
Gradient and Hamiltonian Dynamics
Applied to Learning in Neural Networks

James W. Howse Chaouki T. Abdallah Gregory L. Heileman

Department of Electrical and Computer Engineering
University of New Mexico
Albuquerque, NM 87131

Abstract

The process of machine learning can be considered in two stages: model
selection and parameter estimation. In this paper a technique is presented
for constructing dynamical systems with desired qualitative properties. The
approach is based on the fact that an n-dimensional nonlinear dynamical
system can be decomposed into one gradient and (n - 1) Hamiltonian sys­
tems. Thus, the model selection stage consists of choosing the gradient and
Hamiltonian portions appropriately so that a certain behavior is obtainable.
To estimate the parameters, a stably convergent learning rule is presented.
This algorithm has been proven to converge to the desired system trajectory
for all initial conditions and system inputs. This technique can be used to
design neural network models which are guaranteed to solve the trajectory
learning problem.

1 Introduction
A fundamental problem in mathematical systems theory is the identification of dy­
namical systems. System identification is a dynamic analogue of the functional ap­
proximation problem. A set of input-output pairs {u(t), y(t)} is given over some time
interval t E [7i, 1j]. The problem is to find a model which for the given input sequence
returns an approximation of the given output sequence. Broadly speaking, solving an
identification problem involves two steps. The first is choosing a class of identifica­
tion models which are capable of emulating the behavior of the actual system. The
second is selecting a method to determine which member of this class of models best
emulates the actual system. In this paper we present a class of nonlinear models and
a learning algorithm for these models which are guaranteed to learn the trajectories
of an example system. Algorithms to learn given trajectories of a continuous time
system have been proposed in [6], [8], and [7] to name only a few. To our knowledge,
no one has ever proven that the error between the learned and desired trajectories
vanishes for any of these algorithms. In our trajectory learning system this error is
guaranteed to vanish. Our models extend the work in [1] by showing that Cohen's
systems are one instance of the class of models generated by decomposing the dynam­
ics into a component normal to some surface and a set of components tangent to the
same surface. Conceptually this formalism can be used to design dynamical systems
with a variety of desired qualitative properties. Furthermore, we propose a provably
convergent learning algorithm which allows the parameters of Cohen's models to be
learned from examples rather than being programmed in advance. The algorithm is

Gradient and Hamiltonian Dynamics Applied to Learning in Neural Networks 275

convergent in the sense that the error between the model trajectories and the de­
sired trajectories is guaranteed to vanish. This learning procedure is related to one
discussed in [5] for use in linear system identification.

2 Constructing the Model

First some terminology will be defined. For a system of n first order ordinary differ­
ential equations, the phase space of the system is the n-dimensional space of all state
components. A solution trajectory is a curve in phase space described by the differ­
ential equations for one specific starting point. At every point on a trajectory there
exists a tangent vector. The space of all such tangent vectors for all possible solution
trajectories constitutes the vector field for this system of differential equations.

The trajectory learning models in this paper are systems of first order ordinary dif­
ferential equations. The form of these equations will be obtained by considering the
system dynamics as motion relative to some surface. At each point in the state space
an arbitrary system trajectory will be decomposed into a component normal to this
surface and a set of components tangent to this surface. This approach was suggested
to us by the results in [4], where it is shown that an arbitrary n-dimensional vector
field can be decomposed locally into the sum of one gradient vector field and (n - 1)
Hamiltonian vector fields. The concept of a potential function will be used to de­
fine these surfaces. A potential function V(:z:) is any scalar valued function of the
system states :z: = [Xl, X2, ••• , Xn.] t which is at least twice continuously differentiable
(Le. V(:z:) E or : r ~ 2). The operation [.]t denotes the transpose of the vector. If
there are n components in the system state, the function V{:z:), when plotted with
respect all of the state components, defines a surface in an (n + 1)-dimensional space.
There are two curves passing through every point on this potential surface which are
of interest in this discussion, they are illustrated in Figure 1(a). The dashed curve is

(z - zo)t \7 ... v (z)l ... o = 0

(a) (b)
V(z) = K-

Figure 1: (a) The potential function V(z) = X~ (Xl _1)2 +x~ plotted versus its two depen­
dent variables Xl and X2. The dashed curve is called a level surface and is given
by V(z) = 0.5. The solid curve follows the path of steepest descent through Zo.
(b) The partitioning of a 3-dimensional vector field at the point Zo into a 1-
dimensional portion which is normal to the surface V(z) = K- and a 2-dimensional
portion which is tangent to V(z) = K-. The vector -\7 ... V(z) 1"'0 is the normal vec­
tor to the surface V(z) = K- at the point Zo. The plane (z - zo)t \7 ... V (z) 1"'0 = 0
contains all of the vectors which are tangent to V(z) = K- at Zo. Two linearly
independent vectors are needed to form a basis for this tangent space, the pair
Q2(z) \7 ... V (z)l ... o and Q3(Z) \7 ... V (z)l ... o that are shown are just one possibility.

referred to as a level surface, it is a surface along which V(:z:) = K for some constant
K. Note that in general this level surface is an n-dimensional object. The solid curve

276 J. W. HOWSE, C. T. ABDALLAH, G. L. HEILEMAN

moves downhill along V (X) following the path of steepest descent through the point
Xo. The vector which is tangent to this curve at Xo is normal to the level surface
at Xo. The system dynamics will be designed as motion relative to the level surfaces
of V(x). The results in [4] require n different local potential functions to achieve
arbitrary dynamics. However, the results in [1] suggest that a considerable number
of dynamical systems can be achieved using only a single global potential function.

A system which is capable of traversing any downhill path along a given potential
surface V(x), can be constructed by decomposing each element of the vector field
into a vector normal to the level surface of V(x) which passes through each point
and a set of vectors tangent to the level surface of V(x) which passes through the
same point. So the potential function V(x) is used to partition the n-dimensional
phase space into two subspaces. The first contains a vector field normal to some
level surface V(x) = }(for }(E IR, while the second subspace holds a vector field
tangent to V(x) = IC. The subspace containing all possible normal vectors to the
n-dimensional level surface at a given point, has dimension one. This is equivalent
to the statement that every point on a smooth surface has a unique normal vector.
Similarly, the subspace containing all possible tangent vectors to the level surface at
a given point has dimension (n - 1). An example of this partition in the case of a
3-dimensional system is shown in Figure 1 (b). Since the space of all tangent vectors
at each point on a level surface is (n - I)-dimensional, (n - 1) linearly independent
vectors are required to form a basis for this space.

Mathematically, there is a straightforward way to construct dynamical systems which
either move downhill along V(x) or remain at a constant height on V(x). In this
paper, dynamical systems which always move downhill along some potential surface
are called gradient-like systems. These systems are defined by differential equations
of the form

x = -P(x) VII: V(x), (1)

where P(x) is a matrix function which is symmetric (Le. pt = P) and positive
definite at every point x, and where V III V(x) = [g;: , g;: , ... , :z~]f. These systems
are similar to the gradient flows discussed in [2]. The trajectories of the system
formed by Equation (1) always move downhill along the potential surface defined by
V(x). This can be shown by taking the time derivative of V(x) which is V(x) =
-[VII: V (x)]t P(x) [VII: V(x)] :5 O. Because P(x) is positive definite, V(x) can only be
zero where V II: V (x) = 0, elsewhere V(x) is negative. This means that the trajectories
of Equation (1) always move toward a level surface of V(x) formed by "slicing" V(x)
at a lower height, as pointed out in [2]. It is also easy to design systems which remain
at a constant height on V(x). Such systems will be denoted Hamiltonian-like systems.
They are specified by the equation

x = Q(x) VII: V(x), (2)

where Q(x) is a matrix function which is skew-symmetric (Le. Qt = -Q) at every
point x. These systems are similar to the Hamiltonian systems defined in [2]. The
elements of the vector field defined by Equation (2) are always tangent to some level
surface of V (x). Hence the trajectories ofthis system remain at a constant height on
the potential surface given by V(x). Again this is indicated by the time derivative
of V(x), which in this case is V(x) = [VII: V(x)]f Q(x)[VII: V(x)] = o. This indicates
that the trajectories of Equation (2) always remain on the level surface on which the
system starts. So a model which can follow an arbitrary downhill path along the
potential surface V(x) can be designed by combining the dynamics of Equations (1)
and (2) . The dynamics in the subspace normal to the level surfaces of V(x) can be

Gradient and Hamiltonian Dynamics Applied to Learning in Neural Networks 277

defined using one equation of the form in Equation (1). Similarly the dynamics in the
subspace tangent to the level surfaces of Vex) can be defined using (n - 1) equations
of the form in Equation (2). Hence the total dynamics for the model are

n

z= -P(x)VIDV(x) + LQi(X)VIDV(x). (3)
i=2

For this model the number and location of equilibria is determined by the function
Vex), while the manner in which the equilibria are approached is determined by the
matrices P(x) and Qi(x).

If the potential function Vex) is bounded below (i.e. Vex) > Bl V x E IRn , where
Bl is a constant), eventually increasing (i.e. limlllDlI-+oo Vex) ~ 00) , and has only
a finite number of isolated local maxima and minima (i.e. in some neighborhood
of every point where V III V (x) = 0 there are no other points where the gradient
vanishes), then the system in Equation (3) satisfies the conditions of Theorem 10
in [1]. Therefore the system will converge to one of the points where V ID Vex) = 0,
called the critical points of Vex), for all initial conditions. Note that this system
is capable of all downhill trajectories along the potential surface only if the (n - 1)
vectors Qi(X) VID Vex) V i = 2, ... , n are linearly independent at every point x. It
is shown in [1] that the potential function

V(z) = C (1:., (-y) d-y + t, [~ (XI - I:.,(xd)' + ~ J:' 1:., h)II:.: (-y)]' d-y 1 (4)

satisfies these three criteria. In this equation £.i(Xt} Vi = 1, ... , n are interpolation
polynomials, C is a real positive constant, Xi Vi = 1, ... , n are real constants chosen
so that the integrals are positive valued, and £.Hxt} == f:-.
3 The Learning Rule

In Equation (3) the number and location of equilibria can be controlled using the
potential function Vex), while the manner in which the equilibria are approached can
be controlled with the matrices P(x) and Qi(X). If it is assumed that the locations
of the equilibria are known, then a potential function which has local minima and
maxima at these points can be constructed using Equation (4). The problem of
trajectory learning is thereby reduced to the problem of parameterizing the matrices
P(x) and Qi(x) and finding the parameter values which cause this model to best
emulate the actual system. If the elements P(x) and Qi(x) are correctly chosen,
then a learning rule can be designed which makes the model dynamics converge to
that of the actual system. Assume that the dynamics given by Equation (3) are a
parameterized model of the actual dynamics. Using this model and samples of the
actual system states, an estimator for states of the actual system can be designed. The
behavior of the model is altered by changing its parameters, so a parameter estimator
must also be constructed. The following theorem provides a form for both the state
and parameter estimators which guarantees convergence to a set of parameters for
which the error between the estimated and target trajectories vanishes.

Theorem 3.1. Given the model system
k

Z = LAili(x) +Bg(u) (5)
i=l

where Ai E IRnxn and BE IRnxm are unknown, and li(') and g(.) are known smooth
functions such that the system has bounded solutions for bounded inputs u(t). Choose

278 J. W. HOWSE, C. T. ABDALLAH, G. L. HEILEMAN

a state estimator of the form
k

~ = 'R.B (x - x) + L Ai fi(x) + iJ g(u)
i=1

(6)

where'R.B is an (n x n) matrix of real constants whose eigenvalues must all be in the
left half plane, and Ai and iJ are the estimates of the actual parameters. Choose
parameter estimators of the form

~ t
Ai = -'R.p (x - x) [fi(x)] V i = 1, ... , k

B = -'R.p (x - x) [g(u)]t
(7)

where 'R.p is an (n x n) matrix of real constants which is symmetric and positive

definite, and (x - x) [.]t denotes an outer product. For these choices of state and
parameter estimators limt~oo(x(t) -x(t» = 0 for all initial conditions. Furthermore,
this remains true if any of the elements of Ai or iJ are set to 0, or if any of these
matrices are restricted to being symmetric or skew-symmetric.
The proof of this theorem appears in [3]. Note that convergence of the parameter
estimates to the actual parameter values is not guaranteed by this theorem. The
model dynamics in Equation (3) can be cast in the form of Equation (5) by choosing
each element of P(x) and Qi(X) to have the form

n I-I n I-I

PrB = LL~rBjkt?k(Xj) and QrB = LLArBjk ek(Xj), (8)
j=1 k=O j=1 k=O

where {t?o(Xj), t?1 (Xj), ... ,t?I-1 (Xj)} and {eo(Xj), el (Xj), ... ,el-l (Xj)} are a set of 1
orthogonal polynomials which depend on the state Xj' There is a set of such poly­
nomials for every state Xj, j = 1,2, ... , n. The constants ~rBjk and ArBjk determine
the contribution of the kth polynomial which depends on the jth state to the value
of Prs and Qrs respectively. In this case the dynamics in Equation (3) become

:i: = t. ~ { S;. [11.(x;) V. V (z)j + t, A;;. [e;.(x;) v. V(z)j } + T g(u(t)) (9)

where 8 jk is the (n x n) matrix of all values ~rsjk which have the same value of j and
k. Likewise A ijk is the (n x n) matrix of all values Arsjk, having the same value of
j and k, which are associated with the ith matrix Qi(X). This system has m inputs,
which may explicitly depend on time, that are represented by the m-element vector
function u(t). The m-element vector function g(.) is a smooth, possibly nonlinear,
transformation of the input function. The matrix Y is an (n x m) parameter matrix
which determines how much of input S E {I, ... , m} effects state r E {I, ... , n}.
Appropriate state and parameter estimators can be designed based on Equations (6)
and (7) respectively.

4 Simulation Results
Now an example is presented in which the parameters of the model in Equation (9)
are trained, using the learning rule in Equations (6) and (7), on one input signal and
then are tested on a different input signal. The actual system has three equilibrium
points, two stable points located at (1,3) and (3,5), and a saddle point located at
(2 - ~,4 + ~). In this example the dynamics of both the actual system and the
model are given by

(~1) = (1'1 + 1'2 Z~ +:3 Z~ O2) (:~) + (0 - {1'7 + 1'8 Z1 + 1'9 Z2}) (:~) + (1'10) u(t) (10)
Z2 0 1'4 + 1'5 Z1 + 1'6 Z2 8Y 'P7 + 'P8 ZI + 1'9 Z2 0 8Y 0

8Z2 8Z2

Gradient and Hamiltonian Dynamics Applied to Learning in Neural Networks 279

where V(x) is defined in Equation (4) and u(t) is a time varying input. For the actual
system the parameter values were 'PI = 'P4 = -4, 'P2 = 'Ps = -2, 'P3 = 'P6 = -1,
'P7 = 1, 'Ps = 3, 'P9 = 5, and 'PIO = 1. In the model the 10 elements 'Pi are
treated as the unknown parameters which must be learned. Note that the first matrix
function is positive definite if the parameters 'PI-'P6 are all negative valued. The
second matrix function is skew-symmetric for all values of 'P7-'P9. The two input
signals used for training and testing were Ul = 10000 (sin! 1000t + sin ~ 1000t) and
U2 = 5000 sin 1000 t. The phase space responses of the actual system to the inputs UI

and U2 are shown by the solid curves in Figures 3(b) and 3(a) respectively. Notice that
both of these inputs produce a periodic attractor in the phase space of Equation (10).
In order to evaluate the effectiveness of the learning algorithm the Euclidean distance
between the actual and learned state and parameter values was computed and plotted
versus time. The results are shown in Figure 2. Figure 2(a) shows these statistics when

{1I~zll, II~'PII} {1I~zll, II~'PII}

17.5

15
15

12.5
12.5

10

7.5 i

,., ~--.----... -... --....... ----
2.5

50 100 150 200 250 300 t 50 100 150 200 250 300 t
(a) (b)

Figure 2: (a) The state and parameter errors for training using input signal Ut. The solid
curve is the Euclidean distance between the state estimates and the actual states
as a function of time. The dashed curve shows the distance between the estimated
and actual parameter values versus time.
(b) The state and parameter errors for training using input signal U2.

training with input UI, while Figure 2(b) shows the same statistics for input U2. The
solid curves are the Euclidean distance between the learned and actual system states,
and the dashed curves are the distance between the learned and actual parameter
values. These statistics have two noteworthy features. First, the error between the
learned and desired states quickly converges to very small values, regardless of how
well the actual parameters are learned. This result was guaranteed by Theorem 3.1.
Second, the final error between the learned and desired parameters is much lower when
the system is trained with input UI. Intuitively this is because input Ul excites more
frequency modes of the system than input U2. Recall that in a nonlinear system the
frequency modes excited by a given input do not depend solely on the input because
the system can generate frequencies not present in the input. The quality of the
learned parameters can be qualitatively judged by comparing the phase plots using
the learned and actual parameters for each input, as shown in Figure 3. In Figure 3(a)
the system was trained using input Ul and tested with input U2, while in Figure 3(b)
the situation was reversed. The solid curves are the system response using the actual
parameter values, and the dashed curves are the response for the learned parameters.
The Euclidean distance between the target and test trajectories in Figure 3(a) is in
the range (0,0.64) with a mean distance of 0.21 and a standard deviation of 0.14. The
distance between the the target and test trajectories in Figure 3(b) is in the range
(0,4.53) with a mean distance of 0.98 and a standard deviation of 1.35. Qualitatively,
both sets of learned parameters give an accurate response for non-training inputs.

280

-l -1 1

Xl

(a)

1. W. HOWSE, C. T. ABDALLAH, G. L. HEILEMAN

5

I
I

o -------r-- -- ----- --- -- -

{i - 5

-10

-15

- 2 -1 4

(b)

Figure 3: (a) A phase plot of the system response when trained with input UI and tested
with input U2. The solid line is the response to the test input using the actual
parameters. The dotted line is the system response using the learned parameters.
(b) A phase plot of the system response when trained with input U2 and tested
with input UI.

Note that even when the error between the learned and actual parameters is large,
the periodic attractor resulting from the learned parameters appears to have the same
"shape" as that for the actual parameters.

5 Conclusion
We have presented a conceptual framework for designing dynamical systems with
specific qualitative properties by decomposing the dynamics into a component normal
to some surface and a set of components tangent to the same surface. We have
presented a specific instance of this class of systems which converges to one of a finite
number of equilibrium points. By parameterizing these systems, the manner in which
these equilibrium points are approached can be fitted to an arbitrary data set. We
present a learning algorithm to estimate these parameters which is guaranteed to
converge to a set of parameter values for which the error between the learned and
desired trajectories vanishes.

Acknowledgments
This research was supported by a grant from Boeing Computer Services under Contract
W-300445. The authors would like to thank Vangelis Coutsias, Tom Caudell, and Bill
Home for stimulating discussions and insightful suggestions.

References
[1] M.A. Cohen. The construction of arbitrary stable dynamics in nonlinear neural networks.

Neural Networks, 5(1):83-103, 1992.
[2] M.W. Hirsch and S. Smale. Differential equations, dynamical systems, and linear algebra,

volume 60 of Pure and Applied Mathematics. Academic Press, Inc., San Diego, CA, 1974.
[3] J.W. Howse, C.T. Abdallah, and G.L. Heileman. A gradient-hamiltonian decomposition

for designing and learning dynamical systems. Submitted to Neural Computation, 1995.
[4] R.V. Mendes and J .T. Duarte. Decomposition of vector fields and mixed dynamics.

Journal of Mathematical Physics, 22(7):1420-1422, 1981.
[5] K.S. Narendra and A.M. Annaswamy. Stable adaptitJe systems. Prentice-Hall, Inc., En­

glewood Cliffs, NJ, 1989.
[6] B.A. Pearlmutter. Learning state space trajectories in recurrent neural networks. Neural

Computation, 1(2):263-269, 1989.
[7] D. Saad. Training recurrent neural networks via trajectory modification. Complex Sys­

tems, 6(2) :213-236, 1992.
[8] M.-A. Sato. A real time learning algorithm for recurrent analog neural networks. Bio­

logical Cybernetics, 62(2):237-241, 1990.

