Summed Weight Neuron Perturbation: An O(N)
Improvement over Weight Perturbation.

Barry Flower and Marwan Jabri

SEDAL
Department of Electrical Engineering
University of Sydney
NSW 2006 Australia

Abstract

The algorithm presented performs gradient descent on the weight space
of an Artificial Neural Network (ANN), using a finite difference to
approximate the gradient. The method is novel in that it achieves 3 com-
putational complexity similar to that of Node Perturbation, O(N3), but
does not require access to the activity of hidden or internal neurons.
This is possible due to a stochastic relation between perturbations at the
weights and the neurons of an ANN. The algorithm is also similar to
Weight Perturbation in that it is optimal in terms of hardware require-
ments when used for the training of VLSI implementations of ANN’s.

1 INTRODUCTION

Optimization of the weights of an ANN may be performed by, the application of a gradi-
ent descent technique. The gradient may be calculated directly as in Backpropagation, or it
may be approximated by a Finite Difference Method which is what we concern ourselves
with in this paper. These methods lend themselves to the task of training hardware imple-
mentations of ANNs where real estate is at a premium and synaptic density is of great
importance. Neuron Perturbation (NP), as described by the Madaline Rule III (MRIII)
(Widrow and Lehr, 1990), is a technique that approximates the gradient of the Mean
Square Error (MSE) with respect to the change at a given neuron by applying a small per-
turbation to the input of the neuron and measuring the change in the MSE. The weight

Aw.. = & 1
ij = ﬂ-a;'—e}}-xja (1)

update is then calculated from the product of this gradient measure and the activation of
212

Summed Weight Neuron Perturbation: An (O)N Improvement over Weight Perturbation

the neuron from which the weight is fed, as described by (1).

Weight Perturbation (WP), as described by Jabri and Flower (Jabri and Flower, 1992) is a
neural network training techniques based on gradient descent using a Finite Difference
method to approximate the gradient. The gradient of the MSE with respect to a weight is
approximated by applying a small pertubation to the weight and measuring the change in
the MSE. This gradient is then used to calculated the weight update such that:
oE

Awy; = -1. Fu (ed
The advantages of WP over NP are that it performs better when limited precision weights
are used, as shown by Xie and Jabri (Xie and Jabri, 1992), and is optimal with respect to
hardware requirements when used to train VLSI implementations of ANNs. However, WP

has O(N*) computational complexity whilst NP has O(N>) computational complexity.
Summed Weight Neuron Perturbation (SWNP) is similar to NP in that it has a computa-

tional complexity of O(N?) but it has the added advantage that the activation of intemnal
neurons does not need to be known. The cost of this reduced computational complexity is
that SWNP needs to save the perturbation vector used.

In the following sections a description of the SWNP algorithm is provided and, finally,
some experimental results are presented.

2 THE SUMMED WEIGHT NEURON PERTURBATION
ALGORITHM

A subsection of a feedforward ANN containing N neurons is shown in Figure 1. on which
nomenclature the following derivation is based.

FIGURE 1: Description Of Indices Used To Describe The Neurons Weights And
Perturbations In An ANN.

In a feedforward network of size N neurons the activation of a given neuron is determined
by:
x () = ff("er,' (p)), and net;(p) = ;W,-;x; (»), (3)

and f; (y) is the ith neuron transfer function, x;(p) is the activation of the ith neuron for
the pth pattemn, and w;, is the weight connecting the /th neuron’s output to the ith neuron’s

input. The error function, (MSE), is defined as in (4), where T is the set of output neurons
and d, (p) is the expected value of the output on the kth neuron. The change in E (p)

213

214

Flower and Jabri

with respect to a given weight may then be expressed as (5).

E@ =5 ¥, @0) -x,6)™ @
dE(p) _ 9E(p) .
ow,. onet;(p) i

)

The first term of on the right-hand side of (5) can be determined using a Finite Difference,
which in this case is a Forward Difference, so that:

(p) . (5)

E(p) Afr,®

Tl (5~ T, TO: o
,. .

where,
ﬁEr‘, (p) = E[-l (p) -E(p), @
and T, is the perturbation applied to the ith neuron, E- (p) is the error for the pth pattern

with a perturbation applied to the ith neuron and E (p) is the error for the pth pattern
without a perturbation applied to any neurons. The error introduced by the approximation
is represented by the last term on the right-hand side in (6).

The perturbation of one or more of the weights that are inputs to the gth neuron can be
thought of as being equal to some perturbation applied directly to that neuron. Hence:

Fq - ;‘quxl (P) ’ (8)

where Y is the perturbation applied to weight w ql" As will be shown, perturbing the gth

neuron by perturbing all the weights feeding into it, enables the sign of the gradient

oE
—% to be determined without performing the product on the right-hand side of (5).

ij
Further more, the activation of hidden neurons, (i.e. X; (p) in (5)) need not be known. The

contribution of the perturbation of weight w; j to the perturbation of the ith neuron is

Y% (P (@)

Let us take the degenerate case where there is only one weight for the ith neuron. Then the
gradient of the MSE with respect to weight w; j st

AE. (p) x;(p) AE.. (p) x;(p)
OE(p) ULV L\
aw'_j = Fl- +0 (Fl) = 'Yij.xj (p) +0 (F l.)
AEr (p)
= ———+0(T),

ij (10)

Summed Weight Neuron Perturbation: An (O)N Improvement over Weight Perturbation

noting that X; (p) has been eliminated. In the general case where the ith neuron has more
than one weight the gradient with respect to weight wij is shown in (11).

3E (p) AEI*'_ (p) X; (r)

+0(T)
aw,.j l“t. !
AE (p)
= - +0(T)
‘Pif ' (1)
where,
L,

V. = . 12
i~ %) v

The form of (10) and (11) are the same and it will be shown that Y;; can be substituted for
‘I’ij in (11) due to a stochastic relationship between them.

Let us represent the sign of Yy and ‘P;; as either +1 or -1 such that:
|Yi}{

|\Piﬂ
I.].l.. = and ij = ‘P_ :
Yij ij (13)
The set of all possible states for the system represented by the vector (i, 7 vt.j) , assuming

Yij and ‘Pl.j are never zero, 1s:

{(-1-1), (-11), (1,-1),(L, 1) }. (14)
and it can be seen that when R = vy then the sign of the gradient of the MSE with
respect to weight Wi given by (10) is the same as that given by (11). If the sign of Yij is
chosen randomly then the probability of Wi =V being true is 0.5, from (14), and so (10)

will generate a gradient that is in the correct direction 50% of the time. This in itself is not
sufficient to allow the network to be trained as it will take as many steps in the incorrect
direction as the correct direction if the steps themselves are of the same size, (i.e. the mag-
nitude of T'; is the same for a step in the correct direction as a step in the incorrect direc-
tion).

Fortunately it can be shown that the size of the steps in the correct direction are greater
than those in the incorrect direction. Let us take the case where a particular vy, i is chosen

such that
Wy = vy (15)

Now by substituting (8), (12) and (13) into (15) we get:

215

216

Flower and Jabri

);"'itxk (p) }

Y.. ;
| "l - 5 (16)

Yij ;1’,- Ze(P)
%

rearranging to give,

v)
Yii"j);'r,-kxk ®

(17)

which implies that the contribution to I'; made by the perturbation Y is of the same sign
as 1"'.. Let us designate this neuron perturbation as T, (A) . Now we take the other possible
case where,

v (18)
assuming every other parameter is the same, and only the sign of v, i is changed. The
equality in (17) is now untrue and the contribution to I", made by the perturbation Y is of
the opposite sign as I';. Let us designate this neuron perturbation as I"; (B) . From (8) we
can determine that,

T;(A)| = |T;(B)] +2|v,x]. (19)
Equation (19) shows the relationship between the two possible states of the system where
I, (A) represents the summed neuron perturbation for a selected weight perturbation Yy

that generates a step in the corrected direction and I'; (B) is similar but for a step in the

incorrect direction. Clearly the correct step is always calculated from an approximated
gradient that is larger than that for an incorrect step as the neuron perturbation is larger.
The weight update rule then becomes:

AE. (p)
Yii
The algorithm for SWNP is shown as pseudo code in Figure 2.

(20)

2.1 HARDWARE COMPATIBILITY OF SWNP

This optimisation technique is ideally suited to the training of hardware implementations
of ANN’s whether they consist of discrete components or are VLSI technology. The speed
up over WP of O (N) achieved is at the cost of an O (N) storage requirement but this
storage can be achieved with a single bit per neuron. SWNP is the same order of complex-
ity as NP but does not require access to the activation of intemal neurons and therefore can
treat a network as a “black box” into which an input vector and weight matrix is fed and an

