
Optimal Depth Neural Networks for Multiplication 
and Related Problems 

Kai-Yeung Siu 
Dept. of Electrical & Compo Engineering 

University of California, Irvine 
Irvine, CA 92717 

Abstract 

Vwani Roychowdhury 
School of Electrical Engineering 

Purdue University 
West Lafayette, IN 47907 

An artificial neural network (ANN) is commonly modeled by a threshold 
circuit, a network of interconnected processing units called linear threshold 
gates. The depth of a network represents the number of unit delays or the 
time for parallel computation. The SIze of a circuit is the number of gates 
and measures the amount of hardware . It was known that traditional logic 
circuits consisting of only unbounded fan-in AND, OR, NOT gates would 
require at least O(log n/log log n) depth to compute common arithmetic 
functions such as the product or the quotient of two n-bit numbers, unless 
we allow the size (and fan-in) to increase exponentially (in n). We show in 
this paper that ANNs can be much more powerful than traditional logic 
circuits. In particular, we prove that that iterated addition can be com­
puted by depth-2 ANN, and multiplication and division can be computed 
by depth-3 ANNs with polynomial size and polynomially bounded integer 
weights, respectively. Moreover, it follows from known lower bound re­
sults that these ANNs are optimal in depth. We also indicate that these 
techniques can be applied to construct polynomial-size depth-3 ANN for 
powering, and depth-4 ANN for mUltiple product. 

1 Introduction 

Recent interest in the application of artificial neural networks [10, 11] has spurred 
research interest in the theoretical study of such networks. In most models of neu­
ral networks, the basic processing unit is a Boolean gate that computes a linear 

59 



60 Siu and Roychowdhury 

threshold function, or an analog element that computes a sigmoidal function. Arti­
ficial neural networks can be viewed as circuits of these processing units which are 
massively interconnected together. 

While neural networks have found wide application in many areas, the behavior 
and the limitation of these networks are far from being understood. One common 
model of a neural network is a threshold circuit. Incidentally, the study of threshold 
circuits, motivated by some other complexity theoretic issues, has also gained much 
interest in the area of computer science. Threshold circuits are Boolean circuits in 
which each gate computes a linear threshold function, whereas in the classical model 
of unbounded fan-in Boolean circuits only AND, OR, NOT gates are allowed. A 
Boolean circuit is usually arranged in layers such that all gates in the same layer are 
computed concurrently and the circuit is computed layer by layer in some increasing 
depth order. We define the depth as the number of layers in the circuit. Thus each 
layer represents a unit delay and the depth represents the overall delay in the 
computation of the circuit . 

2 Related Work 

Theoretical computer scientists have used unbounded fan-in Boolean circuits as 
a model to understand fundamental issues of parallel computation. To be more 
specific, this computational model should be referred to as unbounded fan-in paral­
lelism, since the number of inputs to each gate in the Boolean circuit is not bounded 
by a constant. The theoretical study of unbounded fan-in parallelism may give us 
insights into devising faster algorithms for various computational problems than 
would be possible with bounded fan-in parallelism. In fact, any nondegenerate 
Boolean function of n variables requires at least O(log n) depth to compute in a 
bounded fan-in circuit. On the other hand, in some practical situations, (for ex­
ample large fan-in circuits such as programmable logic arrays (PLAs) or multiple 
processors simultaneously accessing a shared bus), unbounded fan-in parallelism 
seems to be a natural model. For example, a PLA can be considered as a depth-2 
AND/OR circuit. 

In the Boolean circuit model, the amount of resources is usually measured by the 
number of gates, and is considered to be 'reasonable' as long as it is bounded 
by a polynomial (as opposed to exponential) in the number of the inputs. For 
example, a Boolean circuit for computing the sum of two n-bit numbers with O(n3 ) 

gates is 'reasonable', though circuit designers might consider the size of the circuit 
impractical for moderately large n. One of the most important theoretical issues in 
parallel computation is the following: Given that the number of gates in the Boolean 
circuit is bounded by a polynomial in the size of inputs, what is the minimum depth 
(i.e. number of layers) that is needed to compute certain functions? 

A first step toward answering this important question was taken by Furst et al. [4] 
and independently by Ajtai [2]. It follows from their results that for many basic 
functions, such as the parity and the majority of n Boolean variables, or the multi­
plication of two n-bit numbers, any constant depth (i. e. independent of n) classical 
Boolean circuit of unbounded fan-in AND/OR gates computing these functions 
must have more than a polynomial (in n) number of gates. This lower bound on 
the size was subsequently improved by Yao [18] and Hastad [7]; it was proved that 



Optimal Depth Neural Networks for Multiplication and Related Problems 61 

indeed an exponential number of AND/OR gates are needed. So functions such as 
parity and majority are computationally 'hard' with respect to constant depth and 
polynomial size classical Boolean circuits. Another way of interpreting these results 
is that circuits of AND/OR gates computing these 'hard' functions which use poly­
nomial amount of chip area must have unbounded delay (i. e. delay that increases 
with n). In fact, the lower bound results imply that the minimum possible delay 
for multipliers (with polynomial number of AND/OR gates) is O(logn/loglogn). 
These results also give theoretical justification why it is impossible for circuit de­
signers to implement fast parity circuit or multiplier in small chip area using AND, 
OR gates as the basic building blocks. 

One of the 'hard' functions mentioned above is the majority function, a special case 
of a threshold function in which the weights or parameters are restricted. A natural 
extension is to study Boolean circuits that contain majority gates. This type of 
Boolean circuit is called a threshold circuit and is believed to capture some aspects 
of the computation in our brain [12]. In the rest of the paper, the term 'neural 
networks' refers to the threshold circuits model. 

With the addition of majority gates, the resulting Boolean circuit model seems 
much more powerful than the classical one. Indeed, it was first shown by Muroga 
[13] three decades ago that any symmetric Boolean function (e.g. parity) can be 
computed by a two-layer neural network with (n + 1) gates. Recently, Chandra 
et al. [3] showed that multiplication of two n-bit numbers and sorting of n n-bit 
numbers can be computed by neural networks with 'constant' depth and polynomial 
size. These 'constants' have been significantly reduced by Siu and Bruck [14, 15] to 
4 in both cases, whereas a lower bound of depth-3 was proved by Hajnal et al. [6] 
in the case of multiplication. It is now known [8] that the size of the depth-4 neural 
networks for multiplication can be reduced to O(n2 ). However, the existence of 
depth-3 and polynomial-size neural networks for multiplication was left as an open 
problem [6, 5, 15] since the lower bound result in [6]. In [16], some depth-efficient 
neural networks were constructed for division and related arithmetic problems; the 
networks in [16] do not have optimal depth. 

Our main contribution in this paper is to show that small constant depth neural 
networks for multiplication, division and related problems can be constructed. For 
the problems such as iterated addition, multiplication, and division, the neural net­
works constructed can be shown to have optimal depth. These results have the 
following implication on their practical significance: Suppose we can use analog de­
vices to build threshold gates with a cost (in terms of delay and chip area) that is 
comparable to that of AND, OR, logic gates, then we can compute many basic func­
tions much faster than using traditional circuits. Clearly, the particular weighting 
of depth, fan-in, and size that gives a realistic measure of a network's cost and speed 
depends on the technology used to build it. One case where circuit depth would 
seem to be the most important parameter is when the circuit is implemented using 
optical devices. We refer those who are interested in the optical implementation of 
neural networks to [1]. 

Due to space limitations, we shall only state some of the important results; further 
results and detailed proofs will appear in the journal version of this paper [17]. 



62 Siu and Roychowdhury 

3 Main Results 

Definition 1 Given n n-bit integers, Zi = Lj~; zi,i2i, i = 1, ... , n, zi,i E {O, I}, 
We define iterated addition to be the problem of computing the (n + log n )-bit sum 
L~=l Zi of the n integers. 

Definition 2 Given 2 n-bit integers, x = Lj==-~ xi2i and Y = Lj==-~ Yi2i. We 
define multiplication to be the problem of computing the (2n)-bit product of x and 
y. 

Using the notations of [15], let us denote the class of depth-d polynomial-size neural 
networks where the (integer) weights are polynomially bounded by & d and the 
corresponding class where the weights are unrestricted by LTd. It is easy to see that 
if it~ated addition can be computed in &2, then multiplication can be computed 
in LT3 . We first prove the result on iterated addition. Our result hinges on a 
recent striking result of Goldmann, Hcistad and Razborov [5]. The key observation 
is that iterated addition can be computed as a sum of polynomially many linear 
threshold (LTd functions (with exponential weights). Let us first state the result 
of Goldmann, Hastad and Razborov [5]. 

Lemma 1 [5] Let LTd denote the class of depth-d polynomial-size neural net­
works where the weights at the output gate are polynomially bounded integers (with 
no restriction on the weights of the other gates). Then LTd = & d for any fixed 
integer d ~ 1. 

The following lemma is a generalization of the result in [13]. Informally, the result 
says that if a function is 1 when a weighted sum (possibly exponential) of its inputs 
lies in one of polynomially many intervals, and is 0 otherwise, then the function can 
be computed as a sum of polynomially many LTI functions. 

Lemma 2 Let S = L7=1 WiXi and f(X) be a function such that f = 1 if S E 
[Ii, ud for i = 1, ... , Nand f = 0 otherwise, where N is polynomially bounded. 
The~ can be computed as a sum of polynomially many LTI functions and thus 

f E LT2 · 

Combining the above two lemmas yields a depth-2 neural network for iterated ad­
dition. 

.-
Theorem 1 Iterated addition is in LT2 • 

It is also easy to see that iterated addition cannot be computed in LTI . Simply 
observe that the first bit of the sum is the parity function, which does not belong 
to LT1 . Thus the above neural network for iterated addition has minimum possible 
depth. 

Theorem 2 Multiplication of 2 n-bit integers can be computed in LT3. 
It follows from the results in [6] that the depth-3 neural network for multiplication 
stated in the above theorem has optimal depth. 



Optimal Depth Neural Networks for Multiplication and Related Problems 63 

We can further apply the results in [5] to construct small depth neural networks for 
division, powering and multiple product. Let us give a formal definition of these 
problems. 

Definition 3 Let X be an input n-bit integer �~� O. We define powering to be the 
n2-bit representation of xn. 

Definition 4 Given n n-bit integers Zi, i = 1, ... , n, We define multiple product 
to be the n2-bit representation of �n�~�=�l� Zi. 

Suppose we want to compute the quotient of two integers. Some quotient in bi­
nary representation might require infinitely many bits, however, a circuit can only 
compute the most significant bits of the quotient. If a number has both finite and 
infinite binary representation (for example 0.1 = 0.0111 ... ), we shall always express 
the number in its finite binary representation. We are interested in computing the 
truncated quotient, defined below: 

Definition 5 Let X and Y �~� 1 be two input n bit integers. Let X /Y = 
�L�~�;�~�o�o� zi2i be the quotient of X divided by Y. We define DIVk(X/Y) to be 
X/Y truncated to the (n + k)-bit number, i.e. 

o 

In particular, DIVo(X /Y) is l X /Y J, the greatest integer �~� X /Y. 

Theorem 3 
-. 

1. Powering can be computed in LT3 . 

2. DIVk(x/y) can be computed in Lr3 . 

3. Multiple Product can be computed in LT4 . 

It can be shown from the lower-bound results in [9] that the neural networks for 
division are optimal in depth. 

References 

[1] Y. S. Abu-Mostafa and D. Psaltis. Optical Neural Computers. Scientific American 
, 256(3):88-95, 1987. 

[2] M. Ajtai. �L�~� -formulae on finite structures. Annals of Pure and Applied Logic, 
24:1-48, 1983. 

[3] A. K. Chandra, 1. Stockmeyer, and U. Vishkin. Constant depth reducibility. Siam 
J. Comput., 13:423-439, 1984. 

[4] M. Furst, J. B. Saxe, and M. Sipser. Parity, Circuits and the Polynomial-Time 
Hierarchy. IEEE Symp. Found. Compo Sci., 22:260-270, 1981. 

[5] M. Goldmann, J. Hastad, and A. Razborov. Majority Gates vs. General Weighted 
Threshold Gates. preprint, 1991. 




