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Abstract 

We analyse the effects of analog noise on the synaptic arithmetic 
during MultiLayer Perceptron training, by expanding the cost func­
tion to include noise-mediated penalty terms. Predictions are made 
in the light of these calculations which suggest that fault tolerance, 
generalisation ability and learning trajectory should be improved 
by such noise-injection. Extensive simulation experiments on two 
distinct classification problems substantiate the claims. The re­
sults appear to be perfectly general for all training schemes where 
weights are adjusted incrementally, and have wide-ranging implica­
tions for all applications, particularly those involving "inaccurate" 
analog neural VLSI. 

1 Introduction 

This paper demonstrates both by consjderatioll of the cost function and the learn­
ing equations, and by simulation experiments, that injection of random noise on 
to MLP weights during learning enhances fault-tolerance without additional super­
vision. We also show that the nature of the hidden node states and the learning 
trajectory is altered fundamentally, in a manner that improves training times and 
learning quality. The enhancement uses the mediating influence of noise to dis­
tribute information optimally across the existing weights. 
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Taylor [Taylor , 72] has studied noisy synapses, largely in a biological context, and 
infers that the noise might assist learning. vVe have already demonstrated that noise 
injection both reduces the learning time and improves the network's generalisation 
ability [Murray, 91],[Murray, 92]. It is established[Matsuoka, 92],[Bishop, 90] that 
adding noise to the training data in neural (MLP) learning improves the "quality" 
of learning, as measured by the trained network's ability to generalise. Here we 
infer (synaptic) noise-mediated terms that sculpt the error function to favour faster 
learning, and that generate more robust internal representations, giving rise to 
better generalisation and immunity to smaIl variations in the characteristics of the 
test data. Much closer to the spirit of this paper is the work of Hanson[Hanson, 90]. 
His stochastic version of the delta rule effectively adapts weight means and standard 
deviations. Also Sequin and Clay [Sequin , 91] use stuck-at faults during training 
which imbues the trained network with an ability to withstand such faults. They 
also note, but do not pursue, an increased generalisation ability. 

This paper presents an outline of the mathematical predictions and verification 
simulations. A full description of the work is given in [Murray, 93] . 

2 Mathematics 

Let us analyse an MLP with I input, J hidden and ]{ output nodes, with a set of 
P training input vectors Qp = {Oip}, looking at the effect of noise injection into the 
error function itself. We are thus able to infer, from the additional terms introduced 
by noise, the characteristics of solutions that tend to reduce the error, and those 
which tend to increase it. The former will clearly be favoured, or at least stabilised, 
by the additional terms. while the latter will be de-stabilised. 

Let each weight Tab be augmented by a random noise source, such that Tab -+­

Tab + ~abTab, for all weights {Tab}. Neuron thresholds are treated in precisely 
the same way. Note in passing, but importantly, that this synaptic noise is not 
the same as noise on the input data. Input noise is correlated across the synapses 
leaving an input node, while the synaptic noise that forms the basis of this study 
is not. The effect is thus quite distinct. 

Considering, therefore, an error function of the form ;-

1 K-l 1 K-l 

ftot,p ="2 L fk/ ="2 L(okp({Tab}) -Okp)2 (1) 
k=O k=O 

Where Okp is the target output. We can now perform a Taylor expansion of the out­
put Okp to second order, around the noise-free weight set, {TN}, and thus augment 
the error function ;-

""' (aOkP ) 1 ""' ( a20kp ) Okp -+ Okp + L..J Tab~ab aT. +"2 L..J Tab~abTcd~cd aT. aT. +0(> 3) (2) 
b ab b d ab cd a a ,c 

If we ignore terms of order ~ 3 and above, and taking the time average over the 
learning phase, we can infer that two terms are added to the error function ;-

< ftot >=< (tot( {TN}) > + 2~ t"I:l ~2 LTab 2 [(~;kP) 2 + (kp (:~k~)l (3) 
p=l k=O ab ab ab 
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Consider also the perceptron rule update on the hidden-output layer along with the 
expanded error function :-

"'" I ~ 2 
"'" I "'" 2 {)2 ° k P < 6Tkj >= -T L..J < fkpOjpOkp > -T-2 L..J < OjpOkp > X L..J Tab --2 

p P ab aTab 
(4) 

averaged over several training epochs (which is acceptable for small values of T the 
adaption rate parameter). 

3 Simulations 

The simulations detailed below are based on the virtual targets algorithm 
[Murray, 92], a variant on backpropagation, with broadly similar performance. The 
"targets" algorithm was chosen for its faster convergence properties. Two contrast­
ing classification tasks were selected to verify the predictions made in the following 
section by simulation. The first, a feature location task, uses real world normalised 
greyscale image data. The task was to locate eyes in facial images - to classify 
sections of these as either "eye" or "not-eye". The network was trained on 16 x 16 
preclassified sections of the images, classified as eyes and not-eyes. The not-eyes 
were random sections of facial images, avoiding the eyes (see Fig. 1). The second, 

16x 16 section 

.:J "eye" 

------=>~ c=- "not-eye" 

Figure 1: The eye/not-eye classifier. 

a more artificial task, was the ubiquitous character encoder (Fig. 2) where a 25-

1B-~111111111111111111 

Figure 2: The character encoder task. 

:> 26 
I I I I 

dimensional binary input vector describing the 26 alphabetic characters (each 5 x 5 
pixels) was used to train the network with a one-out-of-26 output code. 

During the simulations noise was added to the weights at a level proportional to the 
weight size and at a probability distribution of uniform density (i.e. -~max < ~ < 
~max). Levels of up to 40% were probed in detail - although it is clear that the 
expansion above is not quantitatively valid at this level. Above these percentages 
further improvements were seen in the network performance, although the dynamics 
of the training algorithm became chaotic. The injected noise level was reduced 
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smoothly to a minimum value of 1% as the network approached convergence (as 
evidenced by the highest output bit error). As ill all neural network simulations, the 
results depended upon the training parameters, network sizes and the random start 
position of the network. To overcome these factors and to achieve a meaningful 
result 35 weight sets were produced for each noise level. All other characteristics 
of the training process were held constant. The results are therefore not simply 
pathological freaks. 

4 Prediction/Verification 

4.1 Fault Tolerance 

Consider the first derivative penalty term in the expanded cost function (3), aver­
aged over all patterns, output nodes and weights :-

[{ X A' [Ta" ( ~~: ) '] (5) 

The implications of this term are straightforward. For large values of the (weight­
ed) average magnitude of the derivative, the overall error is increased. This term 
therefore causes solutions to be favoured where the dependence of outputs on in­
dividual weights is evenly distributed across the entire weight set. Furthermore, 
weight saliency should not only have a lower average value, but a smaller scatter 
across the weight set as the training process attempts to reconcile the competing 
pressures to reduce both (1) and (5) . This more distributed representation should 
be manifest in an improved tolerance to faulty weights. 
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Figure 3: Fault tolerance in the character encoder problem. 

Simulations were carried out on 35 weight sets produced for each ofthe two problems 
at each of 5 levels of noise injected during training. Weights were then random­
ly removed and the networks tested on the training data. The resulting graphs 
(Fig. 3, 4) show graceful degradation with an increased tolerance to faults with 
injected noise during training. The networks were highly constrained for these sim­
ulations to remove some of the natural redundancy of the MLP structure. Although 
the eye/not-eye problem contains a high proportion of redundant information, the 
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Figure 4: Fault tolerance enhancement in the eye/not-eye classifier. 

improvement in the networks ability to withstand damage, with injected noise, is 
clear. 

4.2 Generalisation Ability 

Considering the derivative in equation 5, and looking at the input-hidden weights. 
The term that is added to the error function, again averaged over all patterns, 
output nodes and weights is :-

(6) 

If an output neuron has a non-zero connection from a particular hidden node (Tkj "I 
0), and provided the input Oip is non-zero and is connected to the hidden node (Tji "I 
0), there is also a term oJp that will tend to favour solutions with the hidden 
nodes also turned firmly ON or OFF (i.e. Ojp = 0 or 1). Remembering, of 
course, that all these terms are noise-mediated, and that during the early stages 
of training, the "actual" error fkp, in (1), will dominate, this term will de-stabilise 
final solutions that balance the hidden nodes on the slope of the sigmoid. Naturally, 
hidden nodes OJ that are firmly ON or OFF are less likely to change state as a 
result of small variations in the input data {Oi}. This should become evident in an 
increased tolerance to input perturbations and therefore an increased generalisation 
ability. 

Simulations were again carried out on the two problems using 35 weight sets for 
each level of injected synaptic noise during training. For the character encoder 
problem generalisation is not really an issue, but it is possible to verify the above 
prediction by introducing random gaussian noise into the input data and noting the 
degradation in performance. The results of these simulations are shown in Fig. 5, 
and clearly show an increased ability to withstand input perturbation, with injected 
noise into the synapses during training. 

Generalisation ability for the eye/not-eye problem is a real issue. This problem 
therefore gives a valid test of whether the synaptic noise technique actually im­
proves generalisation performance. The networks were therefore tested on previ­
ously unseen facial images and the results are shown in Table 1. These results show 
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Figure 5: Generalisation enhancement shown through increased tolerance to input 
perturbation, in the character encoder problem. 

Correctly Classified (%) 
Noise Levels 0% I 10% I 20% I 30% J 40% 

Test Patterns 67.875 I 70.406 I 70.416 I 72.454 I 75.446 

Table 1: Generalisation enhancement shown through increased ability to classifier 
previously unseen data, in the eye/not-eye task. 

dramatically improved generalisation ability with increased levels of injected synap­
tic noise during training. An improvement of approximately 8% is seen - consistent 
with earlier results on a different "real" problem [Murray, 91]. 

4.3 Learning Trajectory 

Considering now the second derivative penalty term in the expanded cost function 
(2). This term is complex as it involves second order derivatives, and also depends 
upon the sign a.nd magnitude of the errors themselves {flep}. The simplest way of 
looking at its effect is to look at a single exemplar term :-

K t:,. 2 f T. 2 ({)2 Olep ) 
lep ab {)Tab 2 (7) 

This term implies that when the combination of flep �~�~�:�:�~� is negative then the overall 
cost function error is reduced and vice versa. The term (7) is therefore constructive 
as it can actually lower the error locally via noise injection, whereas (6) always 
increases it . (7) can therefore be viewed as a sculpting of the error surface during 
the early phases of training (i.e. when flep is sUbstantial). In particular, a weight set 
with a higher "raw" error value, calculated from (1), may be favoured over one with 
a lower value if noise-injected terms indicate that the "poorer" solution is located 
in a promising area of weight space. This "look-ahead" property should lead to an 
enhanced learning trajectory, perhaps finding a solution more rapidly. 

In the augmented weight update equation (4), the noise is acting as a medium 
projecting statistical information about the character of the entire weight set on to 






