
Reinforcenlent Learning in Markovian and
Non-Markovian Environments

Jiirgen Schmidhuber
Institut fiir Informatik
Technische Universitat Miinchen
Arcistr. 21, 8000 Miinchen 2, Germany
schmidhu@tumult.informatik.tu-muenchen.de

Abstract

This work addresses three problems with reinforcement learning and adap­
tive neuro-control: 1. Non-Markovian interfaces between learner and en­
vironment. 2. On-line learning based on system realization. 3. Vector­
valued adaptive critics. An algorithm is described which is based on system
realization and on two interacting fully recurrent continually running net­
works which may learn in parallel. Problems with parallel learning are
attacked by 'adaptive randomness'. It is also described how interacting
model/controller systems can be combined with vector-valued 'adaptive
critics' (previous critics have been scalar).

1 INTRODUCTION

At a given time, an agent with a non-Markovian interface to its environment cannot
derive an optimal next action by considering its current input only. The algorithm
described below differs from previous reinforcement algorithms in at least some
of the following issues: It has a potential for on-line learning and non-Markovian
environments, it is local in time and in principle it allows arbitrary time lags be­
tween actions and ulterior consequences; it does not care for something like episode­
boundaries, it allows vector-valued reinforcement, it is based on two interacting fully
recurrent continually running networks, and it tries to construct a full environmental
model- thus providing complete 'credit assignment paths' into the past.

We dedicate one or more conventional input units (called pain and pleasure units)
for the purpose of reporting the actual reinforcement to a fully recurrent control
network. Pain and pleasure input units have time-invariant desired values.

500

Reinforcement Learning in Markovian and Non-Markovian Environments 501

We employ the lID-Algorithm (Robinson and Fallside, 19S7) for training a fully
recurrent model network to model the relationships between environmental inputs,
output actions of an agent, and corresponding pain or pleasure. The model network
(e.g. (Werbos, 19S7)(Jordan, 19S5)(Robinson and Fallside, 19S9)) in turn allows
the system to compute controller gradients for 'minimizing pain' and 'maximizing
pleasure'. Since reinforcement gradients depend on 'credit assignment paths' leading
'backwards through the environment " the model network should not only predict the
pain and pleasure units but also the other input units.

The quantity to be minimized by the model network is Et i(Yi(t) - Yipred(t))2,
where Yi(t) is the activation of the ith input unit at time t,' and Yipred(t) is the
model's prediction of the activation of the ith input unit at time t. The quantity
to be minimized by the controller is Et j(Ci - ri(t))2, where ri(t) is the activation
of the ith pain or pleasure input unit at time t and Cj is its desired activation for
all times. t ranges over all (discrete) time steps. Weights are changed at each time
step. This relieves dependence on 'episode boundaries'. Here the assumption is
that the learning rates are small enough to avoid instabilities (Williams and Zipser,
19S9).

There are two versions of the algorithm: the sequential version and the parallel
version. With the sequential version, the model network is first trained by providing
it with randomly chosen examples of sequences of interactions between controller
and environment. Then the model's weights are fixed to their current values, and
the controller begins to learn. With the parallel version both the controller and the
model learn concurrently. One advantage of the parallel version is that the model
network focusses only on those parts of the environmental dynamics with which
the controller typically is confronted. Another advantage is the applicability to
changing environments. Some disadvantages of the parallel version are listed next.

1. Imperfect model networks. The model which is used to compute gradient in­
formation for the controller may be wrong. However, if we assume that the model
network always finds a zero-point of its error function, then over time we can expect
the control network to perform gradient descent according to a perfect model of the
visible parts of the real world. 1.A: The assumption that the model network can
always find a zero-point of its error function is not valid in the general case. One
of the reasons is the old problem of local minima, for which this paper does not
suggest any solutions. 1.B: (Jordan, 19S5) notes that a model network does not
need to be perfect to allow increasing performance of the control network.

2. Instabilities. One source of instability could arise if the model network 'forgets'
information about the environmental dynamics because the activities of the con­
troller push it into a new sub-domain, such that the weights responsible for the old
well-modeled sub-domain become over-written.

3. Deadlock. Even if the model's predictions are perfect for all actions executed by
the controller, this does not imply that the algorithm will always behave as desired.
Let us assume that the controller enters a local minimum relative to the current state
of an imperfect model network. This relative minimum might cause the controller
to execute the same action again and again (in a certain spatio-temporal context),
while the model does not get a chance to learn something about the consequences
of alternative actions (this is the deadlock).

502 Schmidhuber

The sequential version lacks the flavor of on-line learning and is bound to fail as soon
as the environment changes significantly. We will introduce 'adaptive randomness'
for the controller outputs to attack problems of the parallel version.

2 THE ALGORITHM

The sequential version of the algorithm can be obtained in a straight-forward man­
ner from the description of the parallel version below. At every time step, the
parallel version is performing essentially the same operations:

In step 1 of the main loop of the algorithm, actions to be performed in the external
world are computed. These actions are based on both current and previous inputs
and outputs. For all new activations, the corresponding derivatives with respect to
all controller weights are updated. In step 2 actions are executed in the external
world, and the effects of the current action and/or previous actions may become
visible. In step 3 the model network sees the last input and the current output of
the controller at the same time. The model network tries to predict the new input
without seeing it. Again the relevant gradient information is computed. In step 4
the model network is updated in order to better predict the input (including pleasure
and pain) for the controller. The weights of the control network are updated in order
to minimize the cumulative differences between desired and actual activations of the
pain and pleasure units. 'Teacher forcing' (Williams and Zipser, 1989) is used in the
model network (although there is no teacher besides the environment). The partial
derivatives of the controller's inputs with respect to the controller's weights are
approximated by the partial derivatives of the corresponding predictions generated
by the model network.

Notation (the reader may find it convenient to compare with (Williams and Zipser,
1989)): G is the set of all non-input units of the control network, A is the set of
its output units, [is the set of its 'normal' input units, P is the set of its pain and
pleasure units, M is the set of all units of the model network, 0 is the set of its
output units, Ope 0 is the set of all units that predict pain or pleasure, W M is the
set of variables for the weights of the model network, We is the set of variables for
the weights of the control network, Yk" ... is the variable for the updated activation
of the kth unit from MuG u [UP, Yko l4 is the variable for the last value of Yk" ... ,
Wij is the variable for the weight of the directed connection from unit j to unit i. Oik
is the Kronecker-delta, which is 1 for i = k and 0 otherwise, P~j" ... is the variable

which gives the current (approximated) value of 8~~~:w , P~jol4 is the variable which

gives the last value of prj If k E P then Ck is k's desired activation for all times,
if k E [U P, then kpreJ is the unit from 0 which predicts k. Otc is the learning
rate for the control network, OtM is the learning rate for the model network.

I [UP 1=1 0 I, lOp 1=1 P I. Each unit in [UPUA has one forward connection to
each unit in MUG, each unit in M is connected to each other unit in M, each unit
in G is connected to each other unit in G. Each weight variable of a connection
leading to a unit in M is said to belong to W M, each weight variable of a connection
leading to a unit in G is said to belong to We. For each weight Wij E W M there
are ~~rvalues for all k EM, for each weight Wij E We there are p~rvalues for all
k EMU G U [UP. The parallel version of the algorithm works as follows:

Reinforcement Learning in Markovian and Non-Markovian Environments 503

INITIALIZATION:

V Wij E WM U We: Wij - random, V possible k: pfjo'" - o,pt •• ", - 0 .

V k E MuG: Ykol" - O,Yk".", - O.

V k E I UP: Set Ykol" according to the current environment, Yk".w - O.

UNTIL TERMINATION CRITERION IS REACHED:

1. ViE G : Yi".", - 2:1 .
1+e - j "ijlljol"

V Wij E We,k E G: pfj".'" - Yk" ... (l- Yk")(2:,wk'pijo, ,, +bil~Yjo''')'

V k f: G: Ykol" - Yk , V Wij E We : pfjo'" - pfj"

2. Execute all actions based on activations of units in A. Update the environment.

ViE I UP: Set Yi".", according to environment.

S. ViE M : Yi ... ", - 2:1 .
1+e - j "'ijlljol"

V Wij E WM U We, k EM: pfj" - Yk".w(1- Yk" •• ')(2:, Wk'P~;ol" + bikY;Old)'

V k EM: Ykol" - Yk".wl V Wi; EWe U WM : pf;o'" - pf;".VI .

4· V Wi; E WM: Wij - Wi; + O:M 2:kElUP(Yk" ... - YkPredol,,)p:::,;d.

V Wi; E We: Wi; - Wi; + O:e LkEP(Ck - Yk)p:::,;d.

V k E I UP: Ykol" - Yk" , Ykpredol" - Yk" , V Wi; E WM : p:::,;d - 0,

V Wij E We : pfjo,,, - p:::,;d .

The algorithm is local in time, but not in space. The computation complexity per
time step is O(I W M U We II M II M U I U P U A I + I We II G II I U PUG I). In
what follows we describe some useful extensions of the scheme.

1. More network ticks than environmental ticks. For highly 'non-linear' environ­
ments the algorithm has to be modified in a trivial manner such that the involved
networks perform more than one (but not more than three) iterations of step 1 and
step 3 at each time step. (4-layer-operations in principle can produce an arbitrary
approximation of any desired mapping.)

2. Adaptive randomness. Explicit explorative random search capabilities can be
introduced by probabilistic controller outputs and 'gradient descent through random
number generators' (Williams, 1988). We adjust both the mean and the variance of
the controller actions. In the context of the lID algorithm, this works as follows: A
probabilistic output unit k consists of a conventional unit kJ-l which acts as a mean
generator and a conventional unit ku which acts as a variance generator. At a given
time, the probabilistic output Yk" is computed by Yk"ew = YklJ ... w +zYkIT".w' where
Z is distributed e.g. according to the normal distribution. The corresponding pf;new

.. ,

504 Schmidhu ber

must then be updated according to the following rule:

�~�.� �+�-�~�!�'� + Yknew - Yk/J"ew �~�~�
P,) new P,} new Y P,) new'

ko-new

A more sophisticated strategy to improve the model network is to introduce 'adap­
tive curiosity and boredom '. The priniciple of adaptive curiosity for model-building
neural controllers (Schmidhuber, 1990a) says: Spend additional reinforcement
whenever there is a mismatch between the expectations of the model network and
reality.

3. Perfect models. Sometimes one can gain a 'perfect' model by constructing an
appropriate mathematical description of the environmental dynamics. This saves
the time needed to train the model. However, additional external knowledge is
required. For instance, the description of the environment might be in form of
differential or difference equations. In the context of the algorithm above, this
means introducing new Pii variables for each Wij E We and each relevant state
variable 1](t) of the dynamical environment. The new variables serve to accumulate
the values of �~�7�1�(�t�)�.� This can be done in exactly the same cumulative manner as

VW'j

with the activations of the model network above.

4. Augmenting the algorithm by TD-methods. The following ideas are not limited
to recurrent nets, but are also relevant for feed-forward controllers in Markovian
environments.

It is possible to augment model-building algorithms with an 'adaptive critic'
method. To simplify the discussion, let us assume that there are no pleasure units,
just pain units. The algorithm's goal is to minimize cumulative pain. We introduce
the TD-principle (Sutton, 1988) by changing the error function of the units in Op:
At a given time t, the contribution of each unit kpred E Op to the model network's
error is Ykpred(t) - 'YYkpred(t + 1) - Yk(t+ 1), where Yi(t) is the activation of unit i at
time t, and 0 < 'Y < 1 is a discount factor for avoiding predictions of infinite sums.
Thus Op is trained to predict the sum of all (discounted) future pain vectors and
becomes a vector-valued adaptive critic. (This affects the first V-loop in step 4 .)

The controller's goal is to minimize the absolute value of M's pain predictions.
Thus, the contribution of time t to the error function of the controller now becomes
EkpredEOp (Ykpred(t)? This affects the second For-loop in step 4 of the algorithm.
Note that it is not a state which is evaluated by the adaptive critic component, but
a combination of a state and an action. This makes the approach similar to (Jordan
and Jacobs, 1990). (Schmidhuber, 1990a) shows how a recurrent model/controller
combination can be used for look-ahead planning without using TD-methods.

3 EXPERIMENTS

The following experiments were conducted by the TUM-students Josef Hochreiter
and Klaus Bergner. See (Schmidhuber, 1990a) and (Schmidhuber, 1990b) for the
full details .

1. Evolution of a flip-flop by reinforcement learning. A controller J(had to learn to
behave like a flip-flop as described in (Williams and Zipser, 1989). The main diffi-

