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Abstract 

We study the approximation of functions by two-layer feedforward neu­
ral networks, focusing on incremental algorithms which greedily add 
units , estimating single unit parameters at each stage. As opposed to 
standard algorithms for fixed architectures, the optimization at each stage 
is performed over a small number of parameters, mitigating many of the 
difficult numerical problems inherent in high-dimensional non-linear op­
timization. We establish upper bounds on the error incurred by the al­
gorithm, when approximating functions from the Sobolev class, thereby 
extending previous results which only provided rates of convergence for 
functions in certain convex hulls of functional spaces. By comparing our 
results to recently derived lower bounds, we show that the greedy algo­
rithms are nearly optimal. Combined with estimation error results for 
greedy algorithms, a strong case can be made for this type of approach. 

1 Introduction and background 

A major problem in the application of neural networks to real world problems is the ex­
cessively long time required for training large networks of a fixed architecture. Moreover, 
theoretical results establish the intractability of such training in the worst case [9][4]. Ad­
ditionally, the problem of determining the architecture and size of the network required to 
solve a certain task is left open. Due to these problems, several authors have considered 
incremental algorithms for constructing the network by the addition of hidden units , and 
estimation of each unit's parameters incrementally. These approaches possess two desir­
able attributes: first, the optimization is done step-wise, so that only a small number of 
parameters need to be optimized at each stage; and second, the structure of the network 
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is established concomitantly with the learning, rather than specifying it in advance. How­
ever, until recently these algorithms have been rather heuristic in nature, as no guaranteed 
performance bounds had been established. Note that while there has been a recent surge 
of interest in these types of algorithms, they in fact date back to work done in the early 
seventies (see [3] for a historical survey). 

The first theoretical result establishing performance bounds for incremental approximations 
in Hilbert space, was given by Jones [8]. This work was later extended by Barron [2], and 
applied to neural network approximation of functions characterized by certain conditions 
on their Fourier coefficients. The work of Barron has been extended in two main direc­
tions. First, Lee et at. [10] have considered approximating general functions using Hilbert 
space techniques, while Donahue et al. [7] have provided powerful extensions of Jones' 
and Barron's results to general Banach spaces. One of the most impressive results of the 
latter work is the demonstration that iterative algorithms can, in many cases, achieve nearly 
optimal rates of convergence, when approximating convex hulls. 

While this paper is concerned mainly with issues of approximation, we comment that it is 
highly relevant to the statistical problem of learning from data in neural networks. First, 
Lee et at. [10] give estimation error bounds for algorithms performing incremental opti­
mization with respect to the training error. Under certain regularity conditions, they are 
able to achieve rates of convergence comparable to those obtained by the much more com­
putationally demanding algorithm of empirical error minimization. Moreover, it is well 
known that upper bounds on the approximation error are needed in order to obtain per­
formance bounds, both for parametric and nonparametric estimation, where the latter is 
achieved using the method of complexity regularization. Finally, as pointed out by Don­
ahue et al. [7], lower bounds on the approximation error are crucial in establishing worst 
case speed limitations for learning. 

The main contribution of this paper is as follows. For functions belonging to the Sobolev 
class (see definition below), we establish, under appropriate conditions, near-optimal rates 
of convergence for the incremental approach, and obtain explicit bounds on the parameter 
values of the network. The latter bounds are often crucial for establishing estimation error 
rates. In contrast to the work in [10] and [7], we characterize approximation rates for 
functions belonging to standard smoothness classes, such as the Sobolev class. The former 
work establishes rates of convergence with respect to the convex hulls of certain subsets 
of functions, which do not relate in a any simple way to standard functional classes (such 
as Lipschitz, Sobolev, Holder, etc.). As far as we are aware, the results reported here are 
the first to report on such bounds for incremental neural network procedures. A detailed 
version of this work, complete with the detailed proofs, is available in [13]. 

2 Problem statement 

We make use of the nomenclature and definitions from [7]. Let H be a Banach space of 
functions with norm II . II. For concreteness we assume henceforth that the norm is given 
by the Lq norm, 1 < q < 00, denoted by II . Ilq. Let linn H consist of all sums of the form 
L~=l aigi , gi E H and arbitrary ai, and COn H is the set of such sums with ai E [0,1] and 
L~=l ai = 1. The distances, measured in the Lq norm, from a function f are given by 

dist(1innH,f) = inf {l lh - fllq : hE linnH}, 

dist(conH , f) = inf {l lh - fllq : hE conH}. 

The linear span of H is given by linH = Un linn H, while the convex-hull of H is coH = 
Uncon H. We follow standard notation and denote closures of sets by a bar, e.g. coH is the 
closure of the convex hull of H. In this work we focus on the special case where 

H = H1} ~ {g : g(x) = eCJ(aT x + b), lei::; 1}, IICJ(·)llq ::; I}, (1) 
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corresponding to the basic building blocks of multilayer neural networks. The restriction 
110-011 ::; 1 is not very demanding as many sigmoidal functions can be expressed as a sum 
of functions of bounded norm. It should be obvious that linn 1l1) corresponds to a two-layer 
neural network with a linear output unit and o--activation functions in the single hidden 
layer, while COn 1l1) is equivalent to a restricted form of such a network, where restrictions 
are placed on the hidden-to-output weights. In terms of the definitions introduced above, 
the by now well known property of universal function approximation over compacta can 
be stated as lin1l = C(M), where C(M) is the class of continuous real valued functions 
defined over M , a compact subset of Rd. A necessary and sufficient condition for this 
has been established by Leshno et af. [11], and essentially requires that 0-(.) be locally 
integrable and non-polynomial. We comment that if 'T} = 00 in (l), and c is unrestricted in 
sign, then co1l= = lin1l=. The distinction becomes important only if 'T} < 00, in which 
case co1l1) C lin1l1). 

For the purpose of incremental approximation, it turns out to be useful to consider the con­
vex hull co1l, rather than the usual linear span, as powerful algorithms and performance 
bounds can be developed in this case. In this context several authors have considered 
bounds for the approximation of a function 1 belonging to co1l by sequences of functions 
belonging to COn 1l . However, it is not clear in general how well convex hulls of bounded 
functions approximate general functions . One contribution of this work is to show how 
one may control the rate of growth of the bound 'T} in (1), so that general functions, belong­
ing to certain smoothness classes (e.g. Sobolev), may be well approximated. In fact, we 
show that the incremental approximation scheme described below achieves nearly optimal 
approximation error for functions in the Sobolev space. 

Following Donahue et af. [7], we consider c:-greedy algorithms. Let E = (El ' E2, ... ) be a 
positive sequence, and similarly for (ai, a 2, ... ), 0 < an < 1. A sequence of functions 
hI, h2 ' ... is E-greedy with respect to 1 if for n = 0, 1, 2, .. . , 

Ilhn+I - Illq < inf {llanhn + (1 - an)g - Illq : 9 E 1l1)} + En , (2) 

where we set ho = O. For simplicity we set an = (n - l)/n , although other schemes are 
also possible. It should be clear that at each stage n, the function hn belongs to COn 1l1). 
Observe also that at each step, the infimum is taken with respect to 9 E 1l1)' the function 
hn being fixed. In terms of neural networks, this implies that the optimization over each 
hidden unit parameters (a, b, c) is performed independently of the others. We note in pass­
ing, that while this greatly facilitates the optimization process in practice, no theoretical 
guarantee can be made as to the convexity of the single-node error function (see [1] for 
counter-examples). The variables En are slack variables, allowing the extra freedom of 
only approximate minimization . In this paper we do not optimize over an, but rather fix a 
sequence in advance, forfeiting some generality at the price of a simpler presentation. In 
any event, the rates we obtain are unchanged by such a restriction. 

In the sequel we consider E-greedy approximations of smooth functions belonging to the 
Sobolev class of functions, 

W; = {I : m?x WDk 1112 ::; ·1} , 
OS k S r 

where k = (k 1 , . •• , k d ) , ki 2:: 0 and Ikl = ki + ... kd . Here Vk is the partial derivative 

operator of order k. All functions are defined over a compact domain K C Rd. 

3 Upper bound for the L2 norm 

First, we consider the approximation of functions from WI using the L2 norm. In dis­
tinction with other Lq norms, there exists an inner product in this case, defined through 
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(".) = II·II~. This simp1ification is essential to the proof in this case. 

We begin by recalling a result from [12], demonstrating that any function in L2 may be 
exactly expressed as a convex integral representation of the form 

f(x) = Q J h(x, O)w(O)dO, (3) 

where 0 < Q < 00 depends on f, and w( 0) is a probability density function (pdf) with 
respect to the multi-dimensional variable O. Thus, we may write f(x) = QEw{h(x, e)}, 
where Ew denotes the expectation operator with respect to the pdf w . Moreover, it was 
shown in [12], using the Radon and wavelet transforms, that the function h(x, 0) can be 
taken to be a ridge function with 0 = (a, b, e) and h(x, 0) = ea(aT x + b). 

In the case of neural networks, this type of convex representation was first exploited by 
Barron in [2], assuming f belongs to a class of functions characterized by certain moment 
conditions on their Fourier transforms. Later, Delyon et al. [6] and Maiorov and Meir 
[12] extended Barron's results to the case of wavelets and neural networks, respectively, 
obtaining rates of convergence for functions in the Sobolev class. 

The basic idea at this point is to generate an approximation, hn(x), based on n draws of 
random variables en = {el , e2, ... ,en}, ei ,....., w(·), resulting in the random function 

Q n 

hn(x; en) = - 2: h(x, ei ). 

n i=l 

(4) 

Throughout the paper we conform to standard notation, and denote random variables by 
uppercase letters, as in e, and their realization by lower case letters, as in O. Let wn = 
TI~=l Wi represent the product pdf for {e l , ... ,en}. Our first result demonstrates that, 
on the average, the above procedure leads to good approximation of functions belonging to 
W{. 

Theorem 3.1 Let K C Rd be a compact set. Then/or any f E W{, n > 0 and c > 0 
there exists a constant e > 0, such that 

Ew " Ilf - hn(x; en)112 :S en-rld+E , 

where Q < en(1/2- r l d)+, and (x)+ = max(O,x). 

(5) 

The implication of the upper bound on the expected value, is that there exists a set of 
values o* ,n = {Or, ... , O~}, for which the rate (5) can be achieved. Moreover, as long as 
the functions h(x, Od in (4) are bounded in the L2 norm, a bound on Q implies a bound on 
the size of the function hn itself. 

Proof sketch The proof proceeds by expressing f as the sum of two functions, iI 
and 12 . The function iI is the best approximation to f from the class of multi-variate 
splines of degree r. From [12] we know that there exist parameters on such that 
IliI (.) - hn {-, on)112 :S en-rid. Moreover, using the results of [5] it can be shown that 
1112112 :S en-rid. Using these two observations, together with the triangle inequality 
Ilf - hn l1 2 :S IliI - hnl1 2 + 1112112, yields the desired result. I 
Next, we show that given the approximation rates attained in Theorem 3.1, the same rates 
may be obtained using an c -greedy algorithm. Moreover, since in [12] we have established 
the optimality of the upper bound (up to a logarithmic factor in n), we conclude that greedy 
approximations can indeed yield near-optimal perfonnance, while at the same time being 
much more attractive computationally. In fact, in this section we use a weaker algorithm, 
which does not perform a full minimization at each stage. 
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Incremental algorithm: (q = 2) Let an = 1 - lin, 6:n = 1 - an = lin. 
1. Let 0i be chosen to satisfy 

Ilf(x) - Qh(x,Onll~ = EWl {llf(x) - Qh(x,edIID· 

2. Assume that 0i , °2, ... ,O~-l have been generated. Select O~ to obey 
n-l 2 

f(x) - ::~; L h(x,On - 6:nQh(x,O~) 
i=l 2 

n-l 22} . f(x) - Qan "h(x, On - 6:nQh(x, en) 
n-lL..,; 

i=l 

Define 

299 

which measures the error incurred at the n-th stage by this incremental procedure. The 
main result of this section then follows. 

Theorem 3.2 For any f E WI and c > 0, the error of the incremental algorithm above is 
bounded as 

for some finite constant c. 

Proof sketch The claim will be established upon showing that 

(6) 

namely, the error incurred by the incremental procedure is identical to that of the non­
incremental one described preceding Theorem 3.1. The result will then follow upon using 
Holder's inequality and the upper bound (5) for the r.h.s. of (6). The remaining details are 
straightforward, but tedious, and can be found in the full paper [13]. I 

4 Upper bound for general Lq norms 

Having established rates of convergence for incremental approximation of WI in the L2 
norm, we move now to general Lq norms. First, note that the proof of Theorem 3.2 relies 
heavily on the existence on an inner product. This useful tool is no longer available in the 
case of general Banach spaces such as L q . In order to extend the results to the latter norm, 
we need to use more advanced ideas from the theory of the geometry of Banach spaces. In 
particular, we will make use of recent results from the work of Donahue et al. [7]. Second, 
we must keep in mind that the approximation of the Sobolev space WI using the Lq norm 
only makes sense if the embedding condition rid> (1/2 - l/q)+ holds, since otherwise 
the Lq norm may be infinite (the embedding condition guarantees its finiteness; see [14] 
for details). 

We first present the main result of this section, followed by a sketch of the proof. The full 
details of the rather technical proof can be found in [13]. Note that in this case we need to 
use the greedy algorithm (2) rather than the algorithm of Section 3. 
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Theorem 4.1 Let the embedding condition r / d > (1/2 - 1/ q) + hold for 1 < q < 00, 

0< r < r*, r* = ~ + (~- ~)+ andassumethatllh(-,O)llq:S IforallO. Thenforany 

JEW; andf. > 0 

where 

{ 
;I- (~-P 

, = !+% _qd q > 2, 

~ q :s 2, 
(7) 

c = c(r, d , K) and hn(-, on) is obtained via the incremental greedy algorithm (2) with 
cn = O. 

Proof sketch The main idea in the proof of Theorem 4.1 is a two-part approximation 
scheme. First, based on [13], we show that any JEW; may be well approximated by 
functions in the convex class COn ('111/) for an appropriate value of TJ (see Lemma 5.2 in 
[13]), where R1/ is defined in (1). Then, it is argued, making use of results from [7] (in 
particular, using Corollary 3.6) , that an incremental greedy algorithm can be used to ap­
proximate the closure of the class co( R 1/) by the class COn (111/). The proof is completed by 
using the triangle inequality. The proof along the above lines is done for the case q > 2. In 
the case q :s 2, a simple use of the Holder inequality in the form Ilfllq ~ IKI 1/q- l/21IfI12, 
where IKI is the volume of the region K, yields the desired result, which, given the lower 
bounds in [12], is nearly optimal. I 

5 Discussion 

We have presented a theoretical analysis of an increasingly popular approach to incremental 
learning in neural networks . Extending previous results , we have shown that near-optimal 
rates of convergence may be obtained for approximating functions in the Sobolev class 
W; . These results extend and clarify previous work dealing solely with the approximation 
of functions belonging to the closure of convex hulls of certain sets of functions. Moreover, 
we have given explicit bounds on the parameters used in the algorithm, and shown that the 
restriction to COn 111/ is not too stringent. In the case q ~ 2 the rates obtained are as good (up 
to logarithmic factors) to the rates obtained for general spline functions, which are known 
to be optimal for approximating Sobolev spaces. The rates obtained in the case q > 2 
are sub-optimal as compared to spline functions, but can be shown to be provably better 
than any linear approach. In any event, we have shown that the rates obtained are equal, 
up to logarithmic factors, to approximation from linn 111/' when the size of TJ is chosen 
appropriately, implying that positive input-to-output weights suffice for approximation. An 
open problem remaining at this point is to demonstrate whether incremental algorithms for 
neural network construction can be shown to be optimal for every value of q. In fact, this 
is not even known at this stage for neural network approximation in general. 
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