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ABSTRACT 

In our effort to develop a modular neural system for invariant learn­
ing and recognition of 3D objects, we introduce here a new module 
architecture called an aspect network constructed around adaptive 
axo-axo-dendritic synapses. This builds upon our existing system 
(Seibert & Waxman, 1989) which processes 20 shapes and classifies 
t.hem into view categories (i.e ., aspects) invariant to illumination, 
position, orientat.ion, scale, and projective deformations. From a 
sequence 'of views, the aspect network learns the transitions be­
tween these aspects, crystallizing a graph-like structure from an 
initially amorphous network . Object recognition emerges by ac­
cumulating evidence over multiple views which activate competing 
object hypotheses. 

1 INTRODUCTION 

One can "learn" a three-dimensional object by exploring it and noticing how its 
appearance changes. When moving from one view to another, intermediate views 
are presented . The imagery is continuous, unless some feature of the object appears 
or disappears at the object's "horizon" (called the occluding contour). Such visual 
(vents can be used to partition continuously varying input imagery into a discrete 
sequence of a.-,pects. The sequence of aspects (and the transitions between them) can 
be coded and organized into a representation of the 3D object under consideration. 
This is the form of 3D object representation that is learned by our aspect network. 
\Ve call it an aspect network because it was inspired by the aspect graph concept 
of Koenderink and van Doorn (1979). This paper introduces this new network 
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which learns and recognizes sequences of aspf'cl.s, and leaves most of t.he discussion 
of t.he visual preprocessing to earlier papers (Seibert &: Waxman, 1989; Waxman. 
Seihf'rt, Cunningham, & \\Tu, 1989). Prt'sent.ed ill this way, we hope that our ideas 
of sequence learning, representation, and recognition are also useful to investigators 
concerned with speech, finite-state machines, planning, and cont.rol. 

1.1 2D VISION BEFORE 3D VISION 

The aspect network is one module of a more complete VIsIOn system (Figure 1) 
int.roduced by us (Seibert & vVaxman, 198~) . The early st.ages of the complete 
system learn and recognize 2D views of objects, invariant to t.he scene illumina-
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Figure 1: Neural system architecture jor 3D object learning and recognition. The 
aspect network is part of t.ht> upper-right. module. 

tion and a.n object 's orientat.ion, size, and position in the visual field. Additionally, 
projective deformat.ions such as foreshortening and perspective effects are removed 
from the learned 2D representations. These processing steps make use of Diffusion­
Enhancement Bilayers (DEBs)l to generate att.entional cues and featural groupings. 
The point of our neural preprocessing is to generate a sequence of views (i.e., as­
pects) which depends on t.he object's orient.ation in 3-space, but which does not 
depend on how the 2D images happen to fall on the retina. If no preprocessing 
were done, then t.he :3D represent.ation would have to account for every possible 
2D appearance in adJition to the 3D informat.ion which relates the views to each 
other. Compressing the views into aspects avoids such combinatorial problems, but 
may result in an ambiguous representation, in that some aspects may be common 
to a number of objects. Such ambiguity is overcome by learning and recognizing a 

IThis architecture was previously called the NADEL (Neural Analog Diffusion-Enhancement 
Layer), but has been renamed to avoid causing any problems or confusion, since there is an active 
researcher in t.he field wit h this name. 
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seque11ce of aspect.s (i.e., a tr'ajectory t.hrough the aspect graph). The partitioning 
and sequence recognition is analogous t.o building a symbol alphabet and learning 
syntactic structures within the alphabet .. Each symbol represent.s all aspect. and is 
encoded in ollr syst.em as a separate category by an Adapt.ive Resonance Network 
architecture (Carpenter & Grossberg, 1987) . This unsupervised learning is compet­
itive and may proceed on-line with recognition; no separate training is required . 

1.2 ASPECT Gn.APHS AND ODJECT REPRESENTATIONS 

Figure 2 shows a simplified aspect graph for a prismatic object. 2 Each node of 
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Figure 2: Aspect Graph. A 3D object can be represented as a graph of the char­
acteristic view-nodes with adjacent views encoded by arcs bet\ ... een the nodes. 

the graph represents a characteristic view, while the allowable t.ransitions among 
views are represented by the arcs between the nodes . In this depiction, symmetries 
have been considered to simplify the graph. Although Koenderink and van Doorn 
suggested assigning aspects based on topological equivalences, we instead allow the 
ART 2 portion of our 2D system to decide when an invariant 2D view is sufficiently 
different from previously experienced views to allocate a new view category (aspect). 

Transitions between adjacent aspects provide the key to the aspect net.work rep­
resentation and recognition processes. Storing the transitions in a self-organizing 
syna.ptic weight array becomes the learned view-based representation of a 3D object. 
Transitions are exploited again during recognition to distinguish among objects with 
similar views. Whereas most investigators are interest.ed in the computational com­
plexity of generating aspect graphs from CAD libral·ies (Bowyer, Eggert, Stewman, 

2Neither the aspect graph concept nor our aspect network implementat.ion is limited to simple 
polyhedral objects, nor must the objects even be convex, i.e., they may be self-occluding. 
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& St.ark, 1989), we are interest.ed ill designing it as a self-organizing represent-at ion, 
learned from visual experience and useful for object recognition. 

2 ASPECT-NETWORK LEARNING 

The view-category nodes of ART 2 excite the aspect nodes (which we a.lso call the;1;­
nodes) of t.he aspect network (Figure 3). The aspect nodes fan-out to the dendritic 
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Figure 3: Aspect Network. The learned graph representations of 3D objects are re­
alized as weights in the synaptic arrays. Evidence for experienced view-trajectories 
is simulta.neously accumulated for all competing objec.ts. 

trees of object neurons. An object neuron consists of an adaptive synaptic array 
and an evidence accumulating y-node. Each object is learned by a single object 
neuron. A view sequence leads to accumulating activit.y in the y-nodes, which 
compete to determine the "recognized object" (i.e., maximally active z-node) in 
the "object competition layer". Gating signals from these nodes then modulate 
learning in the corresponding synaptic array, as in competitive learning paradigms. 
The system is designed so that the learning phase is integral with recognition. 
Learning (and forgetting) is always possible so that existing representations can 
a.lways be elaborated with new information as it becomes available. 

Differential equations govern the dynamics and architecture of the aspect network. 
These shunting equations model cell membrane and synapse dynamics as pioneered 
by Grossberg (1973, 1989). Input activities to the network are given by equation 
(1), the learned aspect transitions by equation (2), and the objects recognized from 
the experienced view sequences by equation (3). 
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2.1 ASPECT NODE DYNAMICS 

The aspect node activities are governed by equation (1): 

dXi . dt == Xj = Ii - .AxXi, (1) 

where .Ax is a passive decay rate, and Ii = 1 during the presentation of aspect 
i and zero otherwise as determined by the output of the ART 2 module in the 
complete system (Figure 1). This equat.ion assures t.hat the activities of the aspect 
nodes build and decay in nonzero time (see the timet-races for the input I-nodes and 
aspect x-nodes in Figure 3). Whenever an aspect transition occurs, the activity of 
the previous aspect decays (with rate .Ax) and the activity of the new aspect builds 
(again with rate .Ax in this ca.<;e, which is convenient but not necessary). During the 
transient time when both activities are nonzero, only the synapses between these 
nodes have both pre- and post-synaptic activities which are significant (Le., above 
the t.hreshold) and Hebbian learning can be supported. The overlap of the pre- and 
post-synaptic activities is transient, and the extent of the transient is controlled by 
the selection of .Ax. This is the fundamental parameter for the dynamical behavior 
of the entire network, since it defines the response time of the aspect nodes to their 
inputs. As such, nearly every other parameter of the network depends on it. 

2.2 VIEW TRANSITION ENCODING BY ADAPTIVE SYNAPSES 

The aspect transitions that represent objects are realized by synaptic weights on 
the dendritc trees of object neurons. Equation (2) defines how the (initially small 
and random) weight relating aspect i, aspect j, and object k changes: 

�d�t�v�~� _ . k k k . 
-d- = tvij = "'w tvij (1- tvij) {<l>w [(Xi + f)(Xj + f)] - .Aw} 8 Y(Yk)8z(Zk)' (2) .t 

Here, "'w governs the rate of evolution of the weights relative to the x-node dynamics, 
and .A w is the decay rate of t.he weights. Note that a small "background level" of 
activity f is added to each x-node activity. This will be discussed in connection 
with (3) below. <l>¢>(-r) is a threshold-linear function; that is: <I>¢>(-y) = 'Y if'Y > ¢>th 

and zero otherwise. 8 8 ( 'Y) is a binary-t.hreshold function of the absolute-value of ,; 
that is: 8 8 (-r) = 1.0 if I, I> 8th and zero otherwise. 

Although this equation appears formidable, it. can be understood as follows. When­
ever simultaneous above-threshold activities arise presynaptically at node Xi and 
postsynaptically at node xi, the Hebbian product (Xi + f) (Xj + f) causes wfj to be 
positive (since above threshold, (Xi + f)(Xj + f) > .Aw ) and the weight wfj learns the 
transition between the aspects Xi and Xj. By symmetry, Wri would also learn, but 
all ot.her weight.s decay (tV ex: -.Aw ). The product of the shunting terms �w�f�j�(�l�-�w�~�)� 

goes to zero (and thus inhibits further weight changes) only when wt; approaches 
either zero or unit.y. This shunting mechanism limit.s the range of weights, but also 
assures that these fixed points are invariant to input-activity magnitudes, decay­
rates, or the initia.l and final network sizes. 








