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Abstract

Recommendation Systems like YouTube are vibrant ecosystems with two types
of users: Content consumers (those who watch videos) and content providers
(those who create videos). While the computational task of recommending relevant
content is largely solved, designing a system that guarantees high social welfare for
all stakeholders is still in its infancy. In this work, we investigate the dynamics of
content creation using a game-theoretic lens. Employing a stylized model that was
recently suggested by other works, we show that the dynamics will always converge
to a pure Nash Equilibrium (PNE), but the convergence rate can be exponential.
We complement the analysis by proposing an efficient PNE computation algorithm
via a combinatorial optimization problem that is of independent interest.

1 Introduction

Recommendation systems (RSs hereinafter) play a major role in our life nowadays. Many modern
RSs, like YouTube, Medium, or Spotify, recommend content created by others and go far beyond
recommendations. They are vibrant ecosystems with multiple stakeholders and are responsible for
the well-being of all of them. For example, in the online publishing platform Medium, the platform
should be profitable; suggest relevant content to the content consumers (readers); and support the
content providers (authors). In light of this ecosystem approach, research on RSs has shifted from
determining consumers’ taste (e.g., the Netflix Prize challenge [9, 25]) to other aspects like fairness,
ethics, and long-term welfare [5, 29, 31, 35, 37, 40–42, 44].

Understanding content providers and their utility1 is still in its infancy. Content providers produce a
constant supply of content (e.g., articles in Medium, videos on YouTube), and are hence indispensable.
Successful content providers rely on the RS for some part of their income: Advertising, affiliated
marketing, sponsorship, and merchandise; thus, unsatisfied content providers might decide to provide
a different type of content or even abandon the RS. To illustrate, a content provider who is unsatisfied
with her exposure, which is heavily correlated with her income from the RS, can switch to another
type of content or seek another niche. Such downstream effects are detrimental to content consumer
satisfaction because they change the available content the RS can recommend. The synergy between
content providers and consumers is thus fragile, and solidifying one side solidifies the other.

1We use the term utility to address the well-being of the content providers, and social welfare for the
well-being of the content consumers.
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In this paper, we investigate the dynamics of RSs using a stylized model in which content providers
are strategic. Content providers obtain utility from displays of their content and are willing to change
the content they offer to increase their utility. These fluctuations change not only the utility of
the providers but also the social welfare of the consumers, defined as the quality of their proposed
content. We show that the provider dynamics always converges to a stable point (namely, a pure Nash
equilibrium), but the convergence time may be long. This observation suggests a more centralized
approach, in which the RS coordinates the providers, and leads to fast convergence.

While our model is stylized, we believe it offers insights into more general, real-world RSs. The
game-theoretic modeling allows counterfactual reasoning about the content that could-have-been-
generated, which is impossible to achieve using existing data-sets and small online experiments. Our
analysis advocates increased awareness to content providers and their incentives, a behavior that
rarely exists these days in RSs.2

Our contribution We explore the ecosystem using the following game-theoretic model, and use the
blogging terminology to simplify the discussion. We consider a set of players (i.e., content providers),
each selects a topic to write from a predefined set of topics (e.g., economics, sports, medieval movies,
etc.). Each player has a quality w.r.t. each topic, quantifying relevance and attractiveness of that
author’s content if she writes on that topic, and a conversion rate. Given a selection of topics (namely,
a strategy profile), the RS serves users who consume content. All queries concerned with a topic
are modeled as the demand for that topic. The utility every player obtains is the sum of displays
her content receives (affected by the demand for topics and the operating RS) multiplied by the
conversion rate. The game-theoretic model we adopt in service is suggested by Ben Basat et al. [4]
and is well-justified by later research [8, 42].

Technically, we deal with the question of reaching a stable point—a point in which none of the players
can deviate from her selected topic and increase her utility. We are interested in the convergence
time and the welfare of the system in these stable points. We first explore the decentralized approach:
Better-response learning dynamics (see, e.g., [16, 21]), in which players asynchronously deviate to
improve their utility (an arbitrary player to an arbitrary strategy, as long as she improves upon her
current utility). We show that every better-response dynamic converges, thereby extending prior
work [8]. Through a careful recursive construction, we show a negative result: The convergence time
can be exponential in the number of topics. Long convergence time suggests a different approach. We
consider the scenario in which the RS could act centrally, and support the process of matching players
with topics. We devise an algorithm that computes an equilibrium fast (roughly squared in the input
size). To solve this computational challenge, which is a mixture of matching and load-balancing, we
propose a novel combinatorial optimization problem that is of independent interest.

Conceptually, we offer a qualitative grounding for the advantages of coordination and intervention3

in the content provider dynamics. Our analysis relies on the assumption of complete knowledge of all
model parameters, in particular the qualities. While unrealistic in practice, we expect that incomplete
information will only exacerbate the problems we address. The main takeaway from this paper is that
RSs are not self-regulated markets, and as much as suggesting authors topics to write on can lead to a
significant increase in the system’s stability. We discuss some practical ways of reaching this goal in
Section 5.

Related work Strikingly, content provider welfare and their fair treatment were only suggested
very recently in the Recommendation Systems and Information Retrieval communities [12, 14, 18,
35, 40, 46]. All of these works do not model the incentives of content providers explicitly, and
consequently cannot offer a what-if analysis like ours.

Our model is similar to those employed in several recent papers [4, 5, 7, 8, 30]. Ben-Porat et al.
[8] study a model that is a special case of ours, and show that every learning dynamic converges.
Our Theorem 1 recovers and extends their convergence results. Moreover, unlike this work, they
do not address convergence time, social welfare, and centralized equilibrium computation. Other
works [5, 7, 30] aim to design recommendation mechanisms that mitigate strategic behavior and

2There are some exceptions, e.g., YouTube instructing providers how to find their niche [1]. However, these
are sporadic, primitive, and certainly do not enjoy recent technological advancements like collaborative filtering.

3We do not say that the RSs should dictate authors what to write; instead, it should suggest to each author
profitable topics that he/she can write on competently to increase her utility.
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lead to long-term welfare. On the negative side, their mechanisms might knowingly recommend
inferior content to some consumers. We see their work as parallel to ours, as in this work we focus
on the prevailing recommendation approach—recommending the best-fitting content. We suggest
that a centralized approach, in which the RS orchestrates the player-topic matching, can significantly
improve the time until the system reaches stability (in the form of equilibrium). Furthermore, we
envision that our approach can also lead to high social welfare, as we discuss in Section 5.

More broadly, an ever-growing body of research deals with fairness considerations in Machine
Learning [15, 17, 36, 38, 45]. In the context of RSs, a related line of research suggests fairer ranking
methods to improve the overall performance [11, 26, 43]. For example, Yao and Huang [43] propose
metrics mitigating discrimination in collaborative-filtering methods that arise from learning from
historical data. Despite not always being explicit, the ultimate goal of fairness imposition is to achieve
long-term welfare [28]. Our paper and analysis share a similar flavor: To achieve high stability via
faster convergence, RSs should coordinate the process of content selection.

2 Model

We consider the following recommendation ecosystem, where for concreteness we continue with the
blog authors4 example. There is a set of authors P , each owning a blog. We further assume that each
blog is concerned with a single topic, from a predefined topic set T . We assume P and T are finite,
and denote |P| = P and |T | = T . The strategy space of each player is thus T ; she selects the topic
she writes on. A pure strategy profile is a tuple a = (a1, . . . aP ) of topic selections, where aj is the
topic selected by author j.

For every author j and topic k, there is a quality that quantifies the relevance and attractiveness of
j’s blog if she picks the topic k. We denote by Q the quality matrix, for Q ∈ [0, 1]P×T . The RS
serves users who consume content. We do not distinguish individual consumers, but rather model the
need for content as a demand for each topic. A demand distribution D over the topics T is publicly
known, where we use D(k) to denote the demand mass for topic k ∈ T . W.l.o.g., we assume that
D(1) ≥ D(2) ≥ . . . ≥ D(m).

The recommendation functionR matches demand with available blogs. Given the demand for topic
k, a strategy profile a, and the qualityQ of the blogs for the selected topics in a, the recommendation
function R recommends content, possibly in a randomized manner. It is well-known that content
consumers pay most of their attention to highly ranked content [13, 22, 24, 27]; therefore, we assume
for simplicity thatR recommends one content solely. For ease of notation, we denoteRj(Q, k,a) as
the probability that author j is ranked first under the distribution R(Q, k,a) (or rather, author j’s
content is ranked first). While blog readers admire high-quality recommended blogs, blog authors
care for payoffs. As described in Section 1, authors draw monetary rewards from attracting readers
in various ways. We model this payoff abstractly using a conversion matrix C, C ∈ [0, 1]P×T . We
assume that every blog reader grants Cj,k monetary units to author j when she writes on topic k. For
example, if author j only cares for exposure, namely the number of impressions her blog receives,
then Cj,k = 1 for every k ∈ T . Alternatively, if author j cares for the engagement of readers in her
blog, then the conversion Cj,k should be somewhat correlated with the qualityQj,k. We will return to
these two special cases later on, in Subsection 3.1. The utility of author j under a strategy profile a is
given by

Uj(a)
def
=
∑
k∈T

1aj=k · D(k) · Rj(Q, k,a) · Cj,k. (1)

Overall, we represent a game as a tuple 〈P, T ,D,Q, C,R,U〉, where P is the authors, T is the topics,
D is the demand for topics,Q and C are the quality and conversion matrices,R is the recommendation
function, and U is the utility function.

Recommending the Highest Quality Content In this paper, we focus on the RS that recommends
blogs of the highest quality, breaking ties randomly. Such a behavior is intuitive and well-justified in
the literature [3, 10, 23, 39]. More formally, let Bk(a) denote the highest quality of a blog written on
topic k under the profile a, i.e., Bk(a)

def
= maxj∈P{1aj=k · Qj,k}. Furthermore, let Hk(a) denote

the set of authors whose documents have the highest quality among those who write on topic k under

4We use authors and players interchangeably.
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a, Hk(a)
def
= {j ∈ P | 1aj=k · Qj,k = Bk(a)}. The recommendation function Rtop is therefore

defined as

Rtop
j (Q, k,a) def

=

{
1

|Hk(a)| j ∈ Hk(a)

0 otherwise
.

Consequently, we can reformulate the utility function from Equation (1) in the following succinct
form,5

Uj(a)
def
=
∑
k∈T

1aj=k ·
D(k)
|Hk(a)|

· Cj,k. (2)

From here on, sinceRtop and U are fully determined by the rest of the objects, we omit them from
the game representation; hence, we represent every game by the more concise tuple 〈P, T ,D,Q, C〉.

Quality-Conversion Assumption Throughout the paper, we make the following Assumption 1
about the relation between quality and conversion.
Assumption 1. For every topic k ∈ T and every two authors j1, j2 ∈ P ,

Qj1,k ≥ Qj2,k ⇒ Cj1,k ≥ Cj2,k.

Intuitively, Assumption 1 implies that quality and conversion are correlated given the topic. For every
topic k, if authors j1 and j2 write on topic k and j1’s content has a weakly better quality, then j1’s
content has also a weakly better conversion. This assumption plays a crucial role in our analysis; we
discuss relaxing it in Section 5.

Solution Concepts The social welfare of the readers is the average weighted quality. Formally,
given a strategy profile a,

SW (a)
def
=
∑
k∈T

D(k)
∑
j∈P
Rj(Q, k,a)Qj,k. (3)

As the recommendation functionRtop always recommends the highest quality content, we can have the
following more succinct representation of social welfare, SW (a) =

∑
k∈T D(k)Bk(a). However,

social welfare maximization does not concern author utility. Authors may be willing to deviate from
the socially optimal profile if such a deviation is beneficial in terms of utility. Consequently, we seek
stable solutions, as captured by the property of pure Nash equilibrium (hereinafter PNE). We say that
a strategy profile a is a PNE if for every author j and topic k, Uj(a) ≥ Uj(a−j , k), where a−j is the
tuple obtained by deleting the j’s entry of a. It is worth noting that while mixed Nash equilibrium is
guaranteed to exist in finite games, a PNE generally does not exist in games. However, as we show
later on, it always exists in our class of games.

Example To clarify our notation and setting, we provide the following example. Consider a
game with two players (P = 2), two topics (T = 2) and the demand distribution D such that
D(1) = 3/5,D(2) = 2/5. Let the quality and conversion matrices be

Q =

(
1 1/3
2/3 1/3

)
, C =

(
1/3 1
1/5 1

)
.

Consider the strategy profile (a1, a2) = (1, 1). Author 1 is more competent that author 2 on
topic 1, since Q1,1 = 1 > Q2,1 = 2

3 ; thus, the utility of author 1 under the profile (1, 1) is
U1(1, 1) = D(1) · Rtop

1 (Q, 1, (1, 1)) · C1,1 = 3
5 · 1 ·

1
3 = 1

5 . On the other hand, author 2 gets
U2(1, 1) = 3

5 · 0 ·
1
5 = 0. Author 2 has a beneficial deviation: Under the profile (1, 2), her utility is

U2(1, 2) = 2
5 ·1 ·1 = 2

5 , while the utility of author 1 remains the same, U1(1, 2) = 1
5 . For the strategy

profile (2, 2), both authors have the same quality; thus,Rtop
1 (Q, 2, (2, 2)) = Rtop

2 (Q, 2, (2, 2)) = 1
2 .

As for the utilities, U1(2, 2) = U2(2, 2) = 2
5 ·

1
2 · 1 = 1

5 . Overall, we see that both (1, 2) and (2, 2)
are PNEs, since the authors do not have beneficial deviations. However, the social welfare of these
PNEs is different: SW (1, 2) = 3

5 · 1 +
2
5 ·

1
3 ≈ 0.73, yet SW (2, 2) = 3

5 · 0 +
2
5
1
3 ≈ 0.13.

5In case no author writes on topic k under a,R do not make any recommendation. As reflected in the utility
function U through the indicator 1aj=k, readers associated with a non-selected topic k do not contribute to any
author’s utility.

4



3 Decentralized Approach

In this section, we consider the prevailing, decentralized approach. Starting from an arbitrary profile,
authors interact asynchronously, each improving her utility in every time step. Such dynamics
is widely-known in the Game Theory literature as better-response dynamics (hereinafter, BRDs).
Studying BRDs is a robust approach for assuring the environment reaches a stable point, while
making minimal assumption on the information of the players. Two central questions about BRDs in
games are a) whether any BRD converges; and b) what is the convergence rate. We show that the
answer to the first question is in the affirmative. For the second question, we show through an intricate
combinatorial construction a result of negative flavor: The convergence rate can be exponential in the
number of topics T .

3.1 Better-Response Dynamic Convergence

Before we go on, we define BRDs formally. Given a strategy profile a, we say that a′j ∈ T is a better
response of author j w.r.t. a if Uj(a−j , a′j) > Uj(a). A BRD is a sequence of profiles (a1,a2, . . . ),
where at every step i + 1 exactly one author better-responds to ai, i.e., there exists an author j(i)
such that ai+1 = (ai

−j(i), a
i+1
j(i)) and Uj(i)(ai+1) > Uj(i)(ai). A BRD can start from any arbitrary

profile, and include improvements of any arbitrary author at any arbitrary step (assuming she has
a better response in that time step). If a BRD a1, . . . ,al converges, namely no player can better
respond to al, then by definition al is a PNE.

Our goal is to show that every BRD of any game in our class of games converges. If there exists
an infinite BRD, then it must contain cycles as the number of different strategy profiles is finite.
Equivalently, nonexistence of improvement cycles suggests that any BRD will converge to a PNE
[32]. General techniques for showing BRD convergence in games are rare, and are typically based on
coming up with a potential function [6, 21, 34] or a natural lexicographic order [2, 19]. However, as
already established by prior work [8, Proposition 1], our class of game does not fit into the category
of an exact potential function; and a lexicographic order does not seem to arise naturally. Ben-Porat
et al. [8] prove BRD convergence for two sub-classes of games: Games where C is identically 1, and
games with C = Q. Interestingly, they prove BRD convergence for each sub-class separately using
different arguments. We extend their technique to deal with any conversion matrix C that satisfies
Assumption 1.

Theorem 1. If a game G satisfies Assumption 1, then every BRD in G converges to a PNE.

3.2 Rate of Convergence

We now move on to the second question proposed in the beginning of the section, which deals with
convergence rate. The convergence rate is the worst-case length of any BRD. Recall that a BRD can
start from a PNE and thus converge after one step, and hence the worst-case approach we offer here
is justified.

Our next theorem lower bounds the worst case convergence rate by an exponential factor in the
number of topics T . This result is illuminating as it shows that in the worst case, although convergence
is guaranteed, it may not be reachable in feasible time.

Theorem 2. Consider P ≥ 1 and T ≥ 2. There exist games satisfying Assumption 1 with |P| = P

and |T | = T , in which there are BRDs with at least
(
T−2
P + 1

)P
steps.

Proof sketch of Theorem 2. The proof relies on a recursive construction. We construct a game and
an improvement path with at least the length specified in the theorem. To balance rigor and intuition,
we present here a special case of our general construction and defer the formal proof to the appendix.

Consider the game with P = 3, T = 5, D(k) = 1
5 for every k ∈ T and

Q = C =
c 2c 3c 4c 5c

c 9c 8c 7c 6c

c 10c 11c 12c 13c




5



a1 = (2, 1, 1) a2 = (3, 1, 1) a3 = (4, 1, 1) a4 = (5, 1, 1) a5 = (5, 5, 1) a6 = (1, 5, 1)
a7 = (2, 5, 1) a8 = (3, 5, 1) a9 = (4, 5, 1) a10 = (4, 4, 1) a11 = (1, 4, 1) a12 = (2, 4, 1)
a13 = (3, 4, 1) a14 = (3, 3, 1) a15 = (1, 3, 1) a16 = (2, 3, 1) a17 = (2, 2, 1) a18 = (1, 2, 1)
a19 = (1, 2, 2) a20 = (1, 1, 2) a21 = (3, 1, 2) a22 = (4, 1, 2) a23 = (5, 1, 2) a24 = (5, 5, 2)
a25 = (1, 5, 2) a26 = (3, 5, 2) a27 = (4, 5, 2) a28 = (4, 4, 2) a29 = (1, 4, 2) a30 = (3, 4, 2)
a31 = (3, 3, 2) a32 = (1, 3, 2) a33 = (1, 3, 3) a34 = (1, 1, 3) a35 = (4, 1, 3) a36 = (5, 1, 3)
a37 = (5, 5, 3) a38 = (1, 5, 3) a39 = (4, 5, 3) a40 = (4, 4, 3) a41 = (1, 4, 3) a42 = (1, 4, 4)
a43 = (1, 1, 4) a44 = (5, 1, 4) a45 = (5, 5, 4) a46 = (1, 5, 4) a47 = (1, 5, 5) a48 = (1, 1, 5)

Figure 1: A long improvement path for the instance in the proof sketch of Theorem 2.

for c = 1
PT . The first column of the matrix, which is associated with the quality of topic 1, is identical

for all authors. The snake-shape path in the matrix is always greater than the value c in the first
column, and is monotonically increasing (top-down). The immediate implications are a) odd players
improve their quality when deviating to a topic with a greater index, while even players improve their
quality when deviating to a topic with a smaller index (which is not topic 1); and b) every player is
more competent than all the players that precede her on every topic but topic 1. The initial profile
is a0 = (1, 1, . . . , 1). We construct the BRD that appears in Figure 1.6 It comprises three types of
steps: Purple, green and yellow. In purple steps, author 1 deviates to a topic with a higher index. In
yellow steps, author 2 deviates to the topic selected by author 1 (e.g., in a5) or author 3 deviates to
the topic selected by author 2 (e.g., in a19). Green steps always follow yellow steps. In green steps,
the author whose topic was selected in the previous step by an author with a higher index deviates
back to topic 1 (e.g., author 1 in a6 after author 2 selects topic 5 in a5, or author 2 in a20 after author
3 selects topic 2 in a19).

In steps a1 − a4, only author 1 deviates (purple steps). This is also the recursive path in a game with
author 1 solely (disregarding the entries of the other players). Then, in a5, author 2 deviates to topic
5 (yellow). Since author 2 is more competent than author 1 in every topic (excluding topic 1), author
1’s utility equals zero. Then, author 1 deviates to back topic 1 in a6 (green). This goes on until step
a18—author 1 improves, author 2 ties, and author 1 returns to topic 1. Steps a1 − a18 comprise the
recursive path for two players. Until step a18, author 3 did not move. Then, in step a19, author 3
deviates to topic 2. Author 3 is more competent than author 2, so in a20 author 2 returns to topic 1.
In steps a21 − a32 authors 1 and 2 follow the same logic as before, but they overlook topic 2 (since
author 3, who is more competent than both of them, selects it). In steps a33 − a34 author 3 deviates
to topic 3, and then author 2 returns to topic 1. In steps a35 − a41 authors 1 and 2 follow the same
logic as before, but they overlook both topics 2 and 3. The path continues similarly until we reach the
profile a48. Notice that the latter profile is not an equilibrium, but we end the path at this point for the
sake of the analysis. This path is indeed exponential—for every step author i makes, for 1 < i ≤ 3,
author i − 1 makes at least twice as many (in fact, much more than that; see the formal proof for
more details).

Theorem 2 implies that there are BRDs of length
(
T−2
P + 1

)P
, which is O(exp(T )) for large enough

P . Furthermore, if the number of topics T and the authors P are in the same order of magnitude,
then length is also exponential in P .

4 Centralized Approach - Equilibrium Computation

To remedy the long convergence rate, in this section we propose an efficient algorithm for PNE
computation. The algorithm is a matching application and relies on a novel graph-theoretic notion.
To motivate the matching perspective, we reconsider social welfare (see Equation (3)) and neglect
strategic aspects momentarily. We can find a social welfare-maximizing profile using the following
matching reduction. We construct a bipartite graph, one side being the authors and the other side
being the topics. The weight on each edge (j, k) is Qj,kD(k), the quality author j has on topic
k times the user mass on that topic. Notice that every author can only select one strategy (topic).
Furthermore, for the purpose of social welfare maximization, it suffices to consider candidate profiles
in which every topic is selected by at most one author. Consequently, a maximum weighted matching

6An accessible version of Figure 1 appears in the appendix.
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of this graph corresponds to the social welfare maximizer. By using, e.g., the Hungarian algorithm,
the problem of finding a social welfare-maximizing profile can be solved in O(max{P, T}3).
However, equilibrium profiles and social welfare-maximizing profiles typically do not coincide
(see the celebrated work on the Price of Anarchy [33]). The maximum matching that we proposed
in the previous paragraph is susceptible to beneficial devotions; therefore, it is not stable in the
equilibrium sense.7 There exist many variants of stable matching in the literature, but virtually none
fit the equilibrium stability we seek. In particular, the deferred acceptance algorithm [20] cannot be
used since several players can select the same topic and thus the matching is not one-to-one. If we
create several copies of the same topic (a common practice for the deferred acceptance algorithm),
high-quality players would block low-quality authors matched to it (unlike several medical students
with varying qualities that are matched to the same hospital). In the remainder of this section, we
propose a sequential matching technique to compute a PNE. Our approach contributes to the matching
literature and is based on the definition of saturated sets.

Due to our extensive use of graph theory in what follows, we introduce a few notational conventions.
We denote a graph by G = (V,E). For a subset W ⊂ V , the induced sub-graph G[W ] is the graph
whose vertex set is W and whose edge set consists of all the edges in E that have both endpoints
in W . We use the standard notation NG(W ) to denote the neighbors of the vertices W in the graph
G. A matching M in G is a set of pairwise non-adjacent edges. For our application, we care mostly
about bipartite graphs; thus, we denote V = X ∪ Y . An X-saturating matching is a matching that
covers every node in X . Hall’s Marriage Theorem, a fundamental result in combinatorics, gives
necessary and sufficient conditions for the existence of perfect matching. The theorem asserts that
there exists an X-saturated matching in G if and only if for every subset W ⊆ X , |W | ≤ |NG(W )|.
In other words, the size of every subset in X does not exceed the number of its neighbors. The
essential property we use in the PNE algorithm is saturated sets.

Definition 1 (Saturated set). Let G = (X ∪ Y,E) be a finite bipartite graph. A set W ⊆ X is called
saturated if |W | = |NG(W )|.

Of course, this definition naturally extends beyond bipartite graphs. Furthermore, if for every other
saturated set W ′ it holds that |W | ≥ |W ′|, we say that W is a maximum saturated set. Despite its
striking simplicity, to the best of our knowledge, this notion of saturated sets did not receive enough
attention in the CS literature (under this name or a different one), and is therefore interesting in its
own right.

4.1 PNE Computation

We now turn to discuss the intuition behind Algorithm 1, which computes a PNE efficiently. By and
large, Algorithm 1 can be seen as a best-response dynamic. It starts from a null profile (assigning all
players to a factitious topic with zero user mass) and then determines the order of best-responding.

The input is the entire game description,8 as described in Section 2. In Lines 1-5 we initialize the
variables we use. T̃ is the set of unmatched topics; Lk is a lower bound on the load on topic k, namely
the ongoing number of players we matched to it; X,Y and E are the elements of the bipartite graph
G (Y stores the set of unmatched players); and a∗ is a non-valid, empty profile that we construct as
the algorithm advances. The for loop in Line 6 goes as follows. We first find the set of highest-quality
players for every topic k, denoted Ak (Line 7). These players can block the others from playing k
because their quality is higher, and thus we prioritize them in our sequential process. Afterwards, we
set k∗ to be the most profitable topic under the current partial matching (Line 8). That is, for every
topic k, we consider the set of most profitable players w.r.t. k and their potential utility if matched to
k. The term D(k)Cj,k/Lk+1 upper bounds the utility of every player j ∈ Ak (see Equation (2)), in case
we match Lk + 1 or more players to topic k (we might increase the load Lk in later iterations). We
subsequently update LK∗ in Line 9.

We now move to the bipartite graph G. In Line 10, we create a new node x, which is the Lk∗ -copy of
topic k∗ (we store this information about x). We add x to the left side of G, X (Line 11), and connect

7There are exceptions, of course. In degenerate cases whereQ has no ties, the game is essentially a stable
marriage problem.

8For the sake of illustration, we assume P ≤ T . If that is not the case, we can add enough topics with zero
mass D to achieve it. Noticeably, a PNE in the new game can be converted to a PNE in the original game.
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Algorithm 1: PNE computation

Input: A game description 〈P, T ,D,Q, C〉
Output: A PNE a

1 T̃ ← T // available topics
2 ∀k ∈ T : Lk ← 0 // loads on topic
3 X ← ∅, Y ← P, E ← ∅
4 G← (X ∪ Y,E)
5 a∗ ← (∅)m // empty profile
6 for t = 1 . . . P

7 ∀k ∈ T̃ : Ak ← argmaxj∈Y Qj,k

8 set k∗ ∈ argmaxk∈T̃

{
maxj∈Ak

D(k)Cj,k
Lk+1

}
9 Lk∗ ← Lk∗ + 1

\\for loop continues...
10 create a new node x associated with topic k∗

11 X.add(x)
12 E.add ({(x, j) : j ∈ Ak∗})
13 Let W ⊆ X be the maximum saturated set in G
14 if W 6= ∅ then
15 find a maximum matching M in G[W ∪ Y ]
16 ∀j ∈ NG(W ) : a∗j ← Topic(M(j))
17 Y.remove(NG(W ))
18 X.remove(W )

19 T̃ .remove(Topics(W )) // see Line 10
20 return a∗

x to the players of Ak∗ in Y (Line 12). Line 13 is the crux of the algorithm: We find a subset W of X
that is the maximum saturated set. We will justify our use of the article the in the previous sentence
later on, as well as describe the implications of having a saturated set in this dynamically constructed
graph. If W is empty, we continue to the next iteration of the for loop. But if W is non-empty, we
enter the if block in Line 14. We find a maximum matching M in the induced graph G[W ∪ Y ]. We
will later prove that G[W ∪ Y ] satisfies Hall’s marriage condition, and thus |M | = |W | = |NG(W )|.
In Line 16 we use M to set the strategies of the players in NG(W ): Every player j ∈ NG(W ) is
matched to the topic associated with the node M(j) ∈ W . In Lines 17-19 we remove the newly
matched players NG(W ) from Y , the topic copies W from X , and the topics associated with W

from the set of unmatched topics T̃ . We repeat this process until all players are matched.

Let us explain the implications of having a non-empty saturated set in G. Focus on the first time a
non-empty saturated set W was found in Line 13, and denote the iteration index by t′. The set W is
composed of nodes associated with several topics (association in the sense we explain about Line 10);
each one may have several copies. Importantly, every time we add a node x to X with an associated
topic k, we increased the load Lk; hence, in iteration t′, Lk accurately reflects the number of copies
of k in X . Furthermore, k was selected for the Lk + 1 time, suggesting that it is more profitable than
other topics. With a few more arguments, we show that all Lk copies of k must be in W . Crucially, if
we match the players in NG(W ) they cannot have beneficial deviations. We formalize this intuition
via Theorem 3.

Theorem 3. If the input game G satisfies Assumption 1, then Algorithm 1 returns a PNE of G.

We now move on to discuss its run-time. The only two lines that require a non-trivial discussion are
Lines 13 and 15. As we describe in Lemma 1 below, finding the maximum saturated set includes
finding a maximum matching, and thus we need not recompute it in Line 15. We therefore focus on
the complexity of finding the saturated set in G solely. The following Lemma 1 shows that as long as
a bipartite G satisfies Hall’s marriage condition, we can find the maximum saturated set W efficiently.
Because of the independent interest in this combinatorial problem, we state it in its full generality.

Lemma 1. Let G = (V,E) be a bipartite graph that satisfies Hall’s marriage condition. There exists
an algorithm that finds the maximum saturated set of G in time O(

√
|V ||E|).

The proof of this basic lemma appears in the appendix. The sketch of the proof is as follows. Let
G = (X ∪ Y,E) be a graph satisfying Hall’s marriage condition. We first compute a maximum
matching M of G. Since Hall’s marriage condition holds, we are guaranteed that M is an X-
saturating matching. We then devise a technique to find whether a node x ∈ X participates in at least
one saturated set. We show that nodes participating in saturated sets are reachable from the set of
unmatched nodes in Y via a variation of alternating paths, and thus can be identified quickly. By
the end of this procedure, we have a set X ′ ⊆ X such that every x ∈ X ′ participates in at least one
saturated set. The last part is showing that under the marriage condition, every union of saturated sets
is a saturated set. As a result, we conclude that X ′ is the maximum saturated set. Using Lemma 1,
we can bound the run-time of Algorithm 1.

Corollary 1. Algorithm 1 can be implemented in running time of O(P 2.5 · T ).

8



5 Discussion

With great effort, companies like Amazon turned the “you bought that, would you also be interested
in this” feature into a significant source of revenue. In this paper, we suggest that a “you wrote this,
would you also be interested in writing on that?” feature could be revolutionary as well—contributing
to better social welfare of content consumers, as well as the utility of content providers. Such a
policy could be implemented in practice by a direct recommendation to providers, or by a more
moderate action like nudging content providers to experiment with a different set of contents. To
support our vision of content provider coordination in RSs even further, we show in the appendix that
the ratio between the social welfare of the best equilibrium and the worst equilibrium is unbounded.
Indeed, such a coordination between content providers may lead to a significant lift in social welfare.
More broadly, we note that maximizing the overall welfare of RSs with multiple stakeholders is an
important challenge that goes way beyond this paper (see, e.g., [12]).

From a technical perspective, this work suggests a variety of open questions. First, the challenge
of computing the social welfare-maximizing equilibrium is still open. Second, as we show in the
appendix that if Assumption 1 does not hold, BRDs may not converge. A recent work [5] demonstrates
that using randomization in the recommendation functionR in a non-trivial manner can break this
divergence. Finding a reasonable way to do so (in terms of social welfare) in our model is left as an
open question. Third, implementing cooperation using other solution concepts like no-regret learning
and correlated or coarse-correlated equilibrium are also natural extensions of this work. Lastly, our
modeling neglects many real-world aspects of RSs: Providers join and leave the system, demand for
content changes over time, providers create content of several types, etc. Future work with a more
complex modeling is required for implementing our ideas in real-world applications.

Broader Impact

It is well-understood in the Machine Learning community that economic aspects must be incorporated
into machine learning algorithms. In that view, estimating content satisfaction in RSs is not enough.
As we argue in this paper, content providers depend on the system for some part of their income;
thus, their better treatment makes them the main beneficiaries of the stance this paper offers. We
envision that RSs that will coordinate their content providers (and hence the content available for
recommendation) will suffer from less fluctuations, be deemed fairer by all their stakeholders, and
will enjoy long-term consumer engagement.
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