Extracting and Learning an Unknown Grammar with
Recurrent Neural Networks

C.L.Giles*, C.B. Miller D. Chen, G.Z. Sun, H.H. Chen, Y.C. Lee

NEC Research Institute *Institute for Advanced Computer Studies

4 Independence Way Dept. of Physics and Astronomy

Princeton, N.J. 08540 University of Maryland

giles@research.nj.nec.com College Park, Md 20742
Abstract

Simple second-order recurrent networks are shown to readily learn small known
regular grammars when trained with positive and negative strings examples. We
show that similar methods are appropriate for leamning unknown grammars from
examples of their strings. The training algorithm is an incremental real-time, re-
current learning (RTRL) method that computes the complete gradient and updates
the weights at the end of each string. After or during training, a dynamic clustering
algorithm extracts the production rules that the neural network has learmned. The
methods are illustrated by extracting rules from unknown deterministic regular
grammars. For many cases the extracted grammar outperforms the neural net from
which it was extracted in correctly classifying unseen strings.

1 INTRODUCTION

For many reasons, there has been a long interest in “language™ models of neural networks;
see [Elman 1991] for an excellent discussion. The orientation of this work is somewhat dif-
ferent. The focus here is on what are good measures of the computational capabilities of
recurrent neural networks. Since currently there is little theoretical knowledge, what prob-
lems would be “good” experimental benchmarks? For discrete inputs, a natural choice
would be the problem of leaming formal grammars - a “hard” problem even for regular
grammars [Angluin, Smith 1982]. Strings of grammars can be presented one character at a
time and strings can be of arbitrary length. However, the strings themselves would be, for
the most part, feature independent. Thus, the leaming capabilities would be, for the most
part, feature independent and, therefore insensitive to feature extraction choice.

The learning of known grammars by recurrent neural networks has shown promise, for ex-
ample [Cleeresman, et al 1989], [Giles, et al 1990, 1991, 1992], [Pollack 1991], [Sun, et al
1990), [Watrous, Kuhn 1992a,b], [Williams, Zipser 1988). But what about learning un-
known grammars? We demonstrate in this paper that not only can unknown grammars be
leamned, but it is possible to gxtract the grammar from the neural network, both during and
after training. Furthermore, the extraction process requires no a priori knowledge about the

317

318

Giles, Miller, Chen, Sun, Chen, and Lee

grammar, except that the grammar’s representation can be regular, which is always true for
a grammar of bounded string length; which is the grammatical “training sample.”

2 FORMAL GRAMMARS

We give a brief introduction to grammars; for a more detailed explanation see [Hopcroft &
Ullman, 1979). We define a grammar as a 4-tuple (N, V, P, S) where N and V are nonter-
minal and terminal vocabularies, P is a finite set of production rules and S is the start sym-
bol. All grammars we discuss are deterministic and regular. For every grammar there exists
a language - the set of strings the grammar generates - and an automaton - the machine that
recognizes (classifies) the grammar’s strings. For regular grammars, the recognizing ma-
chine is a deterministic finite automaton (DFA). There exists a one-to-one mapping be-
tween a DFA and its grammar. Once the DFA is known, the production rules are the
ordered triples (node, arc, node).

Grammatical inference [Fu 1982] is defined as the problem of finding (leaming) a grammar
from a finite set of strings, often called the training sample. One can interpret this problem
as devising an inference engine that leamns and extracts the grammar, see Figure 1.

Figure 1: Grammatical inference

For a training sample of positive and negative strings and no knowledge of the unknown
regular grammar, the problem is NP-complete (for a summary, see [Angluin, Smith 1982]).
It is possible to construct an inference engine that consists of a recurrent neural network and
a rule extraction process that yields an inferred grammar.

3 RECURRENT NEURAL NETWORK

31 ARCHITECTURE

Our recurrent neural network is quite simple and can be considered as a simplified version
of the model by [Elman 1991]. For an excellent discussion of recurrent networks full of ref-
erences that we don’t have room for here, see [Hertz, et al 1991].

A fairly general expression for a recurrent network (which has the same computational
power as a DFA) is:

sit! = F(s;,l‘;m

where F is a nonlinearity that maps the state neuron S’ and the input neuron /* at time ¢ to
the next state 5**/at time #+1. The weight matrix W parameterizes the mapping and is usu-
ally learned (however, it can be totally or partially programmed). A DFA has an analogous
mapping but does not use W. For a recurrent neural network we define the mapping F and
order of the mapping in the following manner [Lee, et al 1986]. For a first-order recurrent
net:

where N is the number of hidden state neurons and L the number of input neurons; W;; and
Y;; are the real-valued weights for respectively the state and input neurons; and © is a stan-

Extracting and Learning an Unknown Grammar with Recurrent Neural Networks

L
+
si+! = G(EWI JSJ‘ + ZYsJi)
J

dard sigmoid discriminant function. The values of the hidden state neurons S’ are defined
in the finite N-dimensional space [0, 1N . Assuming all weights are connected and the net
is fully recurrent, the weight space complexity is bounded by O(N24NL). Note that the in-
put and state neurons are not the same neurons. This representation has the capability, as-
suming sufficiently large N and L, to represent any state machine. Note that there are non-
trainable unit weights on the recurrent feedback connections.

The natural second-order extension of this recurrent net is:

t+1 ~ tal i tt
+
;7 =¢ (Y W, J.Sk) =0 [Y Wl.ijJ.Ik]

jk ik
where certain state neurons become input neurons. Note that the weights W;;, modify a
product of the hidden S; and input [; neurons. This quadratic form directly remsents the
state transition dlagrams of a state automata process -- (input, state) = (next-state) and thus
makes the state transition mapping very easy to learn. It also permits the net to be directly
programmed to be a particular DFA. Unpublished experiments comparing first and second
order recurrent nets conﬁrm this ease-in-learning hypothesis. The space complexity (num-
ber of welghts) is O(LN). For L«N, both first- and second-order are of the same complex-
ity, ON?).
32 SUPERVISED TRAINING & ERROR FUNCTION

The error function is defined by a special recurrent output neuron which is checked at the
end of each string presentation to see if it is on or off. By convention this output neuron
should be on if the string is a positive example of the grammar and off if negative. In prac-
tice an error tolerance decides the on and off criteria; see [Giles, et al 1991] for detail. [If a
multiclass recognition is desired, another error scheme using many output neurons can be
constructed.] We define two error cases: (1) the network fails to reject a negative string (the
output neuron is on); (2) the network fails to accept a positive string (the output neuron is
off). This accept or reject occurs at the end of each string - we define this problem as infer-
ence versus prediction.There is no prediction of the next character in the string sequence.
As such, inference is a more difficult problem than prediction. If knowledge of the classi-
fication of every substring of every string exists and alphabetical training order is pre-
served, then the prediction and inference problems are equivalent.

The training method is real-time recurrent training (RTRL). For more details see [Williams,
Zipser 1988). The error function is defined as:

2
E = (1/2) (Target-S)

where S/ is the output neuron value at the final time step #=f when the final character is
presented and Target is the desired value of (1,0) for (positive, negative) examples. Using
gradient descent training, the weight update rule for a second-order recurrent net becomes:

os,,

awlmn

where « is the learning rate. From the recursive network state equation we obtain the rela-
tionship between the derivatives of S and S™*/:

Wipn = =0V E = a(Target-S{;) -

319

320

Giles, Miller, Chen, Sun, Chen, and Lee

1 1 i asf ;
: = 2F = - " a
awlmu =9 l:ailsm [:1 + }kaqkr;: BW i|

Imn

where ¢’ is the derivative of the discriminant function. This permus on-line leaming with
partial derivatives calculated iteratively at each time step. Let 35"~/oW),,,, = 0. Note that
the space complexity is O(L N“) which can be prohibitive for large N and full connectivity.
It is important to note that for all training discussed here, the full gradient is calculated as
given above.

3.3 PRESENTATION OF TRAINING SAMPLES

The training data consists of a series of stimulus-response pairs, where the stimulus is a
string of 0’s and 1’s, and the response is either “1" for positive examples or “0" for negative
examples. The positive and negative strings are generated by an unknown source grammar
(created by a program that creates random grammars) prior to training. At each discrete
time step, one symbol from the string activates one input neuron, the other input neurons
are zero (one-hot encoding). Training is on-line and occurs after each string presentation;
there is no total error accumulation as in batch learning; contrast this to the batch method
of [Watrous, Kuhn 1992] An extra end symbol is added to the string alphabet to give the
network more power in deciding the best final neuron state configuration. This reqmres an-
other input neuron and does not increase the complexity of the DFA (only N? more
weights). The sequence of strings presented during training is very important and certainly
gives a bias in learning. We have performed many experiments that indicate that training
with alphabetical order with an equal distribution of positive and negative examples is
much faster and converges more often than random order presentation.

The training algorithm is on-line, incremental. A small portion of the training set is pre-
selected and presented to the network. The net is trained at the end of each string presenta-
tion. Once the net has leared this small set or reaches a maximum number of epochs (set
before training, 1000 for experiments reported), a small number of strings (10) classified
incorrectly are chosen from the rest of the training set and added to the pre-selected set. This
small string increment prevents the training procedure from driving the network too far to-
wards any local minima that the misclassified strings may represent. Another cycle of ep-
och training begins with the augmented training set. If the net correctly classifies all the
training data, the net is said to converge. The total number of cycles that the network is per-
mitted to run is also limited, usually to about 20.

4 RULE EXTRACTION (DFA GENERATION)

As the network is training (or after training), we apply a procedure we call dynamic state
partitioning (dsp) for extracting the network’s current conception of the DFA it is learning
or has learned. The rule extraction process has the following steps: 1) clustering of DFA
states, 2) constructing a transition diagram by connecting these states together with the al-
phabet-labelled transitions, 3) putting these transitions together to make the full digraph -
forming cycles, and 4) reducing the digraph to a minimal representation. The hypothesis is
that during training, the network begins to partition (or quantize) its state space into fairly
well-separated, distinct regions or clusters, which represent corresponding states in some
DFA. See [Cleeremans, et al 1989] and [Watrous and Kuhn 1992a] for other clustering
methods. A simple way of finding these clusters is to divide each neuron’s range [0,1] into
q partitions of equal size. For N state neurons, gN parutlons For example for g=2, the val-
ues of §°20.5 are 1 and §°<.0.5 are 0, and there are 2N regions with 2N possible values. Thus
for N hidden neurons, there exist qN, possible regions.The DFA is constructed by generating

