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Abstract

The classical theory of reinforcement learning (RL) has focused on tabular and
linear representations of value functions. Further progress hinges on combining
RL with modern function approximators such as kernel functions and deep neural
networks, and indeed there have been many empirical successes that have exploited
such combinations in large-scale applications. There are profound challenges,
however, in developing a theory to support this enterprise, most notably the need to
take into consideration the exploration-exploitation tradeoff at the core of RL in
conjunction with the computational and statistical tradeoffs that arise in modern
function-approximation-based learning systems. We approach these challenges
by studying an optimistic modification of the least-squares value iteration algo-
rithm, in the context of the action-value function represented by a kernel function
or an overparameterized neural network. We establish both polynomial runtime
complexity and polynomial sample complexity for this algorithm, without addi-
tional assumptions on the data-generating model. In particular, we prove that
the algorithm incurs an eO(�FH2

p
T ) regret, where �F characterizes the intrinsic

complexity of the function class F , H is the length of each episode, and T is the
total number of episodes. Our regret bounds are independent of the number of
states, a result which exhibits clearly the benefit of function approximation in RL.

1 Introduction

Reinforcement learning (RL) algorithms combined with modern function approximators such as
kernel functions and deep neural networks have produced empirical successes in a variety of appli-
cation problems [e.g., 27, 60, 61, 72, 70]. However, theory has lagged, and when these powerful
function approximators are employed, there is little theoretical guidance regarding the design of RL
algorithms that are efficient computationally or statistically, or regarding whether they even converge.
In particular, function approximation blends statistical estimation issues with dynamical optimization
issues, resulting in the need to balance the bias-variance tradeoffs that arise in statistical estimation
with the exploration-exploitation tradeoffs that are inherent in RL. Accordingly, full theoretical
treatments are mostly restricted to the tabular setting, where both the state and action spaces are
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discrete and the value function can be represented as a table [see, e.g., 33, 52, 6, 35, 50, 56], and
there is a disconnect between theory and the most compelling applications.

Provably efficient exploration in the function approximation setting has been addressed only recently,
with most of the existing work considering (generalized) linear models [78, 77, 36, 12, 80, 73]. These
algorithms and their analyses stem from classical upper confidence bound (UCB) or Thompson
sampling methods for linear contextual bandits [11, 41] and it seems difficult to extend them beyond
the linear setting. Unfortunately, the linear assumption is rather rigid and rarely satisfied in practice;
moreover, when such a model is misspecified, sublinear regret guarantees can vanish. There has been
some recent work that has presented sample-efficient algorithms with general function approximation.
However, these methods are either computationally intractable [39, 34, 20, 22] or hinge on strong
assumptions on the transition model [75, 24]. Thus, the following question remains open:

Can we design RL algorithms that incorporate powerful nonlinear function approximators such as
neural networks or kernel functions and provably achieve both computational and statistical

efficiency?

In this work, we provide an affirmative answer to this question. Focusing on the setting of an
episodic Markov decision process (MDP) where the value function is represented by either a kernel
function or an overparameterized neural network, we propose an RL algorithm with polynomial
runtime complexity and sample complexity, without imposing any additional assumptions on the
data-generating model. Our algorithm is relatively simple—it is an optimistic modification of the
least-squares value iteration algorithm (LSVI) [10]—a classical batch RL algorithm—to which we
add a UCB bonus term to each iterate. Specifically, when using a kernel function, each LSVI update
becomes a kernel ridge regression, and the bonus term is derived from that proposed for kernelized
contextual bandits [62, 67, 18]. For the neural network setting, motivated by the NeuralUCB algorithm
for contextual bandits [84], we construct a UCB bonus from the tangent features of the neural network
and we perform the LSVI updates via projected gradient descent. In both of these settings, the usage
of the UCB bonus ensures that the value functions constructed by the algorithm are always optimistic
in the sense that they serve as uniform upper bounds of the optimal value function. Furthermore, for
both the kernel and neural settings, we prove that the proposed algorithm incurs an eO(�FH2

p
T )

regret, where H is the length of each episode, T is the total number of episodes, and �F quantifies
the intrinsic complexity of the function class F . Specifically, as we will show in §4, �F is determined
by the interplay between the `1-covering number of the function class used to represent the value
function and the effective dimension of function class F . (See Table 1 for a summary.)

A key feature of our regret bounds is that they depend on the complexity of the state space only
through �F and thus allow the number of states to be very large or even divergent. This clearly
exhibits the benefit of function approximation by tying it directly to sample efficiency. To the best of
our knowledge, this is the first provably efficient framework for reinforcement learning with kernel
and neural network function approximations.

Related Work. There is a vast literature on establishing provably efficient RL methods in the absence
of a generative model or an explorative behavioral policy. Much of this literature has focused on the
tabular setting; see [33, 52, 6, 21, 65, 35, 56] and the references therein. In particular, [6, 35] prove that
an RL algorithm necessarily incurs a ⌦(

p
SAT ) regret under the tabular setting, where S and A are

the cardinalities of the state and action spaces, respectively. Thus, algorithms designed for the tabular
setting cannot be directly applied to the function approximation setting, where the number of effective
states is large. A recent literature has accordingly focused on the function approximation setting,
specifically the (generalized) linear setting where the value function (or the transition model) can be
represented using a linear transform of a known feature mapping [77, 78, 36, 12, 80, 73, 5, 83, 37].
Among these papers, our work is most closely related to [36]. In particular, in our kernel setting
when the kernel function has a finite rank, both our LSVI algorithm and the corresponding regret
bound reduce to those established in [36]. However, the sample complexity and regret bounds in
[36] diverge when the dimension of the feature mapping goes to infinity and thus cannot be directly
applied to the kernel setting.
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function class F regret bound
general RKHS H H2 ·

p
deff · [deff + logN1(✏⇤)] ·

p
T

�-finite spectrum H2 ·
p
�3T · log(�TH)

�-exponential decay H2 ·
p

(log T )3/� · T · log(TH)

overparameterized neural network H2 ·
p
deff · [deff + logN1(✏⇤)] ·

p
T + poly(T,H) ·m�1/12

Table 1: Summary of the main results. Here H is the length of each episode, T is the number of
episodes in total, and 2m is the number of neurons of the overparameterized networks in the neural
setting. For an RKHS H in general, deff denotes the effective dimension of H and N1(✏⇤) is the
`1-covering number of the value function class, where ✏⇤ = H/T . Note that to obtain concrete
bounds, we apply the general result to RKHS’s with various eigenvalue decay conditions. Here � is a
positive integer in the case of �-finite spectrum and is a positive number in the case of �-exponential
decay. Finally, in the last case we present the regret bound for the neural setting in general, where
deff is the effective dimension of the neural tangent kernel (NTK) induced by the overparameterized
neural network with 2m neurons and poly(T,H) is a polynomial in T and H . Such a general regret
bound can be expressed concretely as a function of the spectrum of the NTK.

Also closely related to our work is [71], which studies a similar optimistic LSVI algorithm for
general function approximation. This work focuses on value function classes with bounded eluder
dimension [57, 51]. It is unclear whether whether this formulation can be extended to the kernel
or neural network settings. [78] studies a kernelized MDP model where the transition model can
be directly estimated. Under a slightly more general model, [5] recently propose an optimistic
model-based algorithm via value-targeted regression, where the model class is the set of functions
with bounded eluder dimension. In other recent work, [37] studies a nonlinear control formulation in
which the transition dynamics belongs to a known RKHS and can be directly estimated from the data.
Our work differs from this work in that we impose an explicit assumption on the transition model and
our proposed algorithm is model-free.

Other authors who have presented regret bounds and sample complexities beyond the linear setting
include [39, 34, 20, 22]. These algorithms generally involve either high computational costs or
require possibly restrictive assumptions on the transition model [74, 75, 24].

Our work is also related to the literature on contextual bandits with either kernel function classes [62,
38, 63, 67, 18, 28] or neural network function classes [84]. Our construction of a bonus function
for the RL setting has been adopted from this previous work. However, while contextual bandits
can be viewed formally as special cases of our episodic MDP formulation with the episode length
equal to one, the temporal dependence in the MDP setting raises significant challenges. In particular,
the covering number N1(✏⇤) in Table 1 arises as a consequence of the fundamental challenge of
performing temporally extended exploration in RL.

Finally, our analysis of the optimistic LSVI algorithm is related to recent work on optimization and
generalization in overparameterized neural networks within the framework of the neural tangent
kernel [32]. See also [19, 32, 76, 25, 26, 3, 2, 85, 17, 44, 4, 15, 16, 43]. This literature focuses
principally on supervised learning, however; in the RL setting we need an additional bonus term in
the least-squares problem and thus require a novel analysis.

2 Background

In this section, we provide essential background on reinforcement learning, reproducing kernel
Hilbert space (RKHS), and overparameterized neural networks.

Episodic Markov Decision Processes

We focus on episodic MDPs, denoted MDP(S,A, H,P, r), where S and A are the state and action
spaces, respectively, the integer H > 0 is the length of each episode, P = {Ph}h2[H] and r =

{rh}h2[H] are the Markov transition kernel and the reward functions, respectively, where we let [n]
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denote the set {1, . . . , n} for integers n � 1. We assume that S is a measurable space of possibly
infinite cardinality while A is a finite set. Finally, for each h 2 [H], Ph(· |x, a) denotes the probability
transition kernel when action a is taken at state x 2 S in timestep h 2 [H], and rh : S ⇥A! [0, 1]
is the reward function at step h which is assumed to be deterministic for simplicity.

A policy ⇡ of an agent is a set of H functions ⇡ = {⇡h}h2[H] such that each ⇡h(· |x) is a probability
distribution over A. Here ⇡h(a |x) is the probability of the agent taking action a at state x at the h-th
step in the episode.

The agent interacts with the environment as follows. For any t � 1, at the beginning of the t-th
episode, the agent determines a policy ⇡t

= {⇡t

h
}h2[H] while an initial state xt

1 is picked arbitrarily
by the environment. Then, at each step h 2 [H], the agent observes the state xt

h
2 S , picks an action

at
h
⇠ ⇡t

h
(· |xt

h
), and receives a reward rh(xt

h
, at

h
). The environment then transitions into a new state

xt

h+1 that is drawn from the probability measure Ph(· |xt

h
, at

h
). The episode terminates when the

H-th step is reached and rH(xt

H
, at

H
) is thus the final reward that the agent receives.

The performance of the agent is captured by the value function. For any policy ⇡, and h 2 [H], we
define the value function V ⇡

h
: S ! R as

V ⇡

h
(x) = E⇡

"
HX

h0=h

rh0(xh0 , ah0)

����xh = x

#
, 8x 2 S, h 2 [H],

where E⇡[·] denotes the expectation with respect to the randomness of the trajectory {(xh, ah)}Hh=1
obtained by following the policy ⇡. We also define the action-value function Q⇡

h
: S ⇥A! R as

follows:

Q⇡

h
(x, a) = E⇡

 HX

h0=h

rh0(xh0 , ah0)

���xh = x, ah = a

�
.

Moreover, let ⇡? denote the optimal policy which by definition yields the optimal value function,
V ?

h
(x) = sup

⇡
V ⇡

h
(x), for all x 2 S and h 2 [H]. To simplify the notation, we write

(PhV )(x, a) := Ex0⇠Ph(· | x,a)[V (x0
)],

for any measurable function V : S ! [0, H]. Using this notation, the Bellman equation associated
with a policy ⇡ becomes

Q⇡

h
(x, a) = (rh + PhV

⇡

h+1)(x, a), V ⇡

h
(x) = hQ⇡

h
(x, ·),⇡h(· |x)iA, V ⇡

H+1(x) = 0.
(2.1)

Here we let h·, ·iA denote the inner product over A. Similarly, the Bellman optimality equation is
given by

Q?

h
(x, a) = (rh + PhV

?

h+1)(x, a), V ?

h
(x) = max

a2A

Q?

h
(x, a), V ?

H+1(x) = 0. (2.2)

Thus, the optimal policy ⇡? is the greedy policy with respect to {Q?

h
}h2[H]. Moreover, we define the

Bellman optimality operator T?
h

by letting
(T?

h
Q)(x, a) = r(x, a) + (PhV )(x, a) for all Q : S ⇥A! R,

where V (x) = maxa2A Q(x, a). By definition, the Bellman equation in (2.2) is equivalent to
Q?

h
= T?

h
Q?

h+1, 8h 2 [H]. The goal of the agent is to learn the optimal policy ⇡?. For any policy
⇡, the difference between V ⇡

1 and V ?

1 quantifies the sub-optimality of ⇡. Thus, for a fixed integer
T > 0, after playing for T episodes, the total (expected) regret [11] of the agent is defined as

Regret(T ) =
TX

t=1

⇥
V ?

1 (x
t

1)� V ⇡
t

1 (xt

1)
⇤
,

where ⇡t is the policy executed in the t-th episode and xt

1 is the initial state.

3 Optimistic Least-Squares Value Iteration Algorithms

In this section, we introduce the optimistic least-squares value iteration algorithm where the action-
value functions are estimated using a class of functions defined on Z = S ⇥A. The value iteration
algorithm [53, 66] is one of the most classical method in reinforcement learning, which finds
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{Q?

h
}h2[H] by applying the Bellman equation in (2.2) recursively. Specifically, value iteration

constructs a sequence of action-value functions {Qh}h2[H] via
Qh(x, a) (T?

h
Qh+1) =

⇥
rh + PhVh+1

⇤
(x, a), (3.1)

Vh+1(x) max
a02A

Qh+1(x, a
0
), 8(x, a) 2 S ⇥A, 8h 2 [H],

where QH+1 is set to be the zero function. However, this algorithm is impractical to implement in
real-world RL problems due to the following two reasons: (i) the transition kernel Ph is unknown and
(ii) we can neither iterate over all state-action pairs nor store a table of size |S ⇥A| when the number
of states is large. To tackle these challenges, the least-squares value iteration [10, 52] algorithm
implements the update in (3.1) approximately by solving a least-squares regression problem based
on historical data, which consists of the trajectories generated by the RL agent in previous episodes.
Specifically, let F be a function class. Before the beginning of the t-th episode, we have observed
t � 1 transition tuples {(x⌧

h
, a⌧

h
, x⌧

h+1)}⌧2[n]. Then, for estimating Q?

h
, LSVI proposes to replace

(3.1) with a least-squares regression problem

bQt

h
 minimize

f2F

⇢ t�1X

⌧=1

⇥
rh(x

⌧

h
, a⌧

h
) + V t

h+1(x
⌧

h+1)� f(x⌧
h
, a⌧

h
)
⇤2

+ pen(f)

�
, (3.2)

where pen(f) is a regularization term. Moreover, to foster exploration, following the principle of
optimism in the face of uncertainty [66], we further incorporate a bonus function bt

h
: Z ! R and

define
Qt

h
(·, ·) = min

� bQt

h
(·, ·) + � · bt

h
(·, ·), H � h+ 1

 +
, V t

h
(·) = max

a2A

Qt

h
(·, a), (3.3)

where � > 0 is a parameter and min{·, H�h+1}+ denotes the truncation to the interval [0, H�h�1].
Here we truncate the value function to [0, H � h+ 1] as each reward function is bounded in [0, 1].
Then, in the t-the episode, we let ⇡t be the greedy policy with respect to {Qt

h
}h2[H] and execute ⇡t.

Hence, combining (3.2) and (3.3) yields the optimistic least-squares value iteration algorithm, whose
details are given in Algorithm 1.

Algorithm 1 Optimistic Least-Squares Value Iteration with Function Approximation
1: Input: Function class F , penalty function pen(·), and parameter �.
2: for episode t = 1, . . . , T do
3: Receive the initial state xt

1.
4: Set V t

H+1 as the zero function.
5: for step h = H, . . . , 1 do
6: Obtain Qt

h
and V t

h
according to (3.2) and (3.3).

7: end for
8: for step h = 1, . . . , H do
9: Take action at

h
 argmax

a2A
Qt

h
(xt

h
, a).

10: Observe the reward rh(xt

h
, at

h
) and the next state xt

h+1.
11: end for
12: end for

We note that the both the bonus function bt
h

in (3.3) and the penalty function in (3.2) relies on the
choice of function class F . The optimistic LSVI in Algorithm 1 is only implementable when F is
specified. For instance, when F consists of functions of linear the form ✓>�(z), where � : Z ! Rd

is a known feature mapping and ✓ 2 Rd is the parameter, we choose the ridge penalty k✓k22 in (3.2)
and define bt

h
(z) as [�(z)>At

h
�(z)]1/2 for some invertible matrix At

h
. Then, Algorithm 1 recovers

the LSVI-UCB algorithm studied in [36], which further reduces to the tabular UCBVI algorithm [6]
when � is the canonical basis.

In the rest of this section, we instantiate the optimistic LSVI framework by setting F as an RKHS
and the class of overparameterized neural networks.
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3.1 The Kernel Setting

In the following, we consider the case where function class F is an RKHS H with kernel K. In
this case, by setting pen(f) as the ridge penalty, (3.2) reduces to a kernel ridge regression problem.
Besides, we define bt

h
in (3.3) as the UCB bonus function that also appears in kernelized contextual

bandit [62, 67, 18, 28, 78, 58, 14]. With these two modifications, we obtain the Kernel Optimistic
Least-Squares Value Iteration (KOVI) algorithm, which is summarized in Algorithm 2.

Specifically, for each t 2 [T ], before the beginning of the t-th episode, we first obtain value functions
{Qt

h
}h2[H] by solving a sequence of kernel ridge regressions with the data obtained from the previous

t� 1 episodes. In particular, we let Qt

H+1 be a zero function. For any h 2 [H], we replace (3.2) by a
kernel ridge regression given by

bQt

h
 minimize

f2H

t�1X

⌧=1

⇥
rh(x

⌧

h
, a⌧

h
) + V t

h+1(x
⌧

h+1)� f(x⌧
h
, a⌧

h
)
⇤2

+ � · kfk2
H
, (3.4)

where � > 0 is the regularization parameter. Then, we obtain Qt

h
and V t

h
as in (3.3), where the bonus

function bt
h

will be specified later. That is,

Qt

h
(s, a) = min

� bQt

h
(s, a) + � · bt

h
(s, a), H � h+ 1

 +
, V t

h
(s) = max

a

Qt

h
(s, a), (3.5)

where � > 0 is a parameter.

The solution to (3.4) can be written in closed-form as follows. We define the response vector
yt
h
2 Rt�1 by letting its ⌧ -th entry be

[yt
h
]⌧ = rh(x

⌧

h
, a⌧

h
) + V t

h+1(x
⌧

h+1), 8⌧ 2 [t� 1]. (3.6)
Recall that we denote z = (x, a) and Z = S ⇥A. Besides, based on the kernel function K of the
RKHS, we define the Gram matrix Kt

h
2 R(t�1)⇥(t�1) and function kt

h
: Z ! Rt�1 respectively as

Kt

h
= [K(z⌧

h
, z⌧

0

h
)]⌧,⌧ 02[t�1] 2 R(t�1)⇥(t�1), kt

h
(z) =

⇥
K(z1

h
, z), . . .K(zt�1

h
, z)

⇤> 2 Rt�1.
(3.7)

Then bQt

h
in (3.4) can be written as bQt

h
(z) = kt

h
(z)>↵t

h
, where we define ↵t

h
= (Kt

h
+ � · I)�1yt

h
.

Using Kt

h
and kt

h
defined in (3.7), the bonus function is defined as

bt
h
(x, a) = ��1/2 ·

⇥
K(z, z)� kt

h
(z)>(Kt

h
+ �I)�1kt

h
(z)

⇤1/2
, (3.8)

which can be interpreted as the posterior variance of Gaussian process regression and characterizes
the uncertainty of bQt

h
[55]. Such a bonus term also appears in the literature on kernelized contextual

bandits [62, 67, 18, 28, 78, 58, 14] and is reduced to the UCB bonus proposed for linear bandits
[11, 41] when the feature mapping � of the RKHS is finite-dimensional. In this case, KOVI reduces
to the LSVI-UCB algorithm proposed in [36] for linear value functions.

Furthermore, we remark that the bonus defined in (3.8) is called the UCB bonus because, when added
by such a bonus function, Qt

h
defined in (3.5) serves as an upper bound of Q?

h
for all state-action

pair. Intuitively, the target function of the kernel ridge regression in (3.4) is T?
h
Qt

h+1. However, due
to having limited data, the solution bQt

h
has some estimation error, which is quantified bt

h
. Thus,

when � is properly chosen, the bonus term triumphs the uncertainty of estimation, which yields
that Qt

h
� T?

h
Qt

h+1 elementwisely. Notice that Qt

H+1 = Q?

H+1 = 0. The Bellman equation
Q?

h
= T?

h
Q?

h+1 directly implies that Qt

h
is an elementwise upper bound of Q?

h
for all h 2 [H]. Our

algorithm is called “optimistic value iteration” as the policy ⇡t is greedy with respect to {Qt

h
}h2[H],

which are upper bounds of the optimal value function. In other words, compared with the standard
value iteration algorithm, we always over-estimate the value function. Such an optimistic approach is
pivotal for the RL agent to perform efficient temporally extended exploration.

4 Theory of Kernel Optimistic Least-Squares Value Iteration

In this section, we prove that KOVI achieves O(�HH2
p
T )-regret bounds, where �H characterizes

the intrinsic complexity of the RKHS H that is used to approximate {Q?

h
}h2[H]. Before presenting
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the theory, we first lay out a structural assumption for the kernel setting, which postulates that the
Bellman operator maps any bounded value function to a bounded RKHS-norm ball.

Assumption 4.1. Let RQ > 0 be a fixed constant. We define Q?
= {f 2 H : kfkH  RQH}. We

assume that for any h 2 [H] and any Q : S ⇥A! [0, H], we have T?
h
Q 2 Q?.

Since Q?

h
is bounded by in [0, H] for each all h 2 [H], Assumption 4.1 ensures the optimal value

functions are contained in the RKHS-norm ball Q?. Thus, there is no approximation bias when
using functions in H to approximate {Q?

h
}h2[H]. Moreover, it is shown in [23] that only assuming

{Q?

h
}h2[H] ✓ Q? is not sufficient for achieving a regret that is polynomial in H . Thus, we further

assume that Q? contains the image of the Bellman operator. A sufficient condition for Assumption
4.1 to hold is that

rh(·, ·), Ph(x
0 | ·, ·) 2 {f 2 H : kfkH  1}, 8h 2 [H], 8x0 2 S. (4.1)

That is, both the reward function and the Markov transition kernel can be represented by functions
in the unit ball of H. When (4.1) holds, for any V : S ! [0, H], it holds that rh + PhV 2 H with
its RKHS norm bounded by H + 1. Hence, Assumption 4.1 holds with RQ = 2. Moreover, similar
assumptions are also made in [77, 78, 36, 80, 81, 73] for (generalized) linear functions. Also see
[23, 68, 42] for related discussions on the necessity of such an assumption.

Moreover, as Q? contains the image of the Bellman operator, the complexity of H plays an important
role in the performance of KOVI. To characterize the intrinsic complexity of F , we consider a notion
of effective dimension named the maximal information gain [62], which is defined as

�K(T,�) = sup
D✓Z

�
1/2 · logdet(I +KD/�)

 
, (4.2)

where the supremum is taken over all D ✓ Z with |D|  T . Here in (4.2) KD is the Gram matrix
defined in the same way as in (3.7) based on D, � > 0 is a parameter, and the subscript K in �K

indicates the kernel K. The magnitude of �K(T,�) relies on how fast the the eigenvalues H decay
to zero and can be viewed as a proxy of the dimension of H when H is infinite-dimensional. In the
special case where H is finite-rank, it holds that �K(T,�) = O(� · log T ) where � is the rank of H.

Furthermore, for any h 2 [H], note that each Qt

h
constructed by KOVI takes the form of

Q(z) = min

n
Q0(z) + � · ��1/2

⇥
K(z, z)� kD(z)

>
(KD + �I)�1kD(z)

⇤1/2
, H � h+ 1

o+
,

(4.3)

where Q0 2 H, similar to bQt

h
in (3.4), is the solution to a kernel ridge regression problem and

D ✓ Z is a discrete subset of Z with no more than T state-action pairs. Moreover, KD and kD are
defined similarly as in (3.7) based on data in D. Then, for any R,B > 0, we define a function class
Qucb(h,R,B) as
Qucb(h,R,B) =

�
Q : Q takes the form of (4.3) with kQ0kH  R,� 2 [0, B], |D|  T

 
. (4.4)

As we will show in Lemma H.1, we have k bQt

h
kH  RT for all (t, h) 2 [T ] ⇥ [H], where

RT = 2H
p
�K(T,�). Thus, when B exceeds parameter � in (3.5), each Qt

h
is contained in

Qucb(h,RT , B).

Moreover, since rh + PhV t

h+1 = T?
h
Qt

h+1 is the population ground truth of the ridge regression
in (3.4), the complexity of Qucb(h+ 1, RT , B) naturally appears when quantifying the uncertainty
of bQt

h
. To this end, for any ✏ > 0, let N1(✏;h,B) be the ✏-covering number of Qucb(h,RT , B)

with respect to the `1-norm on Z , which is also determined by the spectral structure of H and
characterizes the complexity of the value functions constructed by KOVI.

Now we are ready to present the regret bound of KOVI.

Theorem 4.2. Assume that there exists BT > 0 satisfying
8 · �K(T, 1 + 1/T ) + 8 · logN1(✏⇤;h,BT ) + 16 · log(2TH) + 22 + 2R2

Q
 (BT /H)

2 (4.5)
for all h 2 [H], where ✏⇤ = H/T . We set � = 1 + 1/T and � = BT in Algorithm 2. Then, under
Assumption 4.1, with probability at least 1� (T 2H2

)
�1, we have

Regret(T )  5�H ·
p
T · �K(T,�). (4.6)
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As shown in (D.6), the regret can be written as O(H2 · �H ·
p
T ), where �H = BT /H ·

p
�K(T,�)

reflects the complexity of H and BT satisfies (4.5). Specifically, �H involves (i) the `1-covering
number N1(✏⇤, h, BT ) of Qucb(h,RT , BT ) and (ii) the effective dimension �K(T,�), both charac-
terize the intrinsic complexity of H. Moreover, when neglecting the constant and logarithmic terms
in (4.5), it suffices to choose BT satisfying

BT /H ⇣
p
�K(T,�) + max

h2[H]

p
logN1(✏⇤, h, BT ),

which reduces the regret bound in (D.6) to

Regret(T ) = eO
⇣
H2 ·

h
�K(T,�) + max

h2[H]

p
�K(T,�) · logN1(✏⇤, h, BT )

i
·
p
T
⌘
. (4.7)

To further obtain some intuition of (4.7), let us consider the tabular case where Q? consists of all
measurable functions defined on S ⇥ A with range [0, H]. In this case, the value function class
Qucb(h,RT , BT ) can be set to Q?, whose `1-covering number N1(✏⇤, h, BT )  |S ⇥A| · log T .
Moreover, it can be shown that the effective dimension is also O(|S ⇥A| · log T ). Thus, ignoring the
logarithmic terms, Theorem 4.2 implies that by choosing � ⇣ H · |S ⇥A|, optimistic least-squares
value iteration achieves an eO(H2 · |S ⇥A| ·

p
T ) regret.

Furthermore, we remark that the regret bound in (D.6) holds for any RKHS in general. It hinges on
(i) Assumption 4.1, which postulates that the RKHS-norm ball {f 2 H : kfkH  RQH} contains
the image of the Bellman operator, and (ii) the inequality in (4.5) admits a solution BT , which is set
to be � in Algorithm 2. Here we set � to be sufficiently large so as to dominate the uncertainty of bQt

h
,

whereas to quantify such uncertainty, we utilize the uniform concentration over the value function
class Qucb(h+ 1, RT ,�) whose complexity metric, the `1-covering number, in turn depends on �.
Such an intricate desideratum leads to (4.5) which determines � implicitly.

It is worth noting that the uniform concentration is unnecessary when H = 1. In this case, it suffices
to choose � = eO(

p
�K(T,�)) and KOVI incurs an eO(�K(T,�) ·

p
T ) regret, which matches the

regret bounds of UCB algorithms for kernelized contextual bandits in [62, 18]. Here eO(·) omits
logarithmic terms. Thus, the covering number in (4.7) is specific for MDPs and arises due to the
temporal dependence within an episode.

Furthermore, to obtain a concrete regret bound from (D.6), it remains to further characterize �K(T,�)
and logN1(✏⇤, h, BT ) using characteristics of H. To this end, in the following, we specify the
eigenvalue decay property of H.

Assumption 4.3 (Eigenvalue Decay of H). Recall that the integral operator TK defined in (B.1)
has eigenvalues {�j}j�1 and eigenfunctions { j}j�1. We assume that {�j}j�1 satisfies one of the
following two eigenvalue decay conditions for some constant � > 0:

(i) �-finite spectrum: we have �j = 0 for all j > �, where � is a positive integer.

(ii) �-exponential decay: there exist absolute constants C1 and C2 such that �j  C1 ·exp(�C2 ·
j�) for all j � 1.

Moreover, for case (ii), we further assume that there exist constants ⌧ 2 [0, 1/2) C > 0 such that
sup

z2Z
�⌧
j
· | j(z)|  C for all j � 1.

Case (i) implies that H is a �-dimensional RKHS. When this is the case, under Assumption 4.1, there
exists a feature mapping � : Z ! R� such that, for any V : S ! [0, H], rh+PhV is a linear function
of �. Such a property is satisfied by the linear MDP model studied in [77, 78, 36, 80]. Moreover,
when H satisfies case (i), KOVI reduces to the LSVI-UCB algorithm studied in [36]. In addition, case
(ii) postulates that the eigenvalues of TK decays exponentially fast, where � is a constant that might
depend on the input dimension d, which is assumed fixed throughout this paper. For example, the
squared exponential kernel belongs to case (ii) with � = 1/d [62]. Moreover, we assume that there
exists ⌧ 2 [0, 1/2) such that �⌧

j
· k jk1 is universally bounded. Since K(z, z)  1, this condition is

naturally satisfied for ⌧ = 1/2. However, here we assume that ⌧ 2 (0, 1/2), which is satisfied when
the magnitudes of the eigenvectors do grow not too fast compared with the decay of the eigenvalues.
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Such a condition is significantly weaker than assuming k jk1 is universally bounded, which is also
commonly made in the literature of nonparametric statistics [40, 59, 82, 45, 79]. It can be shown that
the squared exponential kernel on unit sphere in Rd satisfy this condition for any ⌧ > 0. See [46] for
a more detailed discussion.

Now we present the regret bounds for the two eigenvalue decay conditions separately.

Corollary 4.4. Under Assumptions 4.1 and 4.3, we set � = 1 + 1/T and � = BT in Algorithm 2,
where BT is defined as

BT =

(
Cb · �H ·

p
log(� · TH) �-finite spectrum,

Cb ·H
p

log(TH) · (log T )1/� �-exponential decay
(4.8)

Here Cb is an absolute constant that does not depend on T or H . Then, there exists an absolute
constant Cr such that, with probability at least 1� (T 2H2

)
�1, we have

Regret(T ) 
(
Cr ·H2 ·

p
�3T · log(�TH) �-finite spectrum,

Cr ·H2 ·
p
(log T )3/� · T · log(TH) �-exponential decay.

(4.9)

Corollary 4.4 asserts that when � is chosen properly according to the eigenvalue decay property of
H, KOVI incurs a sublinear regret under both the two cases specified in Assumption 4.3. Note that
the linear MDP [36] satisfies the �-finite spectrum condition and KOVI recovers the LSVI-UCB
algorithm studied in [36] when restricted to this setting. Moreover, our eO(H2 ·

p
�3T ) also matches

the regret bound in [36]. In addition, under the �-exponential eigenvalue decay condition, as we will
show in §I, the log-covering number and the effective dimension are bounded by (log T )1+2/� and
(log T )1+1/� , respectively. Plugging these facts into (4.7), we obtain the sublinear regret in (D.6).
As a concrete example, for the squared exponential kernel, we obtain an O(H2 · (log T )1+1.5d ·

p
T )

regret, where d is the input dimension. This such a regret is (log T )d/2 worse than that in [62] for
kernel contextual bandits, which is due to bounding the log-covering number. See §G.1 for details.

Furthermore, similarly to the discussion in Section 3.1 of [35], the regret bound in (D.6) directly
translates to an upper bound on the sample complexity as follows. When the initial state is fixed
for all episodes, for any fixed ✏ > 0, with at least a constant probability, KOVI returns a policy ⇡
satisfying V ?

1 (x1)� V ⇡

1 (x1)  ✏ using O(H4B2
T
· �K(T,�)/✏2) samples. Specifically, for the two

cases considered in Assumption 4.3, such a sample complexity guarantee reduces to eO
�
H4 · �3/✏2

�

and eO
�
H4 · (log T )2+3/�/✏2

�
, respectively. Moreover, similar to [36], our analysis can also be

extended to the misspecified setting where inff2Q? kf � T ?

h
Qk1  errmis for all Q : Z ! [0, H].

Here errmis is the model misspecification error. Under this setting, KOVI will suffer from an extra
errmis · TH regret. The analysis for the misspecified setting is similar to that for the neural setting
that will be presented in §D.

5 Conclusion

In this paper, we have presented an algorithmic framework for reinforcement learning with general
function approximation. Such a framework is based on an optimistic least-squares value iteration
algorithm that incorporates an additional bonus term in the solution to a least-squares value estimation
problem. The bonus term promotes exploration. When deploying this framework in the settings
of kernel function and overparameterized neural networks, respectively, we obtain two algorithms
KOVI and NOVI. Both algorithms are provably efficient, both computationally and in terms of the
number of samples. Specifically, under the kernel and neural network settings respectively, KOVI and
NOVI both achieve sublinear regret, eO(�FH2

p
T ), where �F is a quantity that characterizes the

intrinsic complexity of the function class F . To the best of our knowledge, this is the first provably
efficient reinforcement learning algorithm in the general settings of kernel and neural function
approximations.
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Broader Impact

This is a theoretical paper. We do not foresee our work directly having any societal consequences.
However, reinforcement learning is a tool that is increasingly used in practical machine learning
applications, especially in the setting where nonlinear function approximation is involved. Theoret-
ical explorations related to reinforcement learning with function approximation may help provide
frameworks through which to reason about, and design safer and more reliable practical systems.
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