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A Implementation details

In this work, we implemented the proposed HiNeRV and other NeRV-based models [7, 12, 4, 9, 6]
using the PyTorch [18] framework and the PyTorch Image Models library [26]. We used torchac [14]
for performing arithmetic coding.

For training NeRV, E-NeRV, HNeRV and FFNeRV, we adopted their original implementations, while
we re-implemented PS-NeRV based on its original description due to the unavailability of the source
code. All these models were trained on GPUs with half-precision [17]. It was observed that training
HNeRV with half-precision results in inferior results for some sequences in the MCL-JCV dataset, so
we reported its results with full precision.

For learning-based methods, we evaluated the performance of DCVC [10] and DCVC-HEM [11]
using the implementations and pre-trained models created by the authors and reported the perfor-
mance of VCT [15] and B-EPIC [19] using the RD data provided in the corresponding GitHub
repository/paper.

In our experiments, we estimated the complexity (MACs) of different models using the DeepSpeed
library [1]. It is noted that in the original implementations of some benchmarked methods [7, 12, 9],
the provided configurations adopt a large number (e.g. 96) as the minimum width of the networks,
resulting in high computational complexity (due to the high resolution feature maps generated) and
thus large MACs figures despite of their relatively small model sizes.

For conventional codecs, we performed experiments with multiple QP values to obtain the results at
different rates. Specifically, we used QP values 17/22/27/32/37/42 and 12/17/22/27/32/37 for x265
[3] and HM [20], respectively.

B Comparison to other learning-based codecs

Comparing with learning-based codecs, the main advantage of an INR-based model is the decoding
speed [7]. Although HiNeRV offers superior compression and representation performance compared
to existing INR-based approaches (as demonstrated in the main paper), due to the more sophisticated
structure employed, its encoding and decoding speeds are also slower than other INR-based methods.
However, it should be noted that, when compared with other learning-based codecs with state-of-the-
art compression performance, HiNeRV still exhibits a much faster decoding speed. For example, the
decoding speeds of DCVC [10] and DCVC-HEM [11] with 1080p videos are 0.03/1.90 FPS (reported
in [11]), while HiNeRV (scale L) can obtain 10.9 FPS on the same GPU. Moreover, HiNeRV has a
similar complexity (in MACs) when compared with faster INR-based model, i.e., HNeRV [6], and
further optimization is expected to reduce the actual latency.
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Figure 1: Illustration of the proposed HiNeRV models employing frame-based or patch-based representation.

Encoding speed is a common issue affecting all NeRV-based approaches, which require model training
as part of video encoding. With the experiment settings adopted in Section 4.2, encoding a 1080p
video with 600 frames by HiNeRV takes around 6.5/7.7/11.9 hours with scale S/M/L, respectively.
However, as pointed out in the paper (Section 4.1), it is possible to reduce the encoding time while
still obtaining superior reconstruction quality.

We also noticed that when comparing with learning-based codecs, HiNeRV performs better with the
UVG dataset [16] than with the MCL-JCV [25] dataset. This could be due to the fact that the UVG
dataset contains a larger number of frames per sequence, where the INR based method is able to take
advantage of it. Future work could also investigate this limitation.

C Details for unifying frame-wise and patch-wise representations (Sec. 3.5)

When the patch-wise configuration is employed (without padding), operations such as convolution
and bilinear interpolation will produce different results to those based on the frame-wise configuration
due to boundary effects. For HiNeRV, we perform computation with overlapped patches in the feature
map space to remove the negative effect of the boundary pixels, where the amount of overlapped
pixels increase with the number of convolutional/interpolation layers and kernel sizes. It is noted that,
due to the use of convolutional layers, masking is also required to set the pixel values outside of the
boundary (related to frame) to zero, in order to match the behavior of convolutional layers in deep
learning frameworks with the commonly used ‘zero padding’ setting.

Fig. 1 provides an illustrative comparison between the frame-wise and patch-wise configurations
used in HiNeRV. Here we take HiNeRV (scale L) as an example (see Section D for the detailed
configurations). First, giving the input patch coordinate (i, j, t) (for the frame-wise configuration,
i = j = 0), the base encoding is interpolated from the feature grid in γbase. In frame-wise mode,
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Table 1: HiNeRV configurations for the UVG [16] and MCL-JCV [25] datasets.
Size Dn Sn C0 (Tgrid, Hgrid,Wgrid, Cgrid) Lgrid (Tlocal, Clocal) Llocal

XXS (3, 3, 3, 1) (5, 3, 2, 2) 136 MCL-JCV - (40, 18, 32, 2) 2 MCL-JCV - (T, 4) 3

XS (3, 3, 3, 1) (5, 3, 2, 2) 196 MCL-JCV - (40, 18, 32, 4) 2 MCL-JCV - (T, 8) 3

S (3, 3, 3, 1) (5, 3, 2, 2) 280 MCL-JCV - (40, 18, 32, 8) 2 MCL-JCV - (T, 16) 3
UVG - (150, 18, 32, 2) UVG - (T, 4)

M (3, 3, 3, 1) (5, 3, 2, 2) 400 MCL-JCV - (40, 18, 32, 16) 2 MCL-JCV - (T, 32) 3
UVG - (150, 18, 32, 4) UVG - (T, 8)

L (3, 3, 3, 1) (5, 3, 2, 2) 560 MCL-JCV - (40, 18, 32, 32) 2 MCL-JCV - (T, 64) 3
UVG - (150, 18, 32, 8) UVG - (T, 16)

XL (4, 4, 4, 1) (5, 3, 2, 2) 688 UVG - (150, 18, 32, 16) 2 UVG - (T, 32) 3

XXL (5, 5, 5, 1) (5, 3, 2, 2) 864 UVG - (150, 18, 32, 32) 2 UVG - (T, 64) 3

T : the number of video frames

Table 2: Video representation results on the Bunny dataset [2] (for XXS/XS/S scales).
Model Size MS-SSIM

NeRV 0.83M/1.64M/3.20M 0.8441/0.9189/0.9623
E-NeRV 0.88M/1.65M/3.31M 0.9392/0.9678/0.9873

PS-NeRV 0.90M/1.68M/3.35M 0.9478/0.9632/0.9769
HNeRV 0.82M/1.66M/3.28M 0.9558/0.9773/0.9892
FFNeRV 0.91M/1.66M/3.19M 0.9559/0.9773/0.9891
HiNeRV 0.77M/1.59M/3.25M 0.9861/0.9922/0.9955

Table 3: Video representation results on the UVG dataset [16] (for S/M/L scales). Results are in MS-SSIM.
Model Size Beauty Bosph. Honey. Jockey Ready. Shake. Yacht. Avg.

NeRV 3.31M 0.8862 0.9214 0.9826 0.8871 0.8303 0.9336 0.8539 0.8993
E-NeRV 3.29M 0.8876 0.9341 0.9842 0.8627 0.8523 0.9407 0.8665 0.9040
PS-NeRV 3.24M 0.8781 0.9105 0.9804 0.8397 0.7807 0.9409 0.8381 0.8823
HNeRV 3.26M 0.8941 0.9503 0.9846 0.8775 0.8402 0.9473 0.8865 0.9115
FFNeRV 3.40M 0.8977 0.9590 0.9846 0.8804 0.8564 0.9473 0.8904 0.9165
HiNeRV 3.19M 0.9067 0.9843 0.9857 0.9571 0.9672 0.9648 0.9489 0.9592

NeRV 6.53M 0.8996 0.9542 0.9843 0.9247 0.8909 0.9454 0.8990 0.9283
E-NeRV 6.54M 0.9015 0.9618 0.9854 0.9111 0.9061 0.9593 0.9098 0.9336
PS-NeRV 6.57M 0.8948 0.9464 0.9842 0.8849 0.8478 0.9574 0.8853 0.9144
HNeRV 6.40M 0.9014 0.9634 0.9853 0.9095 0.8860 0.9607 0.9140 0.9315
FFNeRV 6.44M 0.9036 0.9652 0.9855 0.9375 0.9285 0.9628 0.9238 0.9438
HiNeRV 6.49M 0.9162 0.9886 0.9862 0.9683 0.9814 0.9744 0.9675 0.9689

NeRV 13.01M 0.9103 0.9717 0.9854 0.9508 0.9363 0.9650 0.9365 0.9509
E-NeRV 13.02M 0.9075 0.9745 0.9858 0.9434 0.9407 0.9726 0.9391 0.9519
PS-NeRV 13.07M 0.9016 0.9651 0.9853 0.9197 0.9111 0.9713 0.9221 0.9395
HNeRV 12.87M 0.9066 0.9739 0.9857 0.9369 0.9261 0.9721 0.9389 0.9486
FFNeRV 12.66M 0.9144 0.9793 0.9860 0.9589 0.9587 0.9753 0.9532 0.9608
HiNeRV 12.82M 0.9277 0.9911 0.9876 0.9739 0.9885 0.9809 0.9798 0.9756

the base encoding has a spatial size of 18× 32. For the patch-wise mode, if padding is not used, the
base encoding size will be 2× 2, as we segment the frames into 9× 16 patches, and compute one
patch in each forward pass. With the padding (3 pixels on each side, in this case), the output becomes
8× 8. Each HiNeRV block performs upsampling and cropping which adapt with the padding size.
For example, in the second HiNeRV block for both configurations (highlighted in the figure), bilinear
interpolation is used to upsample the feature maps by 3×. In the case of the patch-wise mode, center
cropping is applied after upsampling, where the crop size depends on the padding size in the new
resolution. Similarly, cropping is also performed after the head layer.

It should be noted that, although padding will introduce an additional computational overhead, the
above approach can improve the performance of HiNeRV as shown in the main paper. This overhead
can be further reduced by increasing the patch size if the computational complexity is a concern. It
becomes zero if a frame-wise configuration is employed in the inference.
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Figure 2: Video compression results on the UVG datasets [16].

Figure 3: Video compression results on the MCL-JCV datasets [25].

D Configurations for HiNeRV

In the proposed approach, we use 4 HiNeRV blocks, i.e. N = 4, with a reduction factor R = 2.0. The
detailed configurations of HiNeRV for the evaluation on the UVG [16] and MCL-JCV [25] datasets
are given in Table 1. The settings for the Bunny dataset [2], are identical to those for MCL-JCV,
except that the strides Sn are changed to (5, 2, 2, 2) to match the spatial resolution. The employed
network architecture adopts ConvNeXt [13] as the default network block, and we use a 3× 3 kernel
size for all convolutional layers, and an expansion ratio of 4 for all ConvNeXt blocks except for the
last one, which has a ratio of 1, to reduce the computational complexity. We did not fine-tune the
configurations thoroughly, but we noticed that HiNeRV is relatively robust to parameter changes,
e.g. adjusting the depth and width, given the same number of parameters. For scaling HiNeRV, we
primarily increase the width instead of the depth to avoid large padding sizes, as the padding sizes
are scaled with both the network depth and the kernel size of convolutional layers.

For patch-wise computation (with or without padding), we use a patch size M = 80/120 for
1280 × 720/1920 × 1080 outputs. We configure the padding size of the stem layer and four
HiNeRV blocks independently, where we use a padding size (3, 6, 6, 4, 1) for HiNeRV-XXS/S/M/L,
(3, 7, 7, 5, 1) for HiNeRV-XL and (4, 9, 9, 6, 1) for HiNeRV-XXL, respectively. For a convolutional
layer with a kernel size K, the padding required can be computed by ⌈K−1

2 ⌉. For the upsampling
layers, the padding can by obtained by calculating the pixel position for interpolation. The total
padding required is accumulated in a top-down manner.
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Table 4: Comparison between different pruning configurations. Results are based on the UVG dataset [16],
measured in average PSNR.

Sparsity

Method 0.1500 0.2775 0.3859 0.4780 0.5563

Original 36.08 31.97 31.63 31.20 30.72
Adaptive (ours) 36.13 35.79 35.40 34.97 34.50
Head excluded 36.08 35.65 35.22 34.69 34.09

Table 5: Comparison between different quantization configurations. Results are based on the UVG dataset [16],
measured in average PSNR.

Bitwidth

Configuration 8 7 6 5

None 36.14 35.75 34.59 32.08
QAT 36.18 36.02 35.50 34.64

Quant-Noise (w/ STE) 36.18 36.04 35.55 34.68
Quant-Noise (w/o STE) 36.20 36.12 35.86 35.16

E Additional results

E.1 Video representation

Additional MS-SSIM results for the video representation task (Section 4.1 in the main paper) on the
Bunny [2] and the UVG [16] datasets are summarized in Table 2 and Table 3, respectively.

E.2 Video compression

For the video compression task (Section 4.2 in the main paper), additional results have been provided
in Figure 2 and 3 for the UVG [16] and the MCL-JCV [25] datasets respectively. Here two more
learning-based codecs are included for benchmarking including FFNeRV [9] and B-EPIC [19].

E.3 Ablation study on the refined training pipeline

Alongside the ablation study in the main paper, additional experiments were also performed to verify
the effectiveness of the refined training pipeline (Section 3.6). The experiments in this sub-section
adopt the same settings as in Section 4.3.

Firstly, we compare the different pruning techniques including: (i) the standard pruning technique
utilized in the original model compression pipeline for NeRV [7] and (ii) with the proposed adaptive
pruning in this paper. Empirically, we found that (i) can lead to a larger portion of the head weights
being pruned, with the network performance unable to recover even with fine-tuning. Hence, we
consider an alternative, (iii), using the standard pruning technique with the head weights excluded.
To obtain networks with different pruning ratios, we perform multiple iterations of pruning, with each
removing 15% of the weights, followed by fine-tuning (60 rounds). The results in Table 4 show that
the proposed adaptive pruning method (ii) is superior to the other two methods, especially when the
pruning ratio is larger.

We also compared the performance of models with quantization, where they are trained (i) without
quantization-aware training (QAT) [8], (ii) with QAT, where Straight Through Estimator (STE) [5]
is being used, (iii) with Quant-Noise [22], where STE is being used to compute the gradient for
the quantized weights, or (iv) with Quant-Noise [22], where STE is not used, i.e., our choice in
the main paper. The results for 5/6/7 and 8 bit quantisation are provided. For training with QAT
and Quant-Noise, we fine-tune the models over 30 epochs. The results in Table 5 show that, by
using Quant-Noise (w/o STE) with 6 bits, we can obtain a relatively good performance, while 6-bit
quantization can provide up-to 25% bitrate saving compared with the commonly used 8-bit alternative
[7, 12, 4, 9, 6].
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Table 6: Video representation results on the Bunny dataset [2] for the faster HiNeRV variants (for XXS/XS/S
scales).

Model Size MACs Encoding FPS Decoding FPS PSNR

NeRV 0.83M/1.64M/3.20M 25G/57G/101G 131.9/93.6/81.8 308.5/229.1/202.3 26.82/29.61/32.56
HNeRV 0.82M/1.66M/3.28M 23G/48G/94G 100.0/80.8/64.2 317.4/251.6/192.5 31.08/33.68/36.95
FFNeRV 0.91M/1.66M/3.19M 26G/58G/102G 62.1/51.5/47.9 108.4/95.2/90.5 30.37/33.83/37.01
HiNeRV 0.77M/1.59M/3.25M 23G/47G/96G 37.6/27.7/20.0 132.1/103.9/76.7 36.37/38.94/41.14

HiNeRV-A 0.76M/1.57M/3.22M 18G/37G/76G 41.0/30.8/21.7 139.2/109.9/81.9 36.50/38.84/40.87
HiNeRV-B 0.79M/1.57M/3.25M 12G/24G/48G 75.0/62.9/44.5 196.6/162.4/114.9 35.31/37.57/39.78

Table 7: Video representation results with the UVG dataset [16] for the faster HiNeRV variants (for S/M/L
scales). Results are in PSNR. FPS is the encoding/decoding rate.

Model Size MACs FPS Beauty Bosph. Honey. Jockey Ready. Shake. Yacht. Avg.

NeRV 3.31M 227G 32.4/90.0 32.83 32.20 38.15 30.30 23.62 33.24 26.43 30.97
HNeRV 3.26M 175G 24.6/93.4 33.56 35.03 39.28 31.58 25.45 34.89 28.98 32.68
FFNeRV 3.40M 228G 19.0/49.3 33.57 35.03 38.95 31.57 25.92 34.41 28.99 32.63
HiNeRV 3.19M 181G 10.1/35.5 34.08 38.68 39.71 36.10 31.53 35.85 30.95 35.27
HiNeRV-A 3.22M 122G 12.0/40.3 34.06 38.31 39.65 36.27 31.08 35.68 30.71 35.11
HiNeRV-B 3.22M 78G 22.4/56.9 33.81 37.07 39.42 35.27 29.43 34.90 29.60 34.21

NeRV 6.53M 228G 32.0/90.1 33.67 34.83 39.00 33.34 26.03 34.39 28.23 32.78
HNeRV 6.40M 349G 20.1/68.5 33.99 36.45 39.56 33.56 27.38 35.93 30.48 33.91
FFNeRV 6.44M 229G 18.9/49.3 33.98 36.63 39.58 33.58 27.39 35.91 30.51 33.94
HiNeRV 6.49M 368G 8.4/29.1 34.33 40.37 39.81 37.93 34.54 37.04 32.94 36.71
HiNeRV-A 6.56M 246G 10.0/33.3 34.29 39.97 39.77 37.95 33.87 36.87 32.59 36.47
HiNeRV-B 6.40M 150G 17.8/44.4 34.06 38.68 39.63 36.90 31.60 35.95 31.11 35.42

NeRV 13.01M 230G 31.7/89.8 34.15 36.96 39.55 35.80 28.68 35.90 30.39 34.49
HNeRV 12.87M 701G 15.6/52.7 34.30 37.96 39.73 35.47 29.67 37.16 32.31 35.23
FFNeRV 12.66M 232G 18.4/49.3 34.28 38.48 39.74 36.72 30.75 37.08 32.36 35.63
HiNeRV 12.82M 718G 5.5/19.9 34.66 41.83 39.95 39.01 37.32 38.19 35.20 38.02
HiNeRV-A 12.96M 478G 6.7/23.1 34.58 41.36 39.92 38.96 36.38 37.99 34.46 37.66
HiNeRV-B 13.08M 302G 11.6/28.2 34.36 40.31 39.77 38.16 34.04 37.20 33.10 36.71

E.4 Faster variants of HiNeRV

While HiNeRV (in the main paper) was configured to prioritize compression performance, we provide
experimental results for two variants in this section associated with reduced computational cost (in
MACs) and improved encoding/decoding speed, but with only a small drop in reconstruction quality.

The first variant (HiNeRV-A) is obtained by reducing the feature map size in the lower level layer
of the network, which is achieved by using the strides Sn = (5, 4, 2, 2)/(5, 4, 3, 2) for 1280 ×
720/1920× 1080 output, and we adjusted the grid’s spatial dimension to 16× 9 accordingly. In the
second variant (HiNeRV-B), we further reduce the number of network blocks in high level HiNeRV
blocks (Dn = (2, 1, 1, 1)), and remove the normalization layer after upsampling to reduce the latency.
We change the width to maintain the size of the network at each scale.

We compare HiNeRV-A/B with NeRV [7], HNeRV [6], FFNeRV [9] and the original HiNeRV. The
results provided in Table 6 and 7 demonstrate much lower MAC figures with both variants of HiNeRV
compared with the original version, while still achieving competitive performance. HiNeRV-A has
reduced the number of operations by up to 1/3, but still obtaining comparable performance with
the original HiNeRV. The MACs figure of HiNeRV-A is much smaller than the HNeRV with the
same scale. HiNeRV-B further reduced the number of operations and improved the FPS significantly.
When comparing HiNeRV-B with HNeRV, where HNeRV requires two times larger sizes (S vs M/M
vs L), the former always outperforms HNeRV in terms of the average reconstruction quality. However
HiNeRV-B requires only half of the size, nearly one quarter of the number of operations, and is able
to achieve faster encoding speed and around 80% of HNeRV decoding speed. It should be noted
that, given the significantly smaller amount of MACs required, further optimization may result in
HiNeRV-B having a quicker decoding speed than HNeRV.

E.5 Discussion regarding the ablation studies

Bilinear interpolation with hierarchical encoding. Our results verified that the use of bilinear
interpolation with hierarchical encoding is a better choice than the use of convolutional layers. When
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(a) GT. (b) Patch-wise. (c) Unified.

Figure 4: Comparison between the output of the patch-wise representation and unified representation on the
Jockey sequence from the UVG dataset [16].

replacing the upsampling layer with 3 × 3 sub-pixel convolutional layers [21], HiNeRV can only
match HNeRV [6] by the average performance. When using the 1× 1 variant, the performance is
improvement significantly, but still far behind the HiNeRV with the proposed upsampling layer.

Upsampling encodings. The results suggest that the proposed hierarchical encoding provides superior
performance. When Fourier encoding or the grid-based encoding (without temporal dimension)
is being used, the network performance is just close to the one without encoding. The use of the
proposed hierarchical encoding provides largest boost for some hard sequences, i.e., the Jockey
and ReadySetGo sequences [16], which contain both fast motion and high contrast content. The
improvements are 0.78/1.06 dB PSNR, respectively.

It is worth note that, there is one exceptional case where the variant with the Fourier encoding
outperformed HiNeRV with the hierarchical encoding, which is the ShakeNDry sequence [16]. This
could be caused by the fact that the sequence contains content with a lot of small particle motion,
and these features could be better represented by Fourier-based encoding, which contains absolute
positional information.

ConvNeXt block. The results show that the HiNeRV with ConNeXT block [13] outperforms the
variants with either the MLP block [24] or the normal convolutional block. We also observed that the
variant with MLP block can still outperform NeRV [7] and HNeRV [6] significantly, where previous
work has suggested that NeRV perform better [7]. We assert that this is mainly due to the use of
hierarchical encoding, and we performed additional experiments to validate this. The average PSNR
of MLP-based HiNeRV dropped from 34.69 dB to 32.16 dB after removing the hierarchical encoding,
and the performance is no longer better than NeRV and HNeRV. This suggests that hierarchical
encoding could be useful for future work in MLP-based neural representations.

Unified representations. In most cases, training HiNeRV with the frame-wise or patch-wise
configuration reduces its coding performance. This reduction is most significant for the challenging
sequences, i.e., the Jockey and ReadySetGo sequences [16], where the decrease is 0.25/0.49 dB and
1.90/1.92 dB for the frame-wise and patch-wise configurations, respectively.

Interpolation methods. By replacing Bilinear interpolation with the Nearest Neighbor variant, the
performance of HiNeRV is only reduced by a small amount. This suggests that the main improvement
in HiNeRV is not achieved through Bilinear interpolation but rather through the overall design and
the parameter efficiency of using interpolation for upsampling.

E.6 Qualitative comparison between different types of representation

A comparison between the outputs of patch-wise and the proposed unified representation is shown in
Figure 4. These results are obtained from HiNeRV using the settings in Section 4.3 (main paper).
While both of these are performed in a patch-wise fashion, the unified representation can be applied
on either overlapped patches or whole video frames. The output from the patch-wise representation
exhibits noticeable artifacts around the boundaries on the patches, which do not appear in the output
of the proposed representation.
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E.7 Qualitative comparison between NeRV, HNeRV and HiNeRV

Additional visual comparisons between the outputs from NeRV [7], HNeRV [6] and HiNeRV are
given in Figure 5 - 8. These are obtained using the models presented in Section 4.2, where the
HiNeRV model has approximately half of the size of those for NeRV and HNeRV. Despise halving
the bitrate, the output from HiNeRV is still noticeably better, with more detail from the original video
frames preserved.

F Limitations

As mentioned in Section B, one main limitation of HiNeRV is the slow encoding speed. It takes
multiple hours for compressing a short video sequence, if a high encoding quality is needed. This
is also a problem of all existing INR-based methods. For future work, investigations should be
conducted to further speed up the training process. For example, meta-learning has been utilized to
speed-up the training of neural representations [23] in other domains. This has the potential to benefit
the representation for videos as well.

Comparing with other INR-based methods, the relatively complex HiNeRV network structure also
leads to a larger memory footprint. However, the proposed unified representation allows operations
in patches, which can significantly reduce the required memory and improve the parallelism when
performing training and inference.

8



GT NeRV
31.4dB PSNR@0.099bpp

HNeRV
31.4dB PSNR@0.101bpp

HiNeRV (ours)
36.6dB PSNR@0.051bpp

Figure 5: Comparison between the output of NeRV, HNeRV and HiNeRV with the ReadySetGo sequence from
the UVG dataset [16].

GT NeRV
38.7dB PSNR@0.098bpp

HNeRV
39.1dB PSNR@0.101bpp

HiNeRV (ours)
41.1dB PSNR@0.051bpp

Figure 6: Comparison between the output of NeRV, HNeRV and HiNeRV with the Bosphorus sequence from the
UVG dataset [16].
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GT NeRV
31.0dB PSNR@0.103bpp

HNeRV
32.9dB PSNR@0.104bpp

HiNeRV (ours)
34.3dB PSNR@0.054bpp

Figure 7: Comparison between the output of NeRV, HNeRV and HiNeRV with the videoSRC14 sequence from
the MCL-JCV dataset [25].

GT NeRV
29.8dB PSNR@0.101bpp

HNeRV
31.2dB PSNR@0.104bpp

HiNeRV (ours)
34.6dB PSNR@0.055bpp

Figure 8: Comparison between the output of NeRV, HNeRV and HiNeRV with the videoSRC15 sequence from
the MCL-JCV dataset [25].
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