
Extracting and Learning an Unknown Grammar with
Recurrent Neural Networks

C.L.Gnes·, C.B. Miller
NEC Research Institute
4 Independence Way
Princeton. NJ. 08540
giles@research.nj.nec.COOl

D. Chen, G.Z. Sun, B.H. Chen, V.C. Lee
*Institute for Advanced Computer Studies

Dept of Physics and Astronomy
University of Maryland
College pm, Mel 20742

Abstract
Simple secood-order recurrent netwoIts are shown to readily learn sman brown
regular grammars when trained with positive and negative strings examples. We
show that similar methods are appropriate for learning unknown grammars from
examples of their strings. TIle training algorithm is an incremental real-time, re­
current learning (RTRL) method that computes the complete gradient and updates
the weights at the end of each string. After or during training. a dynamic clustering
algorithm extracts the production rules that the neural network has learned.. TIle
methods are illustrated by extracting rules from unknown deterministic regular
grammars. For many cases the extracted grammar outperforms the neural net from
which it was extracted in correctly classifying unseen strings.

1 INTRODUCTION

For many reasons, there has been a long interest in "language" models of neural netwoIts;
see [Elman 1991] for an excellent discussion. TIle orientation of this work is somewhat dif­
ferent TIle focus here is on what are good measures of the computational capabilities of
recurrent neural networks. Since currently there is little theoretical knowledge, what prob­
lems would be "good" experimental benchmarks? For discrete i.q>uts, a natural choice
would be the problem of learning fonnal grammars - a "hard" problem even for regular
grammars [Angluin, Smith 1982]. Strings of grammars can be presented one charncter at a
time and strings can be of arbitrary length. However, the strings themselves would be, for
the most part, feature independent Thus, the learning capabilities would be, for the most
part, feature independent and, therefore insensitive to feature extraction choice.

TIle learning of known grammars by recurrent neural networks has sbown promise, for ex­
ample [Qeeresman, et al1989], [Giles, et al199O, 1991, 1992], [pollack 1991], [Sun, et al
1990], [Watrous, Kuhn 1992a,b], [Williams, Zipser 1988]. But what about learning Ml!­
~ grammars? We demonstrate in this paper that not only can unknown grammars be
learned, but it is possible to extract the grammar from the neural network, both during and
after training. Furthennore, the extraction process requires no a priori knowledge about the

317

318 Giles, Miller, Chen, Sun, Chen, and Lee

grammar, except that the grammar's representation can be regular, which is always true for
a grammar of bounded string length; which is the grammatical "training sample."

2 FORMAL GRAMMARS
We give a brief introduction to grammars; for a more detailed explanation see [Hopcroft &
Ullman, 1979]. We define a grammar as a 4-mple (N, V, P, S) where N and V are DOOler­
minal and tenninal vocabularies, P is a finite set of production rules and S is the start sym­
bol. All grammars we discuss are detelUlinistic and regular. For every grammar there exists
a language - the set of strings the grammar generates - and an automaton - the machine that
recognizes (classifies) the grammar's strings. For regular grammars, the recognizing ma­
chine is a deterministic finite automaton (DFA). There exists a one-ta-one mapping be­
tween a DFA and its grammar. Once the DFA is known, the production rules are the
ordered triples (notk, arc, 1Wde).

Grammatical inference [Fu 1982] is defined as the problem of finding (learning) a grammar
from a finite set of strings, often called the training sample. One can interpret this problem
as devising an inference engine that learm and extracts the grammar, see Figure I.

UNKNOWN
GRAMMAR

LabeBed Extraction
striDgs INFERENCE Process ENGINE .. - (NEURAL

NETWQRKl

Figure I: Grammatical inference

INFERRED
GRAMMAR

For a training sample of positive and negative strings and no knowledge of the unknown
regular grammar, the problem is NP..complete (for a summary, see [Angluin, Smith 1982]).
It is possible to construct an inference engine that consists of a recurrent neural network and
a rule extraction process that yields an inferred grammar.

3 RECURRENT NEURAL NETWORK

3.1 ARCHITEcruRE

Our recmrent neural network is quite simple and can be considered as a simplified version
of the model by [Elman 1991]. For an excellent discussion of recurrent networks full of ref­
erences that we don't have room for here, see [Hertz, et all99I].

A fairly general expression for a recunent network (which has the same computational
power as a DFA) is:

s~+ I = F(St I·W) r j' ,

where F is a nonlinearity that maps the stale neuron Sl and the input neuron 1 at time t to
the next state S'+ 1 at time t+ 1. The weight matrix W parameterizes the mapping and is usu­
ally leamed (however, it can be totally or partially programmed). A DFA has an analogous
mapping but does not use W. For a recurrent neural network we define the mapping F and
order of the mapping in the following manner [Lee, et aI 1986]. For a first-order recmrent
net:

where N is the number of hidden state neurons and L the number of input neurons; Wij and
Yij are the real-valued weights for respectively the stale and input neurons; and (J is a stan-

Extracting and Learning an Unknown Grammar with Recurrent Neural Networks 319

N L

S:+1 = a (7WilJ + Pi/!)
dard sigmoid discriminant function. The values of the hidden state neurons Sl are defined
in the finite N-dimensional space [O,I]N. Assuming all weights are connected and the net
is fully recurrent, the weight space complexity is bounded by O(N2+NL). Note that the in­
put and state neurons are not the same neurons. This representation has the capability. as­
suming sufficiently large N and L, to represent any state machine. Note that there are non­
trainable unit weights on the recurrent feedback connections.

TIle natural second-order extension of this recurrent net is:

where certain state neurons become input neurons. Note that the weights W ijk modify a
product of the hidden Sj and input Ik neurons. This quadratic fonn directly represents the
state transition diagrams of a state automata process -- (input, state) ::::) (next-state) and thus
makes the state transition mapping very easy to learn. It also pennits the net to be directly
programmed to be a particular DFA. Unpublished experiments comparing first and second
order recurrent nets confirm this ease-in-Iearning hypothesis. The space complexity (num­
ber of weights) is O(LN2). For L«N, both first- and second-order are of the same complex­
ity,O(N2).

3.2 SUPERVISED TRAINING & ERROR FUNCTION

The error function is defined by a special recurrent output neuron which is checked at the
end of each string presentation to see if it is on or off. By convention this output neuron
should be on if the string is a positive example of the grammar and off if negative. In prac­
tice an error tolerance decides the on and off criteria; see [Giles, et all991] for detail. [If a
multiclass recognition is desired, another error scheme using many output neurons can be
constructed.] We define two error cases: (1) the networl.c fails to reject a negative string (the
output neuron is on); (2) the network fails to accept a positive string (the output neuron is
oft). This accept or reject occurs at the end of each string - we define this problem as infer­
ence versus prediction.There is no prediction of the next character in the string sequence.
As such, inference is a more difficult problem than prediction. If knowledge of the classi­
fication of every substring of every string exists and alphabetical training order is pre­
served, then the prediction and inference problems are equivalent.

The training method is real-time recurrent training (RTRL). For more details see [Williams,
Zipser 1988]. The error function is defined as:

E = (1/2) (Target-S~)
2

where Sf is the output neuron value at the final time step t=fwhen the final character is
presented and Target is the desired value of (1.0) for (positive. negative) examples. Using
gradient descent training, the weight update rule for a second-order recurrent net becomes:

{ d~
W1mn = -aV E = a(Target-So) . dW

lmn
where a is the learning rate. From the recursive network state equation we obtain the rela­
tionship between the derivatives of st and St+l:

320 Giles, Miller, Chen, Sun, Chen, and Lee

~; = a'· [f>US~-lr.-l + l:W;jtt.-l~~-l J
1m" jk 1m"

where a' is the derivative of the discriminant function. This pennits on-line learning with
partial derivatives calculated iteratively at each time step. Let "dS'=O IdWlmn = O. Note that
the space complexity is O(L 2~) which can be prohibitive for large N and full connectivity.
It is important to note that for all training discussed here, the full gradient is calculated as
given above.

3.3 PRESENTATION OF TRAINING SAMPLES

The training data consists of a series of stimulus-response pairs, where the stimulus is a
string ofO's and 1 's, and the response is either "I" for positive examples or "0" for negative
examples. The positive and negative strings are generated by an unknown source grammar
(created by a program that creates random grammars) prior to training. At each discrete
time step, one symbol from the string activates one input neuron, the other input neurons
are zero (one-hot encoding). Training is on-line and occurs after each string presentation;
there is no total error accumulation as in batch learning; contrast this to the batch method
of [Watrous, Kuhn 1992]. An extra end symbol is added to the string alphabet to give the
network more power in deciding the best final neuron state configuration. This requires an­
other input neuron and does not increase the complexity of the DFA (only N2 more
weights). The sequence of strings presented during training is very important and certainly
gives a bias in learning. We have perfonned many experiments that indicate that training
with alphabetical order with an equal distribution of positive and negative examples is
much faster and converges more often than random order presentation.

TIle training algorithm is on-line, incremental. A small portion of the training set is pre­
selected and presented to the network. The net is trained at the end of each string presenta­
tion. Once the net has learned this small set or reaches a maximum number of epochs (set
before training, 1000 for experiments reported), a small number of strings (10) classified
incorrectly are chosen from the rest of the training set and added to the pre-selected set. This
small string increment prevents the training procedure from driving the network too far to­
wards any local minima that the misclassified strings may represent. Another cycle of ep­
och training begins with the augmented training set. If the net correctly classifies all the
training data, the net is said to converge. The total number of cycles that the network is per­
mitted to run is also limited, usually to about 20.

4 RULE EXTRACTION (DFA GENERATION)

As the network is training (or after training), we apply a procedure we call dynamic state
partitioning (dsp) for extracting the network's current conception of the DF A it is learning
or has learned. The rule extraction process has the following steps: 1) clustering of DFA
states, 2) constructing a transition diagram by connecting these states together with the al­
phabet-labelled transitions, 3) putting these transitions together to make the full digraph -
fonning cycles, and 4) reducing the digraph to a minimal representation. The hypothesis is
that during training, the network begins to partition (or quantize) its state space into fairly
well-separated, distinct regions or clusters, which represent corresponding states in some
DFA. See [Cleeremans, et al1989] and [Watrous and Kuhn 1992a] for other clustering
methods. A simple way of finding these clusters is to divide each neuron's range [0,1] into
q partitions of equal size. For N state neurons, qN partitions. For example, for q=2, the val­
ues of S'~.5 are 1 and S'<.0.5 are 0 and there are 2N regions with 2N possible values. Thus
for N hidden neurons, there exist I' possible regions. The DFA is constructed by generating

Extracting and Learning an Unknown Grammar with Recurrent Neural Networks 321

a state transition diagram -- associating an input symbol with a set of hidden neuron parti­
tions that it is currently in and the set of neuron partitions it activates. This ordered triple
is also a production rule. The initial partition, or start state of the DFA, is detennined from
the initial value of St=O. If the next input symbol maps to the same partition we assume a
loop in the DFA. Otherwise, a new state in the DFA is fonned.This constructed DFA may
contain a maximum of cf states; in practice it is usually much less, since not all neuron par­
tition sets are ever reached. This is basically a tree pruning method and different DFA could
be generated based on the choice of branching order. TIle extracted DF A can then be re­
duced to its minimal size using standard minimization algorithms (an 0(N2) algorithm
where N is the number of DFA states) [Hopcroft, Ullman 1979]. [This minimization pro­
cedure does not change the grammar of the DFA; the unminimized DFA has same time
complexity as the minimized DFA. TIle process just rids the DFA of redundant, unneces­
sary states and reduces the space complexity.] Once the DF A is known, the production rules
are easily extracted.

Since many partition values of q are available, many DF A can be extracted. How is the q
that gives the best DFA chosen? Or viewed in another way, using different q, what DFA
gives the best representation of the grammar of the training set? One approach is to use dif­
ferent q's (starting with q=2), different branching order, different runs with different num­
bers of neurons and different initial conditions, and see if any similar sets of DFA emerge.
Choose the DFA whose similarity set has the smallest number of states and appears most
often - an Occam's razor assumption. Define the guess of the DFA as DFAg.This method
seems to woIk fairly well. Another is to see which of the DFA give the best perfonnance
on the training set, assuming that the training set is not perfectly learned. We have little ex­
perience with this method since we usually train to perfection on the training set It should
be noted that this DF A extraction method may be applied to any discrete-time recurrent
net, regardless of network order or number of hidden layers. Preliminary results on first­
order recurrent networks show that the same DFA are extracted as second-order, but the
first-order nets are less likely to converge and take longer to converge than second-order.

5 SIMULATIONS - GRAMMARS LEARNED

Many different small « 15 states) regular known grammars have been learned successfully
with both first-order [Cleeremans, et al1989] and second-order recurrent models [Giles, et
al 91] and [Watrous, Kuhn 1992a]. In addition [Giles, et al1990 & 1991] and [Watrous,
Kuhn 1992b] show how corresponding DFA and production rules can be extracted. How­
ever for all of the above work, the grammars to be learned were alreatb known. What is
more interesting is the learning of unknown grammars.

In figure 2b is a randomly generated minimallO-state regular grammar created by a pro­
gram in which the only inputs are the number of states of the umninimized DFA and the
alphabet size p. (A good estimate of the number of possible unique DFA is (n2lln1'"/n!)
[Aton, et al1991] where n is number ofDFA states) TIle shaded state is the start state, filled
and dashed arcs represent 1 and 0 transitions and all final states have a shaded outer circle.
This unknown (honestly, we didn't look) DFA was learned with both 6 and 10 hidden state
neuron second-order recurrent nets using the first 1000 strings in alphabetical training order
(we could ask the unknown grammar for strings). Of two runs for both 10 and 6 neurons,
both of the 10 and one of the 6 converged in less than 1000 epochs. (TIle initial weights
were all randomly chosen between [1,-1] and the learning rate and momentum were both
0.5.) Figure 2a shows one of the unminimized DFA that was extracted for a partition pa­
rameter of q=2. The minimized 10-state DFA, figure 3b, appeared for q=2 for one 10 neu­
ron net and for q=2,3,4 of the converged 6 neuron net Consequently, using our previous
criteria, we chose this DFA as DFAg, our guess at the unknown grammar. We then asked

