves. 
Thus dormant states do not have to be represented in memory. This is the basic 
premise of TPDP. 

The association of optimal actions with boundary states is done by "transition 
points" (TPs) at those states. Boundary states include all of the states that can 
be reached from outside a uniform region when that region is entered as a result of 
stochastic state transitions. The boundary states of anyone uniform region form a 
hyper-surface of variable thickness which mayor may not be closed. The TPs at 
boundary states must be represented in memory, but if they are small in number 
compared to the dormant states the memory savings can be significant. 

2.2 ILLUSTRATING THE TPDP CONCEPT 

Figure 1 illustrates the TPDP concept when movement control of a "car" on a 
one dimensional track is desired. The car, with some initial positive velocity to the 
right, must pass Position A and return to the left. The TPs in Figure 1 (represented 
by boxes) are located at boundary states. The shaded regions indicate all of the 
states that the system can possibly move through given the actions specified at the 
boundary states and the stochastic response of the car. Shaded states without TPs 
are therefore dormant states. Uniform regiolls consist of adjacent boundary states 
where the same action is specified, as well as the shaded region through which that 
action is maintained before another boundary is encountered. Boundary states that 
do not seem to be on the main sta.te transition routes (the one identified in Figure 1 
for example) ensure that any stochastic deviations from those routes are realigned. 
Unshaded states are "external states" the system does not reach. 

IThe simplifying assumption t.hat t.here is ouly oue optimal action in each uniform 
region will be made throughout this paper. TPDP operates the same regardless. 
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Figure 1: Application of TPDP to a One Dimension Movement Control Task 

2.3 MINIMAL TP OPTIMAL CONTROL 

The main benefit of the TPDP approach is that, where uniform regions exist, they 
can be represented by a relatively small number of DP elements (TPs) - depending 
on the shape of the boundaries and the size of the uniform regions they encom­
pass. This reduction in memory usage results in an accompanying reduction in the 
learning time required to learn optimal control policies (Chapman et al., 1991). 

TPDP operates by learning optimal points of transition in the control action specifi­
cation, where those points can be accurately located in highly resolved state spaces. 
To do this TPDP must determine which states are boundary states that should 
have TPs, and what actions those TPs should specify. In other words, TPDP must 
find the right TPs for the right states. When it has done so, "minimal TP optimal 
control" has been achieved. That is, optimal control with a minimal set of TPs. 

3 ACHIEVING MINIMAL TP OPTIMAL CONTROL 

3.1 MODIFYING A SET OF TPs 

Given an arbitrary initial set of TPs, TPDP must modify that set so that it is 
transformed into a minimal TP optimal control set. Modifications can include the 
"addition" and "removal" of TPs throughout the state space, and the "swapping" 
of one TP for another (each specifying a different action) at the same state. These 
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modifications are performed one at a time in arbitl'ary order, and can continue 
indefinitely. TPDP operates so that each TP modification results in an incremental 
movement towards minimal TP optimal control (Buckland, 1994). 

3.2 Q-LEARNING 

TPDP makes use of Q-Iearning (Watkins, 1989, Watkins et ai., 1992) to modify the 
TP set. Normally Q-Iearning is used to determine the optimal control policy J-t for 
a stochastic dynamic system subjected to immediate costs c(i, u) when action u is 
applied in each state i (Barto et ai., 1991). Q-learning makes use of "Q-values" 
Q( i, u), which indicate the expected total infini te-horizon discounted cost if action 
u is applied in state i, and actions defined by the existing policy J-t are applied in 
all future states. Q-values are learned by using the following updating equation: 

Qt+l(St, Ut) = (1 - Ctt)Qt(St, ud + at [c(St, ud + 'YVt(St+l)] (1) 
Where at is the update rate, l' is the discount factor, and St and Ut are respectively 
the state at time step t and the action taken at that time step (all other Q-values 
remain the same at time step t). The evaluation function value lit ( i) is set to the 
lowest Q-value action of all those possible U(i) in each state i: 

Vt(i) = min Qt(i, u) (2) 
UEU(i) 

If Equations 1 and 2 are employed during exploratory movement of the system, it has 
been proven that convergence to optimal Q-values Q* (i, u) and optimal evaluation 
function values VI-'. (i) will result (given that the proper constraints are followed, 
Watkins, 1989, Watkins et ai., 1992, Jaakkola et ai., 1994). From these values the 
optimal action in each state can be determined (the action that fulfills Equation 2). 

3.3 ASSESSING TPs WITH Q-LEARNING 

TPDP uses Q-Iearning to determiue how an existing set of TPs should be modified 
to achieve minimal TP optimal control. Q-values can be associated with TPs, and 
the Q-values of two TPs at the same "TP state", each specifying different actions, 
can be compared to determine which should be maintained at that state - that is, 
which has the lower Q-value. This is how TPs are swapped (Buckland, 1994). 

States which do not have TPs, "non-TP states", have no Q-values from which 
evaluation function values vt(i) can be determined (using Equation 2). As a result, 
to learn TP Q-values, Equation 1 must be modified to facilitate Q-value updating 
when the system makes d state transitions from one TP state through a number of 
non-TP states to another TP state: 

Qt+.( St, Ut) = (1 - a,jQt (5t, Ut) + "t [ (~'Yn c( St+n, Ut)) + 'Y.v,( St+.)] (3) 

When d = 1, Equation 3 takes the form of Equation 1. When d > 1, the intervening 
non-TP states are effectively ignored and treated as inherent parts of the stochastic 
dynamic behavior of the system (Buckla.nd, 1994). 

If Equation 3 is used to determine the costs incurred when no action is specified 
at a state (when the action specified at some previous state is maintained), an "R­
value" R( i) is the result. R-values can be used to expediently add and remove TPs 
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from each state. If the Q-value of a TP is less than the R-value of the state it is 
associated with, then it is worthwhile having that TP at that state; otherwise it is 
not (Buckland, 1994). 

3.4 CONVERGENCE TO MINIMAL TP OPTIMAL CONTROL 

It has been proven that a random sequence of TP additions, swaps and removals 
attempted at states throughout the state space will result in convergence to min­
imal TP optimal control (Buckland, 1994). This proof depends mainly on all TP 
modifications "locking-in" any potential cost reductions which are discovered as the 
result of learning exploration. 

The problem with this proof of convergence, and the theoretical form of TPDP 
described up to this point, is that each modification to the existing set of TPs (each 
addition, swap and removal) requires the determination of Q-values and R-values 
which are negligibly close to being exact. This means that a complete session of 
Q-Iearning must occur for every TP modification.2 The result is excessive learning 
times - a problem circumvented by the practical form of TPDP described next. 

4 PRACTICAL TPDP 

4.1 CONCURRENT TP ASSESSMENT 

To solve the problem of the protracted learning time required by the theoretical 
form of TPDP, many TP modifications can be assessed concurrently. That is, 
Q-Iearning can be employed not just to determine the Q-values and R-values for a 
single TP modification, but instead to learn these values for a number of concurrent 
modifications. Further, the modification attempts, and the learning of the values 
required for them, need not be initiated simultaneously. The determination of each 
value can be made part of the Q-Iearning process whenever new modifications are 
randomly attempted. This approa.ch is called "Pra.ctical TPDP". Practical TPDP 
consists of a continually running Q-Ieal'l1ing process (based on Equations 2 and 3), 
where the Q-values and R-values of a constantly changing set of TPs are learned. 

4.2 USING WEIGHTS FOR CONCURRENT TP ASSESSMENT 

The main difficulty that arises when TPs are assessed concurrently is that of deter­
mining when an assessment is complete. That is, when the Q-values and R-values 
associated with each TP ha.ve been learned well enough for a TP modification to 
be made based on them. The technique employed to address this problem is to 
associate a "weight" wei, u) with ea.ch TP that indicates the general merit of that 
TP. The basic idea of weights is to facilita.te the random addition of trial TPs to 
a TP "assessment group" with a low initial weight Winitial. The Q-values and R­
values of the TPs in the assessment group are learned in an ongoing Q-Iearning 
process, and the weights of the TPs are adjusted heuristically using those values. 
Of those TPs at any state i whose weights wei, u) have been increased above Wthr 

2The TPDP proof allows for more than one TP swap to be assessed simultaneously, 
but this does little to reduce the overall problem being described (Buckland, 1994). 








