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Abstract
This paper presents reinforcement learning with a Long Short­
Term Memory recurrent neural network: RL-LSTM. Model-free
RL-LSTM using Advantage(,x) learning and directed exploration
can solve non-Markovian tasks with long-term dependencies be­
tween relevant events. This is demonstrated in a T-maze task, as
well as in a difficult variation of the pole balancing task.

1 Introduction

Reinforcement learning (RL) is a way of learning how to behave based on delayed
reward signals [12]. Among the more important challenges for RL are tasks where
part of the state of the environment is hidden from the agent. Such tasks are called
non-Markovian tasks or Partially Observable Markov Decision Processes. Many real
world tasks have this problem of hidden state. For instance, in a navigation task
different positions in the environment may look the same, but one and the same
action may lead to different next states or rewards. Thus, hidden state makes RL
more realistic. However, it also makes it more difficult, because now the agent not
only needs to learn the mapping from environmental states to actions, for optimal
performance it usually needs to determine which environmental state it is in as well.

Long-term dependencies. Most approaches to solving non-Markovian RL tasks
have problems if there are long-term dependencies between relevant events. An
example of a long-term dependency problem is a maze navigation task where the
only way to distinguish between two T-junctions that look identical is to remember
an observation or action a long time before either T-junction. Such a case prese~ts

obvious problems for fixed size history window approaches [6], which attempt to­
resolve the hidden state by making the chosen action depend not only on the cur­
rent observation, but also on a fixed number of the most recent observations and
actions. If the relevant piece of information to be remembered falls outside the his­
tory window, the agent cannot use it. McCallum's variable history window [8] has,
in principle, the capacity to represent long-term dependencies. However, the system
starts with zero history and increases the depth of the history window step by step.
This makes learning long-term dependencies difficult, especially when there are no
short-term dependencies to build on.

Other approaches to non-Markovian tasks are based on learning Finite State Au­
tomata [2], recurrent neural networks (RNNs) [10, 11, 6], or on learning to set



memory bits [9]. Unlike history window approaches, they do not have to represent
(possibly long) entire histories, but can in principle extract and represent just the
relevant information for an arbitrary amount of time. However, learning to do that
has proven difficult. The difficulty lies in discovering the correlation between a
piece of information and the moment at which this information becomes relevant
at a later time, given the distracting observations and actions between them. This
difficulty can be viewed as an instance of the general problem of learning long-term
dependencies in timeseries data. This paper uses one particular solution to this
problem that has worked well in supervised timeseries learning tasks: Long Short­
Term Memory (LSTM) [5, 3]. In this paper an LSTM recurrent neural network is
used in conjunction with model-free RL, in the same spirit as the model-free RNN
approaches of [10,6]. The next section describes LSTM. Section 3 presents LSTM's
combination with reinforcement learning in a system called RL-LSTM. Section 4
contains simulation results on non-Markovian RL tasks with long-term dependen­
cies. Section 5, finally, presents the general conclusions.

2 LSTM

LSTM is a recently proposed recurrent neural network architecture, originally de­
signed for supervised timeseries learning [5, 3]. It is based on an analysis of the
problems that conventional recurrent neural network learning algorithms, e.g. back­
propagation through time (BPTT) and real-time recurrent learning (RTRL), have
when learning timeseries with long-term dependencies. These problems boil down
to the problem that errors propagated back in time tend to either vanish or blow
up (see [5]).

Memory cells. LSTM's solution to this problem is to enforce constant error flow
in a number of specialized units, called Constant Error Carrousels (CECs). This
actually corresponds to these CECs having linear activation functions which do
not decay over time. In order to prevent the CECs from filling up with useless
information from the timeseries, access to them is regulated using other specialized,
multiplicative units, called input gates. Like the CECs, the input. gates receive input
from the timeseries and the other units in the network, and they learn to open and
close access to the CECs at appropriate moments. Access from the activations of
the CECs to the output units (and possibly other units) of the network is regulated
using multiplicative output gates. Similar to the input gates, the output gates learn
when the time is right to send the information stored in the CECs to the output
side of the network. A recent addition is forget gates [3], which learn to reset
the activation of the CECs when the information stored in the CECs is no longer
useful. The combination of a CEC with its associated input, output, and forget
gate is called a memory cell. See figure 1b for a schematic of a memory cell. It is
also possible for multiple CECs to be combined with only one input, output, and
forget gate, in a so-called memory block.

Activation updates. More formally, the network's activations at each timestep
t are computed as follows. A standard hidden unit's activation yh, output unit
activation yk, input gate activation yin, output gate activation y0'Ut, and forget
gate activation yep is computed in the following standard way:

(1)
m

where Wim is the weight of the connection from unit m to unit i. In this paper, Ii

is the standard logistic sigmoid function for all units except output units, for which
it is the identity function. The CEC activation Be"!, or the "state" of memory cell v

:J



cell output

a.

,/'

,/'

b. cell input
memory cell

Figure 1: a. The general LSTM architecture used in this paper. Arrows indicate
unidirectional, fully connected weights. The network's output units directly code
for the Advantages of different actions. b. One memory cell.

in Illell10ry block j, is COITlputed as follows:

(2)
m

where 9 is a logistic sigmoid function scaled to the range [-2,2]' and sc~(o) == o.
3

The memory cell's output ycj is calculated by

ycj (t) == youtj (t)h(sc~ (t)) (3)
3

where h is a logistic sigmoid function scaled to the range [-1, IJ.

Learning. At some or all timesteps of the timeseries, the output units of the
network may make prediction' errors. Errors are propagated just one step back in
time through all units other than the CEes, including the gates. However, errors
are backpropagated through the CECs for an indefinite amount of time, using an
efficient variation of RTRL [5, 3J. Weight updates are done at every timestep, which
fits in nicely with the philosophy of online RL. The learning algorithm is adapted
slightly for RL, as explained in the next section.

3 RL-LSTM

RNNs, such as LSTM, can be applied to RL tasks in various ways. One way is
to let the RNN learn a model of the environment, which learns to predict obser­
vations and rewards, and in this way learns to infer the environmental state at
each point [6, IIJ. LSTM's architecture would allow the predictions to depend on
information from long ago. The model-based system could then learn the mapping
from (inferred) environmental states to actions as in the Markovian case, using
standard techniques such as Q-learning [6, 2J, or by backpropagating through the
frozen model to the controller [IIJ. An alternative, model-free approach, and the
one used here, is to use the RNN to directly approximate the value function of a
reinforcement learning algorithm [10, 6]. The state of the environment is approxi­
mated by the current observation, which is the input to the network, together with
the recurrent activations in the network, which represent the agent's history. One
possible advantage of such a model-free approach over a model-based approach is
that the system may learn to only resolve hidden state insofar as that is useful for
obtaining higher rewards, rather than waste time and resources in trying to predict
features of the environment that are irrelevant for obtaining rewards [6, 8].

Advantage learning. In this paper, the RL-LSTM network approximates the
value function of Advantage learning [4], which was designed as, an improvement on



Q-Iearning for continuous-time RL. In continuous-time RL, values of adjacent states,
and therefore optimal Q-values of different actions in a given state, typically differ by
only small amounts, which can easily get lost in noise. Advantage learning remedies
this problem by artificially decreasing the values of suboptimal actions in each state.
Here Advantage learning is used for both continuous-time and discrete-time RL.
Note that the same problem of small differences between values of adjacent states
applies to any RL problem with long paths to rewards. And to demonstrate RL­
LSTM's potential to bridge long time lags, we need to consider such RL problems.
In general, Advantage learning may be more suitable for non-Markovian tasks than
Q-Iearning, because it seems less sensitive to getting the value estimations exactly
right.

The LSTM network's output units directly code for the Advantage values of different
actions. Figure 1a shows the general network architecture used in this paper. As
in Q-learning with a function approximator, the temporal difference error ETD(t),
derived from the equivalent of the Bellman equation for Advantage learning [4], is
taken as the function approximator's prediction error at timestep t:

ETD(t) = V(s(t)) + r(t) +iV(S(t+ 1)) - V(s(t)) _ A(s(t),a(t)) (4)
~

where A(s, a) is the Advantage value of action a in state s, r is the immediate
reward, and V(s) == maxa A(s, a) is the value of the state s. , is a discount factor
in the range [0,1], and "" is a constant scaling the difference between values of
optimal and suboptimal actions. Output units associated with other actions than
the executed one do not receive error signals.

Eligibility traces. In this work, Advantage learning is extended with eligibil­
ity traces, which have often been found to improve learning in RL, especially in
non-Markovian domains [7]. This yields Advantage(A) learning, and the necessary
computations turn out virtually the same as in Q(A)-learning [1]. It requires the
storage of one eligibility trace eim per weight Wim. A weight update corresponds to

) TD) ) ayK (t) )Wim(t+ 1 == Wim(t) +aE (t)eim(t, where eim(t == , Aeim(t-1) +-8--. (5
Wim

K indicates the output unit associated with the executed action, a is a learning rate
parameter, and A is a parameter determining how fast the eligibility trace decays.
eim(O) == 0, and eim(t - 1) is set to 0 if an exploratory action is taken.

Exploration. Non-Markovian RL requires extra attention to the issue of explo­
ration [2, 8]. Undirected exploration attempts to tryout actions in the same way in
each environmental state. However, in non-Markovian tasks, th~ agent initially does
not know which environmental state it is in. Part of the exploration must be aimed
at discovering the environmental state structure. Furthermore, in many cases, the
non-Markovian environment will provide unambiguous observations indicating the
state in some parts, while providing ambiguous observations (hidden state) in other
parts. In general, we want more exploration in the ambiguous parts.

This paper employs a directed exploration technique based on these ideas. A sep­
arate multilayer feedforward neural network, with the same input as the LSTM
network (representing the current observation) and one output unit yV, is trained
concurrently with the LSTM network. It is trained, using standard backpropaga­
tion, to predict the absolute value of the current temporal difference error E TD (t)
as defined byeq. 4, plus its own discounted prediction at the next timestep:

Yd(t) == IE TD (t)1 + (3yV(t + 1) (6)
where Y'd(t) is the desired value for output yV(t), and (3 is a discount parameter
in the range [0,1]. This amounts to attempting to identify which observations are
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Figure 2: Long-term dependency T-maze with length of corridor N == 10. At the
starting position S the agent's observation indicates where the goal position G is in
this episode.

"problematic" , in the sense that they are associated with large errors in the current
value estimation (the first term), or precede situations with large such errors (the
second term). yV(t) is linearly scaled and used as the temperature of a Boltzmann
action selection rule [12]. The net result is much exploration when, for the current
observation, differences between estimated Advantage values are small (the standard
effect of Boltzmann exploration), or when there is much "uncertainty" about current
Advantage values or Advantage values in the near future (the effect of this directed
exploration scheme). This exploration technique has obvious similarities with the
statistically more rigorous technique of Interval Estimation (see [12]), as well as
with certain model-based approaches where exploration is greater when there is
more uncertainty in the predictions of a model [11].

4 Test problems

Long-term dependency T-maze. The first test problem is a non-Markovian
grid-based T-maze (see figure 2). It was designed to test RL-LSTM's capability to
bridge long time lags, without confounding the results by making the control task
difficult in other ways. The agent has four possible actions: move North, East,
South, or West. The agent must learn to move from the starting position at the
beginning of the corridor to the T-junction. There it must move either North or
South to a changing goal position, which it cannot see. However, the location of
the goal depends on a "road sign" the agent has seen at the starting position. If
the agent takes the correct action at the T-junction, it receives a reward of 4. If it
takes the wrong action, it receives a reward of -.1. In both cases, the episode ends
and a new episode starts, with the new goal position set randomly either North or
South. During the episode, the agent receives a reward of -.1 when it stands still.
At the starting position, the observation is either 011 or 110, in the corridor the
observation is 101, and at the T-junction the observation is 010. The length of the
corridor N was systematically varied from 5 to 70. In each condition, 10 runs were
performed.

If the agent takes only optimal ac~ions to the T-junction, it must remember the
observation from the starting position for N timesteps to determine the optimal
action at the T-junction. Note that the agent is not aided by experiences in whiGh
there are shorter time lag dependencies. In fact, the opposite is true~ Initially, it
takes many more actions until even the T-junction is reached, and the experienced
history is very variable from episode to episode. The agent must first learn to
reliably move to the T-junction. Once this is accomplished, the agent will begin to
experience more or less consistent and shortest possible histories of observations and
actions, from which it can learn to extract the relevant piece of information. The
directed exploration mechanism is crucial in this regard: it learns to set exploration
low in the corridor and high at the T-junction.

The LSTM network had 3 input units, 12 standard hidden units, 3 memory cells, and
a == .0002. The following parameter values were used in all conditions: { == .98, ,\ ==
.8, flJ == .1. An empirical comparison was made with two alternative systems that
have been used in non-Markovian tasks. The long-term dependency nature of the
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Figure 3: Results in noise-free T-maze task. Left: Number of successful runs (out of
10) as a function of N, length of the corridor. Right: Average number of timesteps
until success as a function of N.
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Figure 4: Results in noisy T-maze task. Left: Number of successful runs (out of
10) as a function of N, length of the corridor. Right: Average number of timesteps
until success as a function of N.

task virtually rules out history window approaches. Instead, two alternative systems
were used that, like LSTM, are capable in principle of representing information for
arbitrary long time lags. In the first alternative, the LSTM network was replaced by
an Elman-style Simple Recurrent Network, trained using BPTT [6]. Note that the
unfolding of the RNN necessary for BPTT means that this is no longer truly online
RL. The Elman network had 16 hidden units and 16 context units, and a == .001.
The second alternative is a table-based system extended with memory bits that are
part of the observation, and that the controller can switch on and off [9]. Because
the task requires the agent to remember just one bit of information, this system
had one memory bit, and a == .01. In order to determine the specific contribution of
LSTM to performance, in both alternatives all elements of the overall system except
LSTM (i.e. Advantage(A) learning, directed exploration) were left unchanged.

A run was considered a success if the agent learned to take the correct action at the
T-junction in over 80% of cases, using its stochastic action selection mechanism. In
practice, this corresponds to 100% correct action choices at the T-junction using
greedy action selection, as well as optimal or near-optimal action choices leading
to the T-junction. Figure 3 shows the number of successful runs (out of 10) as a
function of the length of the corridor N, for each of the three methods. It also
shows the average number of timesteps needed to reach success. It is apparent that
RL-LSTM is able to deal with much longer time lags than the two alternatives. RL­
LSTM has perfect performance up to N == 50, after which performance gradually
decreases. In those cases where the alternatives also reach success, RL-LSTM also
learns faster. The reason why the memory bits system performs worst is probably
that, in contrast with the other two, it does not explicitly compute the gradient
of performance with respect to past events. This should make credit assignment



less directed and therefore less effective. The Elman-BPTT system does compute
such a gradient, but in contrast to LSTM, the gradient information tends to vanish
quickly with longer time lags (as explained in section 2).

T-maze with noise. It is one thing to learn long-term dependencies in a noise-free
task, it is quite another thing to do so in the presence of severe noise. To investigate
this, a very noisy variation of the T-mazetask described above was designed. Now
the observation in the corridor is aOb, where a and b are independent, uniformly
distributed random values in the range [0, 1], generate online. All other aspects of
the task remain the same as above. Both the LSTM and the Elman-BPTT system
were also left unchanged. To allow for a fair comparison, the table-based memory
bit system's observation was computed using Michie and Chambers's BOXES state
aggregation mechanism (see [12]), partitioning each input dimension into three equal
regions.

Figure 4 shows the results. The memory bit system suffers most from the noise.
This is not very surprising because a table-based system, even if augmented with
BOXES state aggregation, does not give very sophisticated generalization. The two
RNN approaches are hardly affected by the severe noise in the observations. Most
importantly, RL-LSTM again significantly outperforms the others, both in terms of
the maximum time lag it can deal with, and in terms of the number of timesteps
needed to learn the task.

Multi-mode pole balancing. The third test problem is less artificial than the
T-mazes and has more complicated dynamics. It consists of a difficult variation of
the classical pole balancing task. In the pole balancing task, an agent must balance
an inherently unstable pole, hinged to the top of a wheeled cart that travels along a
track, by applying left and right forces to the cart. Even in the Markovian version,
the task requires fairly precise control to solve it.

The version used in this experiment is made more difficult by two sources of hidden
state. First, as in [6], the agent cannot observe the state information corresponding
to the cart velocity and pole angular velocity. It has to learn to approximate this
(continuous) information using its recurrent connections in order to solve the task.
Second, the agent must learn to operate in two different modes. In mode A, action
1 is left push and action 2 is right push. In mode B, this is reversed: action 1 is right
push and action 2 is left push. Modes are randomly set at the beginning of each
episode. The information which mode the agent is operating in is provided to the
agent only for the first second of the episode. After that, the corresponding input
unit is set to zero and the agent must remember which mode it is in. Obviously,
failing to remember the mode leads to very poor performance. The only reward
signal is -1 if the pole falls past ±12° or if the cart hits either end of the track.
Note that the agent must learn to remember the (discrete) mode information for an
infinite amount of time if it is to learn to balance the pole indefinitely. This rules
out history window approaches altogether. However, in contrast with the T-mazes,
the system now has the benefit of starting with relatively short time lags.

The LSTM network had 2 output units, 14 standard hidden units, and 6 memory
cells. It has 3 input units: one each for cart position and pole angle; and one for the
mode of operation, set to zero after one second of simulated time (50 timesteps).
ry == .95, A == .6, fiJ == .2, a == .002. In this problem, directed exploration was
not necessary, because in contrast to the T-mazes, imperfect policies lead to many
different experiences with reward signals, and there is hidden state everywhere in
the environment. For a continuous problem like this, a table-based memory bit
system is not suited very well, so a comparison was only made with the Elman­
BPTT system, which had 16 hidden and context units and a == .002.



The Elman-BPTT system never reached satisfactory solutions in 10 runs. It only
learned to balance the pole for the first 50 timesteps, when the mode information
is available, thus failing to learn the long-term dependency. However, RL-LSTM
learned optimal performance in 2 out of 10 runs (after an average of 6,250,000
timesteps of learning). After learning, these two agents were able to balance the pole
indefinitely in both modes of operation. In the other 8 runs, the agents still learned
to balance the pole in both modes for hundreds or even thousands of timesteps
(after an average of 8,095,000 timesteps of learning), thus showing that the mode
information was remembered for long time lags. In most cases, such an agent
learns optimal performance for one mode, while achieving good but suboptimal
performance in the other.

5 Conclusions

The results presented in this paper suggest that reinforcement learning with Long
Short-Term ~v1emory (RL-LSTI\,f) is a promising approach to solving non-:r-v1arkovi&t~

RL tasks with long-term dependencies. This was demonstrated in a T-maze task
with minimal time lag dependencies of up to 70 timesteps, as well as in a non­
Markovian version of pole balancing where optimal performance requires remem­
bering information indefinitely. RL-LSTM's main power is derived from LSTM's
property of constant error flow, but for good performance in RL tasks, the combi­
nation with Advantage(A) learning and directed exploration was crucial.
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