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Abstract

We introduce general tools for designing efficient private estimation algorithms, in
the high-dimensional settings, whose statistical guarantees almost match those of
the best known non-private algorithms. To illustrate our techniques, we consider
two problems: recovery of stochastic block models and learning mixtures of
spherical Gaussians.
For the former, we present the first efficient (ε, δ)-differentially private algorithms
for both weak recovery and exact recovery. Previously known algorithms achieving
comparable guarantees required quasi-polynomial time. We complement these re-
sults with an information-theoretic lower bound that highlights how the guarantees
of our algorithms are almost tight.
For the latter, we design an (ε, δ)-differentially private algorithm that recovers
the centers of the k-mixture when the minimum separation is at least O(k1/t

√
t).

For all choices of t, this algorithm requires sample complexity n ⩾ kO(1)dO(t)

and time complexity (nd)O(t). Prior work required either an additional additive
Ω(
√
log n) term in the minimum separation or an explicit upper bound on the

Euclidean norm of the centers.

1 Introduction

Computing a model that best matches a dataset is a fundamental question in machine learning and
statistics. Given a set of n samples from a model, how to find the most likely parameters of the
model that could have generated this data? This basic question has been widely studied for several
decades, and recently revisited in the context where the input data has been partially corrupted (i.e.,
where few samples of the data have been adversarially generated—see for instance [37, 18, 22, 20]).
This has led to several recent works shedding new lights on classic model estimation problems, such
as the Stochastic Block Model (SBM) [28, 46, 44, 25, 21, 40] and the Gaussian Mixture Model
(GMM) [30, 36, 9, 10] (see Definitions 1.1 and 1.2).

Privacy in machine learning and statistical tasks has recently become of critical importance. New
regulations, renewed consumer interest as well as privacy leaks, have led the major actors to adopt
privacy-preserving solutions for the machine learning [1, 2, 3]. This new push has resulted in a flurry
of activity in algorithm design for private machine learning, including very recently for SBMs and
GMMs [55, 32, 16, 60]. Despite this activity, it has remain an open challenge to fully understand how
privacy requirements impact model estimation problems and in particular their recovery thresholds
and the computational complexity. This is the problem we tackle in this paper.

∗Much of this work was done while the author was at ETH Zürich.
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While other notions of privacy exist (e.g. k-anonymity), the de facto privacy standard is the differential
privacy (DP) framework of Dwork, McSherry, Nissim, and Smith [24]. In this framework, the privacy
quality is governed by two parameters, ε and δ, which in essence tell us how the probability of seeing
a given output changes (both multiplicatively and additively) between two datasets that differ by any
individual data element. This notion, in essence, quantifies the amount of information leaked by a
given algorithm on individual data elements. The goal of the algorithm designer is to come up with
differentially private algorithms for ε being a small constant and δ being of order 1/nΘ(1).

Differentially private analysis of graphs usually considers two notions of neighboring graphs. The
weaker notion of edge-DP defines two graphs to be neighboring if they differ in one edge. Under
the stronger notion of node-DP, two neighboring graphs can differ arbitrarily in the set of edges
connected to a single vertex. Recently, there is a line of work on node-DP parameter estimation
in random graph models, e.g. Erdös-Rényi models [61] and Graphons [12, 13]. However, for the
more challenging task of graph clustering, node-DP is sometimes impossible to achieve.2 Thus it is a
natural first step to study edge-DP graph clustering.

Very recently, Seif, Nguyen, Vullikanti, and Tandon [55] were the first to propose differentially
private algorithms for the Stochastic Block Model, with edge-DP. Concretely, they propose algorithms
achieving exact recovery (exact identification of the planted clustering) while preserving privacy of
individual edges of the graph. The proposed approach either takes nΘ(logn) time when ε is constant,
or runs in polynomial time when ε is Ω(log n).

Gaussian Mixture Models have also been studied in the context of differential privacy by [32, 16, 60]
using the subsample-and-aggregate framework first introduced in [52] (see also recent work for
robust moment estimation in the differential privacy setting [35, 8, 29]). The works of [32, 16]
require an explicit bound on the euclidean norm of the centers as the sample complexity of these
algorithms depends on this bound. For a mixture of k Gaussians, if there is a non-private algorithm
that requires the minimum distance between the centers to be at least ∆, then [16, 60] can transform
this non-private algorithm into a private one that needs the minimum distance between the centers to
be at least ∆+

√
log n, where n is the number of samples.

In this paper, we tackle both clustering problems (graph clustering with the SBM and metric clustering
with the GMM) through a new general privacy-preserving framework that brings us significantly
closer to the state-of-the-art of non-private algorithms. As we will see, our new perspective on the
problems appear to be easily extendable to many other estimation algorithms.

From robustness to privacy In recent years a large body of work (see [19, 22, 40, 18, 37, 14, 36, 30]
and references therein) has advanced our understanding of parameter estimation in the presence of
adversarial perturbations. In these settings, an adversary looks at the input instance and modifies
it arbitrarily, under some constraints (these constraints are usually meant to ensure that it is still
information theoretically possible to recover the underlying structure). As observed in the past
[23, 35, 41], the two goals of designing privacy-preserving machine learning models and robust
model estimation are tightly related. The common objective is to design algorithms that extract global
information without over-relaying on individual data samples.

Concretely, robust parameter estimation tends to morally follow a two-steps process: (i) argue that
typical inputs are well-behaved, in the sense that they satisfy some property which can be used
to accurately infer the desired global information, (ii) show that adversarial perturbations cannot
significantly alter the quality of well-behaved inputs, so that it is still possible to obtain an accurate
estimate. Conceptually, the analysis of private estimation algorithms can also be divided in two parts:
utility, which is concerned with the accuracy of the output, and privacy, which ensures there is no leak
of sensitive information. In particular, the canonical differential privacy definition can be interpreted
as the requirement that, for any distinct inputs Y, Y ′, the change in the output is proportional to the
distance3 between Y and Y ′.

It is easy to see this as a generalization of robustness: while robust algorithm needs the output to
be stable for typical inputs, private algorithms requires this stability for any possible input. Then,

2In particular, we cannot hope to achieve exact recovery. We could isolate a vertex by removing all of its
adjacent edges. Then it is impossible to cluster this vertex correctly. See below for formal definitions.

3The notion of distance is inherently application dependent. For example, it could be Hamming distance.
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stability of the output immediately implies adding a small amount of noise to the output yields privacy.
If the added noise is small enough, then utility is also preserved.

Our work further tightens this connection between robustness and privacy through a simple yet crucial
insight: if two strongly convex functions over constrainted sets –where both the function and the set
may depend on the input– are point-wise close (say in a ℓ2-sense), their minimizers are also close
(in the same sense). The alternative perspective is that projections of points that are close to each
other, onto convex sets that are point-wise close, must also be close. This observation subsumes
previously known sensitivity bounds in the empirical risk minimization literature (in particular in the
output-perturbation approach to ERM, see Section 2 for a comparison).

The result is a clean, user-friendly, framework to turn robust estimation algorithms into private
algorithms, while keeping virtually the same guarantees. We apply this paradigm to stochastic block
models and Gaussian mixture models, which we introduce next.

Stochastic block model The stochastic block model is an extensively studied statistical model for
community detection in graphs (see [4] for a survey).
Model 1.1 (Stochastic block model). In its most basic form, the stochastic block model describes
the distribution4 of an n-vertex graph G ∼ SBMn(d, γ, x), where x is a vector of n binary5 labels,
d ∈ N, γ > 0, and for every pair of distinct vertices i, j ∈ [n] the edge {i, j} is independently added
to the graph G with probability (1 + γ · xi · xj)

d
n .

For balanced label vector x, i.e., with roughly the same number of +1’s and−1’s, parameter d roughly
corresponds to the average degree of the graph. Parameter γ corresponds to the bias introduced by
the community structure. Note that for distinct vertices i, j ∈ [n], the edge {i, j} is present in G with
probability (1 + γ) dn if the vertices have the same label xi = xj and with probability (1− γ) dn if the
vertices have different labels xi ̸= xj .6

Given a graph G sampled according to this model, the goal is to recover the (unknown) underlying
vector of labels as well as possible. In particular, for a chosen algorithm returning a partition
x̂(G) ∈ {±1}n, there are two main objective of interest: weak recovery and exact recovery. The
former amounts to finding a partition x̂(G) correlated with the true partition. The latter instead
corresponds to actually recovering the true partition with high probability. As shown in the following
table, by now the statistical and computational landscape of these problems is well understood
[17, 42, 48, 49, 28]:

Objective can be achieved (and effi-
ciently so) iff

weak recovery PG∼SBMn(d,γ,x)

(
1
n |⟨x, x̂(G)⟩| ⩾ Ωd,γ(1)

)
⩾ 1− o(1) γ2 · d ⩾ 1

exact recovery PG∼SBMn(d,γ,x)

(
x̂(G) ∈ {x,−x}

)
⩾ 1− o(1) d

logn

(
1−

√
1− γ2

)
⩾ 1

Learning mixtures of spherical Gaussians The Gaussian Mixture Model we consider is the
following.
Model 1.2 (Mixtures of spherical Gaussians). Let D1, . . . , Dk be Gaussian distributions on Rd

with covariance Id and means µ1, . . . , µk satisfying ∥µi − µj∥ ⩾ ∆ for any i ̸= j. Given a set
Y = {y1, . . . ,yn} of n samples from the uniform mixture over D1, . . . , Dk, estimate µ1, . . . , µk.

It is known that when the minimum separation is ∆ = o(
√
log k), superpolynomially many samples

are required to estimate the means up to small constant error [54]. Just above this threshold,
at separation kO(1/γ) for any constant γ, there exist efficient algorithms based on the sum-of-
squares hierarchy recovering the means up to accuracy 1/ poly(k) [30, 36, 59]. In the regime

4We use bold characters to denote random variables.
5More general versions of the stochastic block model allow for more than two labels and general edge

probabilities depending on the label assignment. However, many of the algorithmic phenomena of the general
version can in their essence already be observed for the basic version that we consider in this work.

6At times we may write dn , γn to emphasize that these may be functions of n. We write o(1), ω(1) for
functions tending to zero (resp. infinity) as n grows.
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where ∆ = O(
√
log k) these algorithms yield the same guarantees but require quasipolynomial time.

Recently, [39] showed how to efficiently recover the means as long as ∆ = O(log(k)1/2+c) for any
constant c > 0.

1.1 Results

Stochastic block model We present here the first (ε, δ)-differentially private efficient algorithms
for exact recovery. In all our results on stochastic block models, we consider the edge privacy model,
in which two input graphs are adjacent if they differ on a single edge (cf. Definition C.1).

Theorem 1.3 (Private exact recovery of SBM). Let x ∈ {±1}n be balanced7. For any γ, d, ε, δ > 0
satisfying

d

log n

(
1−

√
1− γ2

)
⩾ Ω(1) and

γd

log n
⩾ Ω

(
1

ε2
· log(1/δ)

log n
+

1

ε

)
,

there exists an (ε, δ)-differentially edge private algorithm that, on input G ∼ SBMn(d, γ, x), returns
x̂(G) ∈ {x,−x} with probability 1− o(1). Moreover, the algorithm runs in polynomial time.

For any constant ε > 0, Theorem 1.3 states that (ε, δ)-differentially private exact recovery is possible,
in polynomial time, already a constant factor close to the non-private threshold. Previous results
[55] could only achieve comparable guarantees in time O(nO(logn)). It is also important to observe
that the theorem provides a trade-off between signal-to-noise ratio of the instance (captured by the
expression on the left-hand side with γ, d) and the privacy parameter ε . In particular, we highlight
two regimes: for d ⩾ Ω(log n) one can achieve exact recovery with high probability and privacy
parameters δ = n−Ω(1) , ε = O(1/γ+1/γ2). For d ⩾ ω(log n) one can achieve exact recovery with
high probability and privacy parameters ε = o(1), δ = n−ω(1) . Theorem 1.3 follows by a result for
private weak recovery and a boosting argument (cf. Theorem C.3 and Appendix C.2).

Further, we present a second, exponential-time, algorithm based on the exponential mechanism [43]
which improves over the above in two regards. First, it gives pure differential privacy. Second, it
provides utility guarantees for a larger range of graph parameters. In fact, we will also prove a lower
bound which shows that its privacy guarantees are information theoretically optimal.8 All hidden
constants are absolute and do not depend on any graph or privacy parameters unless stated otherwise.
In what follows we denote by err (x̂, x) the minimum of the hamming distance of x̂ and x, and the
one of −x̂ and x, divided by n.

Theorem 1.4 (Slightly informal, see Theorem C.18 in the supplements for full version). Let γ
√
d ⩾

Ω (1), x ∈ {±1}n be balanced, and ζ ⩾ exp
(
−Ω

(
γ2d
))

. For any ε ⩾ Ω
(

log(1/ζ)
γd

)
, there exists

an algorithm which on input G ∼ SBMn(γ, d, x) outputs an estimate x̂(G) ∈ {±1}n satisfying
err (x̂(G), x) ⩽ ζ with probability at least 1− ζ. In addition, the algorithm is ε-differentially edge

private. Further, we can achieve error Θ
(
1/
√

log(1/ζ)
)

with probability 1− e−n.

A couple of remarks are in order. First, our algorithm works across all degree-regimes in the literature
and matches known non-private thresholds and rates up to constants.9 In particular, for γ2d = Θ(1),
we achieve weak/partial recovery with either constant or exponentially high success probability.
Recall that the optimal non-private threshold is γ2d > 1. For the regime, where γ2d = ω(1), it is
known that the optimal error rate is exp(−(1− o(1))γ2d) [64] even non-privately which we match
up to constants - here o(1) denotes a function that tends to zero as γ2d tends to infinity. Moreover, our
algorithm achieves exact recovery as soon as γ2d = Ω(log n) since then ζ < 1

n . This also matches
known non-private threshholds up to constants [5, 47]. We remark that [55] gave an ε-DP exponential
time algorithm which achieved exact recovery and has inverse polynomial success probability in the
utility case as long as ε ⩾ Ω( logn

γd ). We recover this result as a special case (with slightly worse
constants). In fact, their algorithm is also based on the exponential mechanism, but their analysis
only applies to the setting of exact recovery, while our result holds much more generally. Another

7A vector x ∈ {±1}n is said to be balanced if
∑n

i=1 xi = 0.
8It is optimal in the "small error" regime, otherwise it is almost optimal. See Theorem C.22 for more detail.
9For ease of exposition we did not try to optimize these constants.
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crucial difference is that we show how to privatize a known boosting technique frequently used in the
non-private setting, allowing us to achieve error guarantees which are optimal up to constant factors.

It is natural to ask whether, for a given set of parameters γ, d, ζ one can obtain better privacy
guarantees than Theorem 1.4. Our next result implies that our algorithmic guarantees are almost tight.
Theorem 1.5 (Informal, see Theorem C.22 in the supplements for full version). Suppose there
exists an ε-differentially edge private algorithm such that for any balanced x ∈ {±1}n, on input
G ∼ SBMn(d, γ, x), outputs x̂(G) ∈ {±1}n satisfying

P (err(x̂(G), x) < ζ) ⩾ 1− η .

Then,

ε ⩾ Ω

(
log(1/ζ)

γd
+

log(1/η)

ζnγd

)
. (1.1)

This lower bound is tight for ε-DP exact recovery. By setting ζ = 1/n and η = 1/poly(n),
Theorem 1.5 implies no ε-DP exact recovery algorithm exists for ε ⩽ O( logn

γd ). There exist ε-
DP algorithms (Algorithm C.19 in the supplements and the algorithm in [55]) exactly recover the
community for any ε ⩾ Ω( logn

γd ).

Notice Theorem 1.5 is a lower bound for a large range of error rates (partial to exact recovery).
For failure probability η = ζ, the lower bound simplifies to ε ⩾ Ω( log(1/ζ)γd ) and hence matches
Theorem 1.4 up to constants. For exponentially small failure probability, η = e−n, it becomes
ε ⩾ Ω( 1

ζγd ). To compare, Theorem 1.4 requires ε ⩾ Ω( 1
ζ2γd ) in this regime, using the substitution√

log(1/ζ)→ ζ.

Further, while formally incomparable, this ε-DP lower bound also suggests that the guarantees
obtained by our efficient (ε, δ)-DP algorithm in Theorem 1.3 might be close to optimal. Note that
setting ζ = 1

n in Theorem 1.5 requires the algorithm to exactly recover the partitioning. In this
setting, Theorem 1.3 implies that there is an efficient (ε, n−Θ(1))-DP exact recovery algorithm for

ε ⩽ O(
√

logn
γd ). Theorem 1.5 states any ε-DP exact recovery algorithm requires ε ⩾ Ω( logn

γd ).
Further, for standard privacy parameters that are required for real-world applications, such as ε ≈ 1
and δ = n−10, Theorem 1.3 requires that γd ⩾ Ω(log n). Theorem 1.5 shows that for pure-DP
algorithms with the same setting of ε this is also necessary. We leave it as fascinating open questions
to bridge the gap between upper and lower bounds in the context of (ε, δ)-DP.

Learning mixtures of spherical Gaussians Our algorithm for privately learning mixtures of k
spherical Gaussians provides statistical guarantees matching those of the best known non-private
algorithms.
Theorem 1.6 (Privately learning mixtures of spherical Gaussians). Consider an instance of Model 1.2.
Let t > 0 be such that ∆ ⩾ O

(√
tk1/t

)
. For n ⩾ Ω

(
kO(1) · dO(t)

)
, k ⩾ (log n)1/5 , there exists

an algorithm, running in time (nd)O(t), that outputs vectors µ̂1, . . . , µ̂k satisfying

max
ℓ∈[k]

∥∥µ̂ℓ − µπ(ℓ)

∥∥
2
⩽ O(k−12) ,

with high probability, for some permutation π : [k]→ [k] . Moreover, for ε ⩾ k−10 , δ ⩾ n−10 , the
algorithm is (ε, δ)-differentially private10 for any input Y .

The conditions ε ⩾ k−10 , δ ⩾ n−10 in Theorem 1.6 are not restrictive and should be considered a
formality. Moreover, setting ε = 0.01 and δ = n−10 already provides meaningful privacy guarantees
in practice. The condition that k ⩾ (log n)1/5 is a technical requirement by our proofs.

Prior to this work, known differentially private algorithms could learn a mixture of k-spherical
Gaussian either if: (1) they were given a ball of radius R containing all centers [32, 16];11 or (2)
the minimum separation between centers needs an additional additive Ω(

√
log n) term [16, 60]12.

10Two input datasets are adjacent if they differ on a single sample. See Definition D.1 in the supplements.
11In [32, 16] the sample complexity of the algorithm depends on this radius R.
12For k ⩽ no(1) our algorithm provides a significant improvement as

√
log k = o(

√
logn).
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To the best of our knowledge, Theorem 1.6 is the first to get the best of both worlds. That is, our
algorithm requires no explicit upper bounds on the means (this also means the sample complexity
does not depend on R) and only minimal separation assumption O(

√
log k). Furthermore, we remark

that while previous results only focused on mixtures of Gaussians, our algorithm also works for
the significantly more general class of mixtures of Poincaré distributions. Concretely, in the regime
k ⩾
√
log d, our algorithm recovers the state-of-the-art guarantees provided by non-private algorithms

which are based on the sum-of-squares hierarchy [36, 30, 59]:13

• If ∆ ⩾ k1/t
∗

for some constant t∗, then by choosing t ⩾ Ω(t∗) the algorithm recovers the
centers, up to a 1/poly(k) error, in time poly(k, d) and using only poly(k, d) samples.

• If ∆ ⩾ Ω(
√
log k) then choosing t = O(log k) the algorithm recovers the centers, up

to a 1/ poly(k) error, in quasi-polynomial time poly(kO(t), dO(t2)) and using a quasi-
polynomial number of samples poly(k, dO(t)) .

For simplicity of exposition we will limit the presentation to mixtures of spherical Gaussians.
We reiterate that separation Ω(

√
log k) is information-theoretically necessary for algorithms with

polynomial sample complexity [54].

Subsequently and independently of our work, the work of [6] gives an algorithm that turns any
non-private GMM learner into a private one based on the subsample and aggregate framework. They
apply this reduction to the classical result of [45] to give the first finite-sample (ε, δ)-DP algorithm
that learns mixtures of unbounded Gaussians, in particular, the covariance matrices of their mixture
components can be arbitrary.

2 Techniques

We present here our general tools for designing efficient private estimation algorithms in the high-
dimensional setting whose statistical guarantees almost match those of the best know non-private
algorithms. The algorithms we design have the following structure in common: First, we solve
a convex optimization problem with constraints and objective function depending on our input Y .
Second, we round the optimal solution computed in the first step to a solution X for the statistical
estimation problem at hand.

We organize our privacy analyses according to this structure. In order to analyze the first step,
we prove a simple sensitivity bound for strongly convex optimization problems, which bounds the
ℓ2-sensitivity of the optimal solution in terms of a uniform sensitivity bound for the objective function
and the feasible region of the optimization problem.

For bounded problems –such as recovery of stochastic block models– we use this sensitivity bound,
in the second step, to show that introducing small additive noise to standard rounding algorithms is
enough to achieve privacy.

For unbounded problems –such as learning GMMs– we use this sensitivity bound to show that on
adjacent inputs, either most entries of X only change slightly, as in the bounded case, or few entries
vary significantly. We then combine different privacy techniques to hide both type of changes.

Privacy from sensitivity of strongly convex optimization problems Before illustrating our
techniques with some examples, it is instructive to explicit our framework. Here we have a set of
inputs Y and a family of strongly convex functions F(Y) and convex sets K(Y) parametrized by
these inputs. The generic non-private algorithm based on convex optimization we consider works as
follows:

1. Compute X̂ := argminX∈K(Y ) fY (X) ;

2. Round X̂ into an integral solution.

For an estimation problem, a distributional assumption on Y is made. Then one shows how, for typical
inputs Y sampled according to that distribution, the above scheme recovers the desired structured
information.

13We remark that [39] give a polynomial time algorithm for separation Ω(log(k)1/2+c) for constant c > 0 in
the non-private setting but for a less general class of mixture distributions.

6



We can provide a privatized version of this scheme by arguing that, under reasonable assumptions
on F(Y) and K(Y), the output of the function argminX∈K(Y ) fY (X) has low ℓ2-sensitivity. The
consequence of this crucial observation is that one can combine the rounding step 2 with some
standard privacy mechanism and achieve differential privacy. That is, the second step becomes:

2. Add random noise N and round X̂ +N into an integral solution.

Our sensitivity bound is simple, yet it generalizes previously known bounds for strongly convex
optimization problems (we provide a detailed comparison later in the section). For adjacent Y, Y ′ ∈
Y , it requires the following properties:

(i) For each X ∈ K(Y ) ∩ K(Y ′) it holds |fY (X)− fY ′(X)| ⩽ α;
(ii) For each X ∈ K(Y ) its projection Z onto K(Y )∩K(Y ′) satisfies |fY (X)− fY ′(Z)| ⩽ α .

Here we think of α as some small quantity (relatively to the problem parameters). Notice, we may
think of (i) as Lipschitz-continuity of the function g(Y,X) = fY (X) with respect to Y and of (ii)
as a bound on the change of the constrained set on adjacent inputs. In fact, these assumptions are
enough to conclude low ℓ2 sensitivity. Let X̂ and X̂ ′ be the outputs of the first step on inputs Y, Y ′.
Then using (i) and (ii) above and the fact that X̂ is an optimizer, we can show that there exists
Z ∈ K(Y ) ∩ K(Y ′) such that

|fY (X̂)− fY (Z)|+ |fY ′(X̂ ′)− fY ′(Z)| ⩽ O(α) .

By κ-strong convexity of fY , fY ′ this implies∥∥∥X̂ − Z
∥∥∥2
2
+
∥∥∥X̂ ′ − Z

∥∥∥2
2
⩽ O(α/κ)

which ultimately means ∥X̂−X̂ ′∥22 ⩽ O(α/κ) (see Lemma B.1). Thus, starting from our assumptions
on the point-wise distance of fY , fY ′ we were able to conclude low ℓ2-sensitivity of our output!

A simple application: weak recovery of stochastic block models The ideas introduced above,
combined with existing algorithms for weak recovery of stochastic block models, immediately imply
a private algorithm for the problem. To illustrate this, consider Model 1.1 with parameters γ2d ⩾ C,
for some large enough constant C > 1. Let x ∈ {±1}n be balanced. Here Y is an n-by-n matrix
corresponding to the rescaled centered adjacency matrix of the input graph:

Yij =

{
1
γd

(
1− d

n

)
if ij ∈ E(G)

− 1
γn otherwise.

The basic semidefinite program [28, 46] can be recast14 as the strongly convex constrained op-
timization question of finding the orthogonal projection of the matrix Y onto the set K :={
X ∈ Rn×n

∣∣ X ⪰ 0 , Xii =
1
n ∀i

}
. That is

X̂ := argminX∈K ∥Y −X∥2F .

Let fY (X) := ∥X∥2F − 2⟨X,Y ⟩ and notice that X̂ = argminX∈K fY (X). It is a standard fact that,
if our input was G ∼ SBMn(d, γ, x), then with high probability X(G) = argminX∈K fY (G)(X)
would have leading eigenvalue-eigenvector pair satisfying

λ1(G) ⩾ 1−O(1/γ2d) and ⟨v1(G), x/ ∥x∥⟩2 ⩾ 1−O
(
1/γ2d

)
.

This problem fits perfectly the description of the previous paragraph. Note that since the constraint
set does not depend on Y , Property (ii) reduces to Property (i). Thus, it stands to reason that the
projections X̂, X̂ ′ of Y, Y ′ are close whenever the input graphs generating Y and Y ′ are adjacent.
By Hölder’s Inequality with the entry-wise infinity and ℓ1-norm, we obtain |fY (X)− fY ′(X)| ⩽
2 ∥X∥∞ ∥Y − Y ′∥1. By standard facts about positive semidefinite matrices, we have ∥X∥∞ ⩽ 1

n

14The objective function in [28, 46] is linear in X instead of quadratic. However, both programs have similar
utility guarantees and the utility proof of our program is an adaption of that in [28] (see Lemma C.8). We use the
quadratic objective function to achieve privacy via strong convexity.
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for all X ∈ K. Also, Y and Y ′ can differ on at most 2 entries and hence ∥Y − Y ′∥1 ⩽ O( 1
γd ). Thus,

∥X̂ − X̂ ′∥2F ⩽ O( 1
nγd ).

The rounding step is now straightforward. Using the Gaussian mechanism we return the leading
eigenvector of X̂ + N where N ∼ N(0, 1

nγd ·
log(1/δ)

ε2 )n×n. This matrix has Frobeinus norm

significantly larger than X̂ but its spectral norm is only

∥N∥ ⩽
√
n log(1/δ)

ε
·
√

1
nγd ⩽

1

ε
·

√
log(1/δ)

γd
.

Thus by standard linear algebra, for typical instances G ∼ SBMn(d, γ, x), the leading eigenvector of
X̂(G) +N will be highly correlated with the true community vector x whenever the average degree
d is large enough. In conclusion, a simple randomized rounding step is enough!
Remark 2.1 (From weak recovery to exact recovery). In the non-private setting, given a weak
recovery algorithm for the stochastic block model, one can use this as an initial estimate for a
boosting procedure based on majority voting to achieve exact recovery. We show that this can be
done privately. See Appendix C.2 in the supplements.

An advanced application: learning mixtures of Gaussians In the context of SBMs our argument
greatly benefited from two key properties: first, on adjacent inputs Y − Y ′ was bounded in an
appropriate norm; and second, the convex set K was fixed. In the context of learning mixtures of
spherical Gaussians as in Model 1.2, both this properties are not satisfied (notice how one of this
second properties would be satisfied assuming bounded centers!). So additional ideas are required.

The first observation, useful to overcome the first obstacle, is that before finding the centers, one
can first find the n-by-n membership matrix W (Y ) where W (Y )ij = 1 if i, j where sampled
from the same mixture component and 0 otherwise. The advantage here is that, on adjacent inputs,
∥W (Y )−W (Y ′)∥2F ⩽ 2n/k and thus one recovers the first property.15 Here early sum-of-squares
algorithms for the problem [30, 36] turns out to be convenient as they rely on minimizing the function
∥W∥2F subject to the following system of polynomial inequalities in variables z11 , . . . , z1k , . . . , znk,
with Wij =

∑
ℓ ziℓzjℓ for all i, j ∈ [n] and a parameter t > 0.

z2iℓ = ziℓ ∀i ∈ [n] , ℓ ∈ [k] (indicators)∑
ℓ∈[k]

ziℓ ⩽ 1 ∀i ∈ [n] (cluster membership)

ziℓ · ziℓ′ = 0 ∀i ∈ [n] , ℓ ∈ [k] (unique membership)∑
i

ziℓ = n/k ∀ℓ ∈ [k] (size of clusters)16

µ′
ℓ =

k

n

∑
i

ziℓ · yi ∀ℓ ∈ [k] (means of clusters)

k

n

∑
i

ziℓ⟨yi − µ′
ℓ, u⟩2t ⩽ (2t)t · ∥u∥t2 ∀u ∈ Rd , ℓ ∈ [k] (subgaussianity of t-moment)


(P(Y ))

For the scope of this discussion,17 we may disregard computational issues and assume we have
access to an algorithm returning a point from the convex hull K(Y ) of all solutions to our system of
inequalities.18 Each indicator variable ziℓ ∈ {0, 1} is meant to indicate whether sample yi is believed

15Notice for typical inputs Y from Model 1.2 one expect ∥W (Y)∥2F ≈ n2/k .
16Formally, we would replace the constraint on the size of the clusters by one which requires them to be of

size (1± α)n
k

, for some small α.
17While this is far from being true, it turns out that having access to a pseudo-distribution satisfying P(Y ) is

enough for our subsequent argument to work, albeit with some additional technical work required.
18We remark that a priori it is also not clear how to encode the subgaussian constraint in a way that we could

recover a degree-t pseudo-distribution satisfying P(Y ) in polynomial time. By now this is well understood, we
discuss this in Appendix A in the supplements.
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to be in cluster Cℓ. In the non-private setting, the idea behind the program is that –for typical Y
sampled according to Model 1.2 with minimum separation ∆ ⩾ k1/t

√
t– any solution W (Y) ∈

K(Y) is close to the ground truth matrix W ∗(Y) in Frobenius norm: ∥W (Y) − W ∗(Y)∥2F ⩽
1/ poly(k) . Each row W (Y)i may be seen as inducing a uniform distribution over a subset of Y.19

Combining the above bound with the fact that subgaussian distributions at small total variation
distance have means that are close, we conclude the algorithm recovers the centers of the mixture.

While this program suggests a path to recover the first property, it also possesses a fatal flaw: the
projection W ′ of W ∈ K(Y ) onto K(Y ) ∩ K(Y ′) may be far in the sense that |∥W∥2F − ∥W ′∥2F| ⩾
Ω(∥W∥2F+ ∥W ′∥2F) ⩾ Ω(n2/k) . The reason behind this phenomenon can be found in the constraint∑

i ziℓ = n/k . The set indicated by the vector (z1ℓ . . . , znℓ) may be subgaussian in the sense of
P(Y ) for input Y but, upon changing a single sample, this may no longer be true. We work around
this obstacle in two steps:

1. We replace the above constraint with
∑

i ziℓ ⩽ n/k .

2. We compute Ŵ := argminW solving P(Y ) ∥J −W∥2F , where J is the all-one matrix.20

The catch now is that the program is satisfiable for any input Y since we can set zil = 0 whenever
necessary. Moreover, we can guarantee property (ii) (required by our sensitivity argument) for
α ⩽ O(n/k), since we can obtain W ′ ∈ K(Y ) ∩ K(Y ′) simply zeroing out the row/column in W
corresponding to the sample differing in Y and Y ′. Then for typical inputs Y, the correlation with
the true solution is guaranteed by the new strongly convex objective function.

We offer some more intuition on the choice of our objective function: Recall that Wij indicates
our guess whether the i-th and j-th datapoints are sampled from the same Gaussian component. A
necessary condition for W to be close to its ground-truth counterpart W ∗, is that they roughly have
the same number of entries that are (close to) 1. One way to achieve this would be to add the lower
bound constraing

∑
ℓ ziℓ ≳

n
k . However, such a constraint could cause privacy issues: There would

be two neighboring datasets, such that the constraint set induced by one dataset is satisfiable, but the
constraint set induced by the other dataset is not satisfiable. We avoid this issue by noticing that the
appropriate number of entries close to 1 can also be induced by minimizing the distance of W to the
all-one matrix. This step is also a key difference from [35], explained in more detail below.

From low sensitivity of the indicators to low sensitivity of the estimates For adjacent inputs
Y, Y ′ let Ŵ , Ŵ ′ be respectively the matrices computed by the above strongly convex programs. Our
discussion implies that, applying our sensitivity bound, we can show ∥Ŵ − Ŵ ′∥2F ⩽ O(n/k) . The
problem is that simply applying a randomized rounding approach here cannot work. The reason is
that even tough the vector Ŵi induces a subgaussian distribution, the vector Ŵi + v for v ∈ Rn,
might not. Without the subgaussian constraint we cannot provide any meaningful utility bound. In
other words, the root of our problem is that there exists heavy-tailed distributions that are arbitrarily
close in total variation distance to any given subgaussian distribution.

On the other hand, our sensitivity bound implies ∥Ŵ−Ŵ ′∥21 ⩽ o(∥Ŵ∥1) and thus, all but a vanishing
fraction of rows i ∈ [n] must satisfy ∥Ŵi − Ŵ ′

i∥1 ⩽ o(∥Ŵi∥1). For each row i , let µi , µ
′
i be the

means of the distributions induced respectively by Ŵi , Ŵ
′
i . We are thus in the following setting:

1. For a set of (1− o(1)) · n good rows ∥µi − µ′
i∥2 ⩽ o(1) ,

2. For the set B of remaining bad rows, the distance ∥µi − µ′
i∥2 may be unbounded.

We hide differences of the first type as follows: pick a random subsample S of [n] of size nc, for
some small c > 0, and for each picked row use the Gaussian mechanism. The subsampling step is
useful as it allows us to decrease the standard deviation of the entry-wise random noise by a factor
n1−c . We hide differences of the second type as follows: Note that most of the rows are clustered
together in space. Hence, we aim to privately identify the regions which contain many of the rows.

19More generally, we may think of a vector v ∈ Rn as the vector inducing the distribution given by v/∥v∥1
onto the set Y of n elements.

20We remark that for technical reasons our function in Appendix D.1 in the supplements will be slightly
different. We do not discuss it here to avoid obfuscating our main message.
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Formally, we use a classic high dimensional (ε, δ)-differentially private histogram learner on S and
for the k largest bins of highest count privately return their average (cf. Lemma A.13). The crux of
the argument here is that the cardinality of B ∩ S is sufficiently small that the privacy guarantees of
the histogram learner can be extended even for inputs that differ in |B ∩ S| many samples. Finally,
standard composition arguments will guarantee privacy of the whole algorithm.

Comparison with the framework of Kothari-Manurangsi-Velingker Both Kothari-Manurangsi-
Velingker [35] and our work obtained private algorithms for high-dimensional statistical estimation
problems by privatizing strongly convex programs, more specifically, sum-of-squares (SoS) programs.
The main difference between KMV and our work lies in how we choose the SoS program. For the
problem of robust moment estimation, KMV considered the canonical SoS program from [30, 36]
which contains a minimum cardinality constraint (e.g.,

∑
l zil ≳

n
k in the case of GMMs). Such a

constraint is used to ensure good utility. However, as alluded to earlier, this is problematic for privacy:
there will always exist two adjacent input datasets such that the constraints are satisfiable for one but
not for the other. KMV and us resolve this privacy issue in different ways.

KMV uses an exponential mechanism to pick the lower bound of the minimum cardinality constraint.
This step also ensures that solutions to the resulting SoS program will have low sensitivity. In
contrast, we simply drop the minimum cardinality constraint. Then the resulting SoS program is
always feasible for any input dataset! To still ensure good utility, we additionally pick an appropriate
objective function. For example, in Gaussian mixture models, we chose the objective ∥W − J∥2F .
Our approach has the following advantages: First, the exponential mechanism in KMV requires
computing O(n) scores. Computing each score requires solving a large semidefinite program, which
can significantly increase the running time. Second, proving that the exponential mechanism in KMV
works requires several steps: 1) defining a (clever) score function, 2) bounding the sensitivity of
this score function and, 3) showing existence of a large range of parameters with high score. Our
approach bypasses both of these issues.

Further, as we show, our general recipe can be easily extended to other high dimensional problems of
interest: construct a strongly convex optimization program and add noise to its solution. This can
provide significant computational improvements. For example, in the context of SBMs, the framework
of [35] would require one to sample from an exponential distribution over matrices. Constructing and
sampling from such distributions is an expensive operation. However, it is well-understood that an
optimal fractional solution to the basic SDP relaxation we consider can be found in near quadratic
time using the standard matrix multiplicative weight method [7, 58], making the whole algorithm
run in near-quadratic time. Whether our algorithm can be sped up to near-linear time, as in [7, 58],
remains a fascinating open question.

Comparison with previous works on empirical risk minimization Results along the lines of the
sensitivity bound described at the beginning of the section (see Lemma B.1 for a formal statement)
have been extensively used in the context of empirical risk minimization [15, 34, 57, 11, 63, 50].
Most results focus on the special case of unconstrained optimization of strongly convex functions.
In contrast, our sensitivity bound applies to the significantly more general settings where both the
objective functions and the constrained set may depend on the input.21 Most notably for our settings
of interest, [15] studied unconstrained optimization of (smooth) strongly convex functions depending
on the input, with bounded gradient. We recover such a result for X ′ = X in (ii). In [50], the authors
considered constraint optimization of objective functions where the domain (but not the function)
may depend on the input data. They showed how one can achieve differential privacy while optimize
the desired objective function by randomly perturbing the constraints. It is important to remark that,
in [50], the notion of utility is based on the optimization problem (and their guarantees are tight only
up to logarithmic factors). In the settings we consider, even in the special case where f does not
depend on the input, this notion of utility may not correspond to the notion of utility required by the
estimation problem, and thus, the corresponding guarantees can turn out to be too loose to ensure the
desired error bounds.

21The attentive reader may argue that one could cast convex optimization over a constrained domain as
unconstrained optimization of a new convex function with the appropriate penalty terms. In practice however,
this turns out to be hard to do for constraints such as Definition A.19.
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A Preliminaries

We use boldface characters for random variables. We hide multiplicative factors logarithmic in n
using the notation Õ(·) , Ω̃(·). Similarly, we hide absolute constant multiplicative factors using the
standard notation O(·) ,Ω(·) ,Θ(·). Often times we use the letter C do denote universal constants
independent of the parameters at play. We write o(1), ω(1) for functions tending to zero (resp.
infinity) as n grows. We say that an event happens with high probability if this probability is at least
1 − o(1). Throughout the paper, when we say "an algorithm runs in time O(q)" we mean that the
number of basic arithmetic operations involved is O(q). That is, we ignore bit complexity issues.

Vectors, matrices, tensors We use Idn to denote the n-by-n dimensional identity matrix, Jn ∈
Rn×n the all-ones matrix and 0n ,1n ∈ Rn to denote respectively the zero and the all-ones vectors.
When the context is clear we drop the subscript. For matrices A,B ∈ Rn×n we write A ⪰ B if
A−B is positive semidefinite. For a matrix M , we denote its eigenvalues by λ1(M) , . . . , λn(M),
we simply write λi when the context is clear. We denote by ∥M∥ the spectral norm of M . We
denote by Rd⊗t

the set of real-valued order-t tensors. for a d× d matrix M , we denote by M⊗t the
t-fold Kronecker product M ⊗M ⊗ · · · ⊗M︸ ︷︷ ︸

t times

. We define the flattening, or vectorization, of M to

be the dt-dimensional vector, whose entries are the entries of M appearing in lexicographic order.
With a slight abuse of notation we refer to this flattening with M , ambiguities will be clarified form

context. We denote by N
(
0, σ2

)d⊗t

the distribution over Gaussian tensors with dt entries with
standard deviation σ. Given u, v ∈ {±1}n, we use Ham(u, v) :=

∑n
i=1 1[ui ̸=vi] to denote their

Hamming distance. Given a vector u ∈ Rn, we let sign(u) ∈ {±1}n denote its sign vector. A vector
u ∈ {±1}n is said to be balanced if

∑n
i=1 ui = 0.

Graphs We consider graphs on n vertices and let Gn be the set of all graphs on n vertices. For
a graph G on n vertices we denote by A(G) ∈ Rn×n its adjacency matrix. When the context is
clear we simply write A . Let V (G) (resp. E(G)) denote the vertex (resp. edge) set of graph G.
Given two graphs G,H on the same vertex set V , let G \H := (V,E(G) \H(G)). Given a graph
H , H ′ ⊆ H means H ′ is a subgraph of H such that V (H ′) = V (H) and E(H) ⊆ E(H). The
Hamming distance between two graphs G,H is defined to be the size of the symmetric difference
between their edge sets, i.e. Ham(G,H) := |E(G)△E(H)|.

A.1 Differential privacy

In this section we introduce standard notions of differential privacy [24].

Definition A.1 (Differential privacy). An algorithmM : Y → O is said to be (ε, δ)-differentially
private for ε, δ > 0 if and only if, for every S ⊆ O and every neighboring datasets Y, Y ′ ∈ Y we
have

P [M(Y ) ∈ S] ⩽ eε · P [M(Y ′) ∈ S] + δ .

To avoid confusion, for each problem we will exactly state the relevant notion of neighboring datasets.
Differential privacy is closed under post-processing and composition.

Lemma A.2 (Post-processing). If M : Y → O is an (ε, δ)-differentially private algorithm and
M′ : Y → Z is any randomized function. Then the algorithmM′ (M(Y )) is (ε, δ)-differentially
private.

In order to talk about composition it is convenient to also consider DP algorithms whose privacy
guarantee holds only against subsets of inputs.

Definition A.3 (Differential Privacy Under Condition). An algorithmM : Y → O is said to be
(ε, δ)-differentially private under condition Ψ (or (ε, δ)-DP under condition Ψ) for ε, δ > 0 if and
only if, for every S ⊆ O and every neighboring datasets Y, Y ′ ∈ Y both satisfying Ψ we have

P [M(Y ) ∈ S] ⩽ eε · P [M(Y ′) ∈ S] + δ .

It is not hard to see that the following composition theorem holds for privacy under condition.
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Lemma A.4 (Composition for Algorithm with Halting, [35]). LetM1 : Y → O1 ∪ {⊥} ,M2 :
O1 × Y → O2 ∪ {⊥} , . . . ,Mt : Ot−1 × Y → Ot ∪ {⊥} be algorithms. Furthermore, letM
denote the algorithm that proceeds as follows (with O0 being empty): For i = 1 . . . , t compute
oi =Mi(oi−1, Y ) and, if oi = ⊥, halt and output ⊥. Finally, if the algorithm has not halted, then
output ot. Suppose that:

• For any 1 ⩽ i ⩽ t, we say that Y satisfies the condition Ψi if running the algorithm on Y
does not result in halting after applyingM1, . . . ,Mi.

• M1 is (ε1, δ1)-DP.

• Mi is (εi, δi)-DP (with respect to neighboring datasets in the second argument) under
condition Ψi−1 for all i = {2, . . . , t} .

ThenM is (
∑

i εi,
∑

i δi)-DP.

A.1.1 Basic differential privacy mechanisms

The Gaussian and the Laplace mechanism are among the most widely used mechanisms in differential
privacy. They work by adding a noise drawn from the Gaussian (respectively Laplace) distribution
to the output of the function one wants to privatize. The magnitude of the noise depends on the
sensitivity of the function.
Definition A.5 (Sensitivity of function). Let f : Y → Rd be a function, its ℓ1-sensitivity and
ℓ2-sensitivity are respectively
∆f,1 := max

Y ,Y ′∈Y
Y ,Y ′ are adjacent

∥f(Y )− f(Y ′)∥1 ∆f,2 := max
Y ,Y ′∈Y

Y ,Y ′ are adjacent

∥f(Y )− f(Y ′)∥2 .

For function with bounded ℓ1-sensitivity the Laplace mechanism is often the tool of choice to achieve
privacy.
Definition A.6 (Laplace distribution). The Laplace distribution with mean µ and parameter b > 0,
denoted by Lap(µ, b), has PDF 1

2be
−|x−µ|/b . Let Lap(b) denote Lap(0, b).

A standard tail bound concerning the Laplace distribution will be useful throughout the paper.
Fact A.7 (Laplace tail bound). Let x ∼ Lap(µ, b). Then,

P [|x− µ| > t] ⩽ e−t/b .

The Laplace distribution is useful for the following mechanism
Lemma A.8 (Laplace mechanism). Let f : Y → Rd be any function with ℓ1-sensitivity at most ∆f,1.

Then the algorithm that adds Lap
(

∆f,1

ε

)⊗d

to f is (ε, 0)-DP.

It is also useful to consider the "truncated" version of the Laplace distribution where the noise
distribution is shifted and truncated to be non-positive.
Definition A.9 (Truncated Laplace distribution). The (negatively) truncated Laplace distribution w
with mean µ and parameter b on R, denoted by tLap(µ, b), is defined as Lap(µ, b) conditioned on the
value being non-positive.
Lemma A.10 (Truncated Laplace mechanism). Let f : Y → R be any function with ℓ1-sensitivity at
most ∆f,1. Then the algorithm that adds tLap

(
−∆f,1

(
1 + log(1/δ)

ε

)
,∆f,1/ε

)
to f is (ε, δ)-DP.

The following tail bound is useful when reasoning about truncated Laplace random variables.
Lemma A.11 (Tail bound truncated Laplace). Suppose µ < 0 and b > 0. Let x ∼ tLap(µ, b).
Then,for y < µ we have that

P [x < y] ⩽
e(y−µ/b)

2− eµ/b
.

In constrast, when the function has bounded ℓ2-sensitivity, the Gaussian mechanism provides privacy.
Lemma A.12 (Gaussian mechanism). Let f : Y → Rd be any function with ℓ2-sensitivity at most

∆f,2. Let 0 < ε , δ ⩽ 1. Then the algorithm that adds N
(
0,

∆2
f,2·2 log(2/δ)

ε2 · Id
)

to f is (ε, δ)-DP.
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A.1.2 Private histograms

Here we present a classical private mechanism to learn a high dimensional histogram.

Lemma A.13 (High-dimensional private histogram learner, see [33]). Let q, b , ε > 0 and
0 < δ < 1/n. Let {Ii}∞i=−∞ be a partition of R into intervals of length b, where Ii :=

{x ∈ R | q + (i− 1) · b ⩽ x < q + i · b}. Consider the partition of Rd into sets {Bi1,...,id}
∞
i1,...,id=1

where

Bi1,...,id :=
{
x ∈ Rd

∣∣ ∀j ∈ [d] , xj ∈ Iij
}

Let Y = {y1, . . . , yn} ⊆ Rd be a dataset of n points. For each Bi1,...,id , let pi1,...,id =
1
n |{j ∈ [n] | yj ∈ Bi1,...,id}|. For n ⩾ 8

εα · log
2
δβ , there exists an efficient (ε, δ)-differentially

private algorithm that returns p̂1,...,1, . . . , p̂i1,...,id , . . . satisfying

P
[

max
i1,...,id∈N

|pi1,...,id − p̂i1,...,id | ⩾ α

]
⩽ β .

Proof. We consider the following algorithm, applied to each i1, . . . , id ∈ N on input Y :

1. If pi1,...,id = 0 set p̂i1,...,id = 0 , otherwise let p̂i1,...,id = pi1,...,id + τ where τ ∼
Lap

(
0, 2

nε

)
.

2. If p̂i1,...,id ⩽ 3 log(2/δ)
εn set p̂i1,...,id = 0.

First we argue utility. By construction we get p̂i1,...,id = 0 whenever pi1,...,id = 0, thus we may
focus on non-zero pi1,...,id . There are at most n non zero pi1,...,id . By choice of n, δ and by Fact A.7
the maximum over n independent trials τ ∼ Lap

(
0, 2

nε

)
is bounded by α in absolute value with

probability at least β.

It remains to argue privacy. Let Y = {y1, . . . , yn} , Y ′ = {y′1, . . . , y′n} be adjacent datasets. For
i1, . . . , id ∈ N, let

pi1,...,id = |{j ∈ [n] | yj ∈ Bi1,...,id}|
p′i1,...,id =

∣∣{j ∈ [n]
∣∣ y′j ∈ Bi1,...,id

}∣∣ .
Since Y, Y ′ are adjacent there exists only two set of indices I := {i1, . . . , id} and J := {j1, . . . , jd}
such that pI ̸= p′I and pJ ̸= p′J . Assume without loss of generality pI > p′I . Then it must be
pI = p′I + 1/n and pJ = p′J − 1/n . Thus by the standard tail bound on the Laplace distribution in
Fact A.7 and by Lemma A.8, we immediately get that the algorithm is (ε, δ)-differentially private.

A.2 Sum-of-squares and pseudo-distributions

We introduce here the sum-of-squares notion necessary for our private algorithm learning mixtures of
Gaussians. We remark that these notions are not needed for Appendix C.

Let w = (w1, w2, . . . , wn) be a tuple of n indeterminates and let R[w] be the set of polynomials
with real coefficients and indeterminates w, . . . , wn. We say that a polynomial p ∈ R[w] is a
sum-of-squares (sos) if there are polynomials q1, . . . , qr such that p = q21 + · · ·+ q2r .

A.2.1 Pseudo-distributions

Pseudo-distributions are generalizations of probability distributions. We can represent a discrete (i.e.,
finitely supported) probability distribution over Rn by its probability mass function D : Rn → R
such that D ⩾ 0 and

∑
w∈supp(D) D(w) = 1. Similarly, we can describe a pseudo-distribution by its

mass function. Here, we relax the constraint D ⩾ 0 and only require that D passes certain low-degree
non-negativity tests.

Concretely, a level-ℓ pseudo-distribution is a finitely-supported function D : Rn → R such that∑
w D(w) = 1 and

∑
w D(w)f(w)2 ⩾ 0 for every polynomial f of degree at most ℓ/2. (Here, the

summations are over the support of D.) A straightforward polynomial-interpolation argument shows
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that every level-∞-pseudo distribution satisfies D ⩾ 0 and is thus an actual probability distribution.
We define the pseudo-expectation of a function f on Rd with respect to a pseudo-distribution D,
denoted ẼD(w)f(w), as

ẼD(w)f(w) =
∑
w

D(w)f(w) . (A.1)

The degree-ℓ moment tensor of a pseudo-distribution D is the tensor ED(w)(1, w1, w2, . . . , wn)
⊗ℓ. In

particular, the moment tensor has an entry corresponding to the pseudo-expectation of all monomials
of degree at most ℓ in w. The set of all degree-ℓ moment tensors of probability distribution is a
convex set. Similarly, the set of all degree-ℓ moment tensors of degree d pseudo-distributions is also
convex. Key to the algorithmic utility of pseudo-distributions is the fact that while there can be no
efficient separation oracle for the convex set of all degree-ℓ moment tensors of an actual probability
distribution, there’s a separation oracle running in time nO(ℓ) for the convex set of the degree-ℓ
moment tensors of all level-ℓ pseudodistributions.

Fact A.14 ([56, 53, 51, 38]). For any n, ℓ ∈ N, the following set has a nO(ℓ)-time weak separation
oracle (in the sense of [27]):{

ẼD(w)(1, w1, w2, . . . , wn)
⊗d | degree-d pseudo-distribution D over Rn

}
. (A.2)

This fact, together with the equivalence of weak separation and optimization [27] allows us to
efficiently optimize over pseudo-distributions (approximately)—this algorithm is referred to as the
sum-of-squares algorithm.

The level-ℓ sum-of-squares algorithm optimizes over the space of all level-ℓ pseudo-distributions that
satisfy a given set of polynomial constraints—we formally define this next.

Definition A.15 (Constrained pseudo-distributions). Let D be a level-ℓ pseudo-distribution over Rn.
Let A = {f1 ⩾ 0, f2 ⩾ 0, . . . , fm ⩾ 0} be a system of m polynomial inequality constraints. We say
that D satisfies the system of constraints A at degree r, denoted D r A, if for every S ⊆ [m] and
every sum-of-squares polynomial h with deg h+

∑
i∈S max{deg fi, r} ⩽ ℓ,

ẼDh ·
∏
i∈S

fi ⩾ 0 .

We write D A (without specifying the degree) if D
0
A holds. Furthermore, we say that D r A

holds approximately if the above inequalities are satisfied up to an error of 2−nℓ · ∥h∥ ·
∏

i∈S∥fi∥,
where ∥·∥ denotes the Euclidean norm22 of the coefficients of a polynomial in the monomial basis.

We remark that if D is an actual (discrete) probability distribution, then we have D A if and only
if D is supported on solutions to the constraints A.

We say that a system A of polynomial constraints is explicitly bounded if it contains a constraint of
the form {∥w∥2 ⩽ M}. The following fact is a consequence of Fact A.14 and [27],

Fact A.16 (Efficient Optimization over Pseudo-distributions). There exists an (n + m)O(ℓ)-time
algorithm that, given any explicitly bounded and satisfiable system23 A of m polynomial constraints
in n variables, outputs a level-ℓ pseudo-distribution that satisfies A approximately.

A.2.2 Sum-of-squares proof

Let f1, f2, . . . , fr and g be multivariate polynomials in w. A sum-of-squares proof that the constraints
{f1 ⩾ 0, . . . , fm ⩾ 0} imply the constraint {g ⩾ 0} consists of sum-of-squares polynomials
(pS)S⊆[m] such that

g =
∑

S⊆[m]

pS ·Πi∈Sfi . (A.3)

22The choice of norm is not important here because the factor 2−nℓ

swamps the effects of choosing another
norm.

23Here, we assume that the bit complexity of the constraints in A is (n+m)O(1).
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We say that this proof has degree ℓ if for every set S ⊆ [m], the polynomial pSΠi∈Sfi has degree at
most ℓ. If there is a degree ℓ SoS proof that {fi ⩾ 0 | i ⩽ r} implies {g ⩾ 0}, we write:

{fi ⩾ 0 | i ⩽ r} ℓ {g ⩾ 0} . (A.4)

Sum-of-squares proofs satisfy the following inference rules. For all polynomials f, g : Rn → R and
for all functions F : Rn → Rm, G : Rn → Rk, H : Rp → Rn such that each of the coordinates of
the outputs are polynomials of the inputs, we have:

A ℓ {f ⩾ 0, g ⩾ 0}
A ℓ {f + g ⩾ 0}

,
A ℓ {f ⩾ 0},A

ℓ′
{g ⩾ 0}

A
ℓ+ℓ′

{f · g ⩾ 0}
(addition and multiplication)

A ℓ B,B ℓ′
C

A
ℓ·ℓ′ C

(transitivity)

{F ⩾ 0} ℓ {G ⩾ 0}
{F (H) ⩾ 0}

ℓ·deg(H)
{G(H) ⩾ 0}

. (substitution)

Low-degree sum-of-squares proofs are sound and complete if we take low-level pseudo-distributions
as models.

Concretely, sum-of-squares proofs allow us to deduce properties of pseudo-distributions that satisfy
some constraints.
Fact A.17 (Soundness). If D r A for a level-ℓ pseudo-distribution D and there exists a sum-of-
squares proof A

r′
B, then D

r·r′+r′
B.

If the pseudo-distribution D satisfiesA only approximately, soundness continues to hold if we require
an upper bound on the bit-complexity of the sum-of-squares A

r′
B (number of bits required to

write down the proof).

In our applications, the bit complexity of all sum of squares proofs will be nO(ℓ) (assuming that
all numbers in the input have bit complexity nO(1)). This bound suffices in order to argue about
pseudo-distributions that satisfy polynomial constraints approximately.

The following fact shows that every property of low-level pseudo-distributions can be derived by
low-degree sum-of-squares proofs.
Fact A.18 (Completeness). Suppose d ⩾ r′ ⩾ r and A is a collection of polynomial constraints with
degree at most r, and A ⊢ {

∑n
i=1 w

2
i ⩽ B} for some finite B.

Let {g ⩾ 0} be a polynomial constraint. If every degree-d pseudo-distribution that satisfies D r A
also satisfies D

r′
{g ⩾ 0}, then for every ε > 0, there is a sum-of-squares proof A d {g ⩾ −ε}.

A.2.3 Explictly bounded distributions

We will consider a subset of subgaussian distributions denoted as certifiably subgaussians. Many
subgaussians distributions are known to be certifiably subgaussian (see [36]).
Definition A.19 (Explicitly bounded distribution). Let t ∈ N. A distribution D over Rd with mean µ
is called 2t-explicitly σ-bounded if for each even integer s such that 1 ⩽ s ⩽ t the following equation
has a degree s sum-of-squares proof in the vector variable u

u
2s
{

E
x∼D
⟨x− µ, u⟩2s ⩽ (σs)s · ∥u∥2s2

}
Furthermore, we say that D is explicitly bounded if it is 2t-explicitly σ-bounded for every t ∈ N. A
finite set X ⊆ Rd is said to be 2t-explicitly σ-bounded if the uniform distribution on X is 2t-explicitly
σ-bounded.

Sets that are 2t-explicitly σ-bounded with large intersection satisfy certain key properties. Before
introducing them we conveniently present the following definition.
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Definition A.20 (Weight vector inducing distribution). Let Y be a set of size n and let p ∈ [0, 1]n be
a vector satisfying ∥p∥1 = 1 . We say that p induces the distribution D with support Y if

Py∼D [y = yi] = pi .

Theorem A.21 ([36, 30]). Let Y ⊆ Rd be a set of cardinality n. Let p, p′ ∈ [0, 1]
n be weight

vectors satisfying ∥p∥1 = ∥p′∥1 = 1 and ∥p− p′∥1 ⩽ β . Suppose that p (respectively p′) induces a
2t-explicitly σ1-bounded (resp. σ2) distribution over Y with mean µ(p) (resp. µ(p′)). There exists an
absolute constant β∗ such that, if β ⩽ β∗, then for σ = σ1 + σ2 :∥∥µ(p) − µ(p′)

∥∥ ⩽ β1−1/2t ·O
(√

σt
)
.

In the context of learning Gaussian mixtures, we will make heavy use of the statement below.

Theorem A.22 ([36, 30]). Let Y be a 2t-explicitly σ-bounded set of size n. Let p ∈ Rn be the
weight vector inducing the uniform distribution over Y . Let p′ ∈ Rn be a unit vector satisfying
∥p− p′∥1 ⩽ β for some β ⩽ β∗ where β∗ is a small constant. Then p′ induces a 2t-explicitly
(σ +O(β1−1/2t))-bounded distribution over Y .

B Stability of strongly-convex optimization

In this section, we prove ℓ2 sensitivity bounds for the minimizers of a general class of (strongly)
convex optimization problems. In particular, we show how to translate a uniform point-wise sensitivity
bound for the objective functions into a ℓ2 sensitivity bound for the minimizers.

Lemma B.1 (Stability of strongly-convex optimization). Let Y be a set of datasets. Let K(Y) be a
family of closed convex subsets of Rm parametrized by Y ∈ Y and let F(Y) be a family of functions
fY : K(Y )→ R , parametrized by Y ∈ Y , such that:

(i) for adjacent datasets Y, Y ′ ∈ Y and X ∈ K(Y ) there exist Z ∈ K(Y ) ∩ K(Y ′) satisfying
|fY (X)− fY ′(Z)| ⩽ α and |fY (Z)− fY ′(Z)| ⩽ α .

(ii) fY is κ-strongly convex in X ∈ K(Y ).

Then for Y, Y ′ ∈ Y , X̂ := argminX∈K(Y ) fY (X) and X̂ ′ := argminX′∈K(Y ′) fY ′(X ′) , it holds∥∥∥X̂ − X̂ ′
∥∥∥2
2
⩽

12α

κ
.

Proof. Let Z ∈ K(Y ) ∩ K(Y ′) be a point such that
∣∣∣fY (X̂)− fY ′(Z)

∣∣∣ ⩽ α and
|fY (Z)− fY ′(Z)| ⩽ α. By κ-strong convexity of fY and fY ′ (Proposition G.2) it holds∥∥∥X̂ − X̂ ′

∥∥∥2
2
⩽ 2

∥∥∥X̂ − Z
∥∥∥2
2
+ 2

∥∥∥Z − X̂ ′
∥∥∥2
2

⩽
4

κ

(
fY (Z)− fY (X̂) + fY ′(Z)− fY ′(X̂ ′)

)
.

Suppose w.l.o.g. fY (X̂) ⩽ fY ′(X̂ ′), for a symmetric argument works in the other case. Then

fY (Z) ⩽ fY ′(Z) + α ⩽ fY (X̂) + 2α

and

fY (X̂) ⩽ fY ′(X̂ ′) ⩽ fY ′(Z) ⩽ fY (X̂) + α .

It follows as desired

fY (Z)− fY (X̂) + fY ′(Z)− fY ′(X̂ ′) ⩽ 3α .
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C Private recovery for stochastic block models

In this section, we present how to achieve exact recovery in stochastic block models privately and
thus prove Theorem 1.3. To this end, we first use the stability of strongly convex optimization
(Lemma B.1) to obtain a private weak recovery algorithm in Appendix C.1. Then we show how
to privately boost the weak recovery algorithm to achieve exact recovery in Appendix C.2. In
Appendix C.4, we complement our algorithmic results by providing an almost tight lower bound on
the privacy parameters. We start by defining the relevant notion of adjacent datasets.

Definition C.1 (Adjacent graphs). Let G ,G′ be graphs with vertex set [n]. We say that G ,G′ are
adjacent if |E(G)△E(G′)| = 1 .

Remark C.2 (Parameters as public information). We remark that we assume the parameters n, γ, d
to be public information given in input to the algorithm.

C.1 Private weak recovery for stochastic block models

In this section, we show how to achieve weak recovery privately via stability of strongly con-
vex optimization (Lemma B.1). We first introduce one convenient notation. The error rate
of an estimate x̂ ∈ {±1}n of the true partition x ∈ {±1}n is defined as err(x̂, x) := 1

n ·
min{Ham(x̂, x),Ham(x̂,−x)}.24 Our main result is the following theorem.

Theorem C.3. Suppose γ
√
d ⩾ 12800 , ε, δ ⩾ 0. There exists an (Algorithm C.4) such that, for any

x ∈ {±1}n, on input G ∼ SBMn(γ, d, x), outputs x̂(G) ∈ {±1}n satisfying

err (x̂(G), x) ⩽ O

(
1

γ
√
d
+

1

γd
· log(2/δ)

ε2

)
with probability 1 − exp(−Ω(n)). Moreover, the algorithm is (ε, δ)-differentially private for any
input graph and runs in polynomial time.

Before presenting the algorithm we introduce some notation. Given a graph G, let Y (G) :=
1
γd (A(G)− d

nJ) where A(G) is the adjacency matrix of G and J denotes all-one matrices. Define
K :=

{
X ∈ Rn×n

∣∣ X ⪰ 0 , Xii =
1
n ∀i

}
. The algorithm starts with projecting matrix Y (G) to set

K. To ensure privacy, then it adds Gaussian noise to the projection X1 and obtains a private matrix
X2. The last step applies a standard rounding method.

Algorithm C.4 (Private weak recovery for SBM).
Input: Graph G.

Operations:

1. Projection: X1 ← argminX∈K∥Y (G)−X∥2F .

2. Noise addition: X2 ← X1 +W where W ∼ N
(
0, 24

nγd
log(2/δ)

ε2

)n×n

.

3. Rounding: Compute the leading eigenvector v of X2 and return sign(v).

In the rest of this section, we will show Algorithm C.4 is private in Lemma C.7 and its utility
guarantee in Lemma C.8. Then Theorem C.3 follows directly from Lemma C.7 and Lemma C.8.

Privacy analysis Let Y be the set of all matrices Y (G) = 1
γd (A(G)− d

nJ) where G is a graph on
n vertices. We further define q : Y → K to be the function

q(Y ) := argminX∈K∥Y −X∥2F. (C.1)

We first use Lemma B.1 to prove that function q is stable.

Lemma C.5 (Stability). The function q as defined in Eq. (C.1) has ℓ2-sensitivity ∆q,2 ⩽
√

24
nγd .

24Note |⟨x̂, x⟩| = (1− 2 err(x̂, x)) · n for any x̂, x ∈ {±1}n.
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Proof. Let g : Y × K → R be the function g(Y,X) := ∥X∥2F − 2⟨Y,X⟩. Applying Lemma B.1
with fY (·) = g(Y, ·), it suffices to prove that g has ℓ1-sensitivity 4

nγd with respect to Y and that it is
2-strongly convex with respect to X . The ℓ1-sensitivity bound follows by observing that adjacent
Y, Y ′ satisfy ∥Y − Y ′∥1 ⩽ 2

γd and that any X ∈ K satisfies ∥X∥∞ ⩽ 1
n . Thus it remains to prove

strong convexity with respect to X ∈ K. Let X,X ′ ∈ K then

∥X ′∥2F = ∥X∥2F + 2⟨X ′ −X,X⟩+ ∥X −X ′∥2F
= ∥X∥2F + 2⟨X ′ −X,X + Y − Y ⟩+ ∥X −X ′∥2F
= g(Y,X) + ⟨X ′ −X,∇g(X,Y )⟩+ 2⟨X ′, Y ⟩+ ∥X −X ′∥2F .

That is g(Y,X) is 2-strongly convex with respect to X . Note any X ∈ K is symmetric. Then the
result follows by Lemma B.1.

Remark C.6. In the special case where the contraint set K does not depend on input dataset Y
(e.g. stochastic block models), the proof can be cleaner as follows. Let fY (X) := ∥X∥2F − 2⟨X,Y ⟩.
Let X̂ := argminX∈K fY (X) and X̂ ′ := argminX∈K fY ′(X). Suppose without loss of generality
fY (X̂) ⩽ fY ′(X̂ ′), for a symmetric argument works in the other case. Then

fY (X̂) ⩽ fY ′(X̂ ′) ⩽ fY ′(X̂) ⩽ fY (X̂) + α .

Then it is easy to show the algorithm is private.
Lemma C.7 (Privacy). The weak recovery algorithm (Algorithm C.4) is (ε, δ)-DP.

Proof. Since any X ∈ K is symmetric, we only need to add a symmetric noise matrix to obtain
privacy. Combining Lemma C.5 with Lemma A.12, we immediately get that the algorithm is
(ε, δ)-private.

Utility analysis Now we show the utility guarantee of our priavte weak recovery algorithm.
Lemma C.8 (Utility). For any x ∈ {±1}n, on input G ∼ SBMn(γ, d, x), Algorithm C.4 efficiently
outputs x̂(G) ∈ {±1}n satisfying

err (x̂(G), x) ⩽
6400

γ
√
d
+

7000

γd
· log(2/δ)

ε2
,

with probability 1− exp(−Ω(n)).

To prove Lemma C.8, we need the following lemma which is an adaption of a well-known result in
SBM [28, Theorem 1.1]. Its proof is deferred to Appendix H.
Lemma C.9. Consider the settings of Lemma C.8. With probability 1− exp(−Ω(n)),∥∥∥∥X1(G)− 1

n
xx⊤

∥∥∥∥2
F

⩽
800

γ
√
d
.

Proof of Lemma C.8. By Lemma C.9, we have∥∥∥∥X1(G)− 1

n
xx⊤

∥∥∥∥ ⩽

∥∥∥∥X1(G)− 1

n
xx⊤

∥∥∥∥
F

⩽

√
800

γ
√
d
=: r(γ, d)

with probability 1− exp(−Ω(n)). We condition our following analysis on this event happening.

Let u be the leading eigenvector of X1(G). Let λ1 and λ2 be the largest and second largest
eigenvalues of X1(G). By Weyl’s inequality (Lemma F.1) and the assumption γ

√
d ⩾ 12800, we

have
λ1 − λ2 ⩾ 1− 2r(γ, d) ⩾

1

2
.

Let v be the leading eigenvector of X1(G) +W. By Davis-Kahan’s theorem (Lemma F.2), we have

∥u− v∥ ⩽ 2 ∥W∥
λ1 − λ2

⩽ 4 ∥W∥ ,
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∥∥u− x/
√
n
∥∥ ⩽ 2

∥∥∥∥X1(G)− 1

n
xx⊤

∥∥∥∥ ⩽ 2r(γ, d).

Putting things together and using Fact E.1, we have

∥∥v − x/
√
n
∥∥ ⩽ ∥u− v∥+

∥∥u− x/
√
n
∥∥ ⩽

24
√
6√

γd

√
log(2/δ)

ε
+ 2r(γ, d)

with probability 1− exp(−Ω(n)).
Observe Ham(sign(y), x) ⩽ ∥y − x∥2 for any y ∈ Rn and any x ∈ {±1}n. Then with probability
1− exp(−Ω(n)),

1

n
·Ham(sign(v), x) ⩽

∥∥v − x/
√
n
∥∥2 ⩽

6400

γ
√
d
+

7000

γd
· log(2/δ)

ε2
.

Proof of Theorem C.3. By Lemma C.7 and Lemma C.8.

C.2 Private exact recovery for stochastic block models

In this section, we prove Theorem 1.3. We show how to achieve exact recovery in stochastic block
models privately by combining the private weak recovery algorithm we obtained in the previous
section and a private majority voting scheme.

Since exact recovery is only possible with logarithmic average degree (just to avoid isolated vertices),
it is more convenient to work with the following standard parameterization of stochastic block models.
Let α > β > 0 be fixed constants. The intra-community edge probability is α · logn

n , and the inter-
community edge probability is β · logn

n . In the language of Model 1.1, it is SBMn(
α+β
2 ·log n,

α−β
α+β , x).

Our main result is the following theorem.

Theorem C.10 (Private exact recovery of SBM, restatement of Theorem 1.3). Let ε, δ ⩾ 0. Suppose
α, β are fixed constants satisfying25

√
α−

√
β ⩾ 16 and α− β ⩾ Ω

(
1

ε2
· log(2/δ)

log n
+

1

ε

)
, (C.2)

Then there exists an algorithm (Algorithm C.12) such that, for any balanced26 x ∈ {±1}n, on input
G ∼ SBMn(

α+β
2 · log n, α−β

α+β , x), outputs x̂(G) ∈ {x,−x} with probability 1 − o(1). Moreover,
the algorithm is (ε, δ)-differentially private for any input graph and runs in polynomial time.

Remark C.11. In a standard regime of privacy parameters where ε ⩽ O(1) and δ = 1/ poly(n),
the private exact recovery threshold Eq. (C.2) reads

√
α−

√
β ⩾ 16 and α− β ⩾ Ω

(
ε−2 + ε−1

)
,

Recall the non-private exact recovery threshold is
√
α −
√
β >

√
2. Thus the non-private part in

Eq. (C.2), i.e. 16, is close to optimal.

Algorithm C.12 starts with randomly splitting the input graph G into two subgraphs G1 and G2.
Setting the graph-splitting probability to 1/2, each subgraph will contain about half of the edges of G.
Then we run an (ε, δ)-DP weak recovery algorithm (Algorithm C.4) on G1 to get a rough estimate
x̃(G1) of accuracy around 90%. Finally, we boost the accuracy to 100% by doing majority voting
(Algorithm C.13) on G2 based on the rough estimate x̃(G1). That is, if a vertex has more neighbors
from the opposite community (according to x̃(G1)) in G2, then we assign this vertex to the opposite
community. To make the majority voting step private, we add some noise to the vote.

25In the language of Model 1.1, for any t we have
√
α−

√
β ⩾ t if and only if d

logn
(1−

√
1− γ2) ⩾ t2

2
.

26Recall a vector x ∈ {±1}n is said to be balanced if
∑n

i=1 xi = 0.
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Algorithm C.12 (Private exact recovery for SBM).
Input: Graph G

Operations:

1. Graph-splitting: Initialize G1 to be an empty graph on vertex set V (G). Independently
put each edge of G in G1 with probability 1/2. Let G2 = G \G1.

2. Rough estimation on G1: Run the (ε, δ)-DP partial recovery algorithm (Algorithm C.4)
on G1 to get a rough estimate x̃(G1).

3. Majority voting on G2: Run the (ε, 0)-DP majority voting algorithm (Algorithm C.13)
with input (G2, x̃(G1)) and get output x̂.

4. Return x̂.

Algorithm C.13 (Private majority voting).
Input: Graph G, rough estimate x̃ ∈ {±1}n

Operations:

1. For each vertex v ∈ V (G), let Zv = Sv −Dv where

• Dv =
∑

{u,v}∈E(G) 1[x̃u ̸=x̃v] ,

• Sv =
∑

{u,v}∈E(G) 1[x̃u=x̃v] .

Set x̂v = sign(Zv +Wv) · x̃(G1)v where Wv ∼ Lap(2/ε).

2. Return x̂.

In the rest of this section, we will show Algorithm C.12 is private in Lemma C.15 and it recovers
the hidden communities exactly with high probability in Lemma C.17. Then Theorem C.10 follows
directly from Lemma C.15 and Lemma C.17.

Privacy analysis. We first show the differential privcay of the majority voting algorithm (Algo-
rithm C.13) with respect to input graph G (i.e. assuming fixed the input rough estimate).

Lemma C.14. Algorithm C.13 is (ε, 0)-DP with respect to input G.

Proof. Observing the ℓ1-sensitivity of the degree count function Z in step is 2, the (ε, 0)-DP follows
directly from Laplace mechanism (Lemma A.12) and post-processing (Lemma A.2).

Then the privacy of the private exact recovery algorithm (Algorithm C.12) is a consequence of
composition.

Lemma C.15 (Privacy). Algorithm C.12 is (ε, δ)-DP.

Proof. Let A1 : Gn → {±1}n denote the (ε, δ)-DP recovery algorithm in step 2. Let A2 : Gn ×
{±1}n → {±1}n denote the (ε, 0)-DP majority voting algorithm in step 3. LetA be the composition
of A1 and A2.

We first make several notations. Given a graph H and an edge e, He is a graph obtained b adding e to
H . Given a graph H , G1(H) is a random subgraph of H by keeping each edge of H with probability
1/2 independently.

Now, fix two adjacent graphs G and Ge where edge e appears in Ge but not in G. Also, fix two
arbitrary possible outputs x1, x2 ∈ {±1}n of algorithm A.27 It is direct to see,

P (A(G) = (x1, x2)) =
∑
H⊆G

P (A1(H) = x1)P (A2(G \H,x1) = x2)P (G1(G) = H) . (C.3)

27We can imagine that algorithm A first outputs (x1, x2) and then outputs x2 as a post-processing step.
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Since P(G1(G) = H) = P(G1(Ge) = H) + P(G1(Ge) = He) for any H ⊆ G, we have

P (A(Ge) = (x1, x2)) =
∑
H⊆G

P (A1(H) = x1)P (A2(Ge \H,x1) = x2)P (G1(Ge) = H)

+P (A1(He) = x1)P (A2(Ge \He, x1) = x2)P (G1(Ge) = He)
(C.4)

Since both A1 and A2 are (ε, δ)-DP, we have for each H ⊆ G,
P (A1(He) = x1) ⩽ eε P (A1(H) = x1) + δ, (C.5)

P (A2(Ge \H,x1) = x2) ⩽ eε P (A2(G \H,x1) = x2) + δ. (C.6)
Plugging Eq. (C.5) and Eq. (C.6) into Eq. (C.4), we obtain

P (A(Ge) = (x1, x2)) ⩽
∑
H⊆G

[eε P (A1(H) = x1)P (A2(G \H,x1) = x2) + δ]P (G1(G) = H)

= eε P (A(G) = (x1, x2)) + δ.

Similarly, we can show
P (A(G) = (x1, x2)) ⩽ eε P (A(Ge) = (x1, x2)) + δ. (C.7)

Utility analysis. We first show the utility guarantee of the priavte majority voting algorithm.

Lemma C.16. Suppose G is generated by first sampling G ∼ SBMn(
α+β
2 · log n,

α−β
α+β , x) for some

balanced x and then for each vertex removing at most ∆ ⩽ O(log2 n) adjacent edges arbitrarily.
Then on input G and a balanced rough estimate x̃ satisfying Ham(x̃, x) ⩽ n/16, Algorithm C.13
efficiently outputs x̂(G) such that for each vertex v,

P (x̂(G)v ̸= xv) ⩽ exp

(
− 1

64
· ε(α− β) · log n

)
+ 2 · exp

(
− 1

162
· (α− β)2

α+ β
· log n

)
.

Proof. Let us fix an arbitrary vertex v and analyze the probability P (x̂(G)v ̸= xv). Let r :=
Ham(x̃, x)/n. Then it is not hard to see

P (x̂(G)v ̸= xv) ⩽ P (B+A′ −A−B′ +W > 0) (C.8)
where

• A ∼ Binomial((1/2 − r)n −∆, α logn
n ), corresponding to the number of neighbors that

are from the same community and correctly labeled by x̃,

• B′ ∼ Binomial(rn−∆, β logn
n ), corresponding to the number of neighbors that are from

the different community but incorrectly labeled by x̃,

• B ∼ Binomial((1/2 − r)n, β logn
n ), corresponding to the number of neighbors that are

from the different community and correctly labeled by x̃,

• A′ ∼ Binomial(rn, α logn
n ), corresponding to the number of neighbors that are from the

same community but incorrectly labeled by x̃,

• W ∼ Lap(0, 2/ε), independently.

The ∆ term appearing in both A and B′ corresponds to the worst case where ∆ “favorable” edges
are removed. If r ⩾ Ω(1), then ∆ = O(log2 n) is negligible to rn = Θ(n) and we can safely ignore
the effect of removing ∆ edges. If r = o(1), then we can safely assume x̃ is correct on all vertices
and ignore the effect of removing ∆ edges as well. Thus, we will assume ∆ = 0 in the following
analysis.

For any t, t′, we have
P (A′ +B−A−B′ +W > 0) ⩽ P (A′ +B+W > t) + P (A+B′ ⩽ t)

⩽ P (A′ +B ⩾ t− t′) + P (W ⩾ t′) + P (A+B′ ⩽ t) .

We choose t, t′ by first picking two constants a, b > 0 satisfying a+ b < 1 and then solving
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• E[A′ +B]− t = a · (E[A+B′]− E[A′ +B]) and

• t′ = (1− a− b) · (E[A+B′]− E[A′ +B]).

By Fact A.7,

P (W > t′) ⩽ exp

(
− t′ε

2

)
⩽ exp

(
− (1/4− r)(1− a− b)

2
· ε(α− β) · log n

)
.

By Fact E.4 and the assumption r ⩽ 1/16, we have

P (A+B′ ⩽ t) ⩽ exp

(
− (E[A+B′]− t)2

2E[A+B′]

)
⩽ exp

(
−(1/4− r)2a2 · (α− β)2

α+ β
· log n

)
.

Setting b = 1/2, by Fact E.4 and the assumption r ⩽ 1/16, we have

P (A′ +B ⩾ t− t′) ⩽ exp

(
− (t− t′ − E[A′ +B])2

t− t′ + E[A′ +B]

)
⩽ exp

(
−2(1/4− r)2

7
· (α− β)2

α+ β
· log n

)
.

Further setting a = 1/3, we have

P (x̂(G)v ̸= xv) ⩽ exp

(
−1/4− r

12
· ε(α− β) · log n

)
+2·exp

(
− (1/4− r)2

9
· (α− β)2

α+ β
· log n

)
.

Finally, plugging the assumption r ⩽ 1/16 to conclude.

Then it is not difficult to show the utility guarantee of our priavte exact recovery algorithm.
Lemma C.17 (Utility). Suppose α, β are fixed constants satisfying

√
α−

√
β ⩾ 16 and α− β ⩾ Ω

(
1

ε2
· log(2/δ)

log n
+

1

ε

)
.

Then for any balanced x ∈ {±1}n, on input G ∼ SBMn(
α+β
2 · log n, α−β

α+β , x), Algorithm C.12
efficiently outputs x̂(G) satisfying x̂(G) ∈ {x,−x} with probability 1− o(1).

Proof. We will show the probability of a fixed vertex being misclassified is at most o(1/n). Then by
union bound, exact recovery can be achieved with probability 1− o(1).

As the graph-splitting probability is 1/2, G1 follows SBMn(
α
2 ·

logn
n , β

2 ·
logn
n , x). By Theorem C.3,

the rough estimate x̃(G1) satisfies28

err(x̃(G1), x) ⩽ r := o(1) +
14000

(α− β)ε2
· log(2/δ)

log n
. (C.9)

with probability at least 1 − exp(−Ω(n)). Without loss of generality, we can assume
Ham(x̃(G1), x) ⩽ rn, since we consider −x otherwise. By Fact E.2, the maximum degree of
G1 is at most ∆ := 2 log2 n with probability at least 1− n exp(−(log n)2/3). In the following, we
condition our analysis on the above two events regarding x̃(G1) and G1.

Now, let us fix a vertex and analyze the probability pe that it is misclassified after majority voting.
With G1 being fixed, G2 can be thought of as being generated by first sampling G and then removing
G1 from G. To make r ⩽ 1/16, it suffices to ensure α− β > 5002

ε2 ·
log(2/δ)
logn by Eq. (C.9).Then by

Lemma C.16, we have

pe ⩽ exp

(
− 1

64
· ε(α− β) · log n

)
+ 2 · exp

(
− 1

162
· (α− β)2

α+ β
· log n

)
.

To make pe at most o(1/n), it suffices to ensure

1

64
· ε(α− β) > 1 and

1

162
· (α− β)2

α+ β
> 1.

28It is easy to make the output of Algorithm C.4 balanced at the cost of increasing the error rate by a factor of
at most 2.
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Note (α− β)2/(α+ β) > (
√
α−
√
β)2 for α > β. Therefore, as long as

√
α−

√
β ⩾ 16 and α− β ⩾

5002

ε2
· log(2/δ)

log n
+

64

ε
,

Algorithm C.12 recovers the hidden communities exactly with probability 1− o(1).

Proof of Theorem C.10. By Lemma C.15 and Lemma C.17.

C.3 Inefficient recovery using the exponential mechanism

In this section, we will present an inefficient algorithm satisfying pure privacy which succeeds for all
ranges of parameters - ranging from weak to exact recovery. The algorithm is based on the exponential
mechanism [43] combined with the majority voting scheme introduced in section Appendix C.2. In
particular, we will show

Theorem C.18 (Full version of Theorem 1.4). Let γ
√
d ⩾ 12800 and x ∈ {±1}n be balanced. Let

ζ ⩾ 2 exp
(
−γ2d

512

)
. For any ε ⩾ 64 log(2/ζ)

γd , there exists an algorithm, Algorithm C.19, which on

input G ∼ SBMn(γ, d, x
∗) outputs an estimate x̂(G) ∈ {±1}n satisfying

err (x̂(G), x∗) ⩽ ζ

with probability at least 1− ζ. In addition, the algorithm is ε-private. Further, by slightly modifying
the algorithm, we can achieve error 20/

√
log(1/ζ) with probability 1− e−n.29

A couple of remarks are in order. First, our algorithm works across all degree-regimes in the literature
and matches known non-private thresholds and rates up to constants. We remark that for ease of
exposition we did not try to optimize these constants. In particular, for γ2d a constant we achieve
weak recovery. We reiterate, that γ2d > 1 is the optimal non-private threshold. For the regime, where
γ2d = ω(1), it is known that the optimal error rate is exp

(
−(1− o(1))γ2d

)
even non-privately

[64], where o(1) goes to zero as γ2d tends to infinity. We match this up to constants. Moreover,
our algorithm achieves exact recovery as soon as γ2d ⩾ 512 log n since then ζ < 1

n . This also
matches known non-private threshholds up to constants [5, 47]. Also, our dependence on the privacy
parameter ε is also optimal as shown by the information-theoretic lower bounds in Appendix C.4.

We also emphasize, that if we only aim to achieve error on the order of

1

γ
√
d
= Θ

(
1√

log(1/ζ)

)
,

we can achieve exponentially small failure probability in n, while keeping the privacy parameter ε
the same. This can be achieved, by ommitting the boosting step in our algorithm and will be clear
from the proof of Theorem C.18. We remark that in this case, we can also handle non-balanced
communities.

Again, for an input graph G, consider the matrix Y (G) = 1
γd

(
A(G)− d

nJ
)
. For x ∈ {±1}n we

define the score function
sG(x) = ⟨x, Y (G)x⟩ .

Since the entries of A(G) are in [0, 1] and adjacent graphs differ in at most one edge, it follows
immediately, that this score function has sensitivity at most

∆ = max
G∼G′ ,

x∈{±1}n

|sG(x)− sG′(x)| = 2

γd
· max

G∼G′ ,
x∈{±1}n

|⟨x, (A(G)−A(G′))x⟩| ⩽ 2

γd
.

29The first, smaller, error guarantee additionally needs the requirement that ζ ⩽ exp(−640). The second one
does not.
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Algorithm C.19 (Inefficient algorithm for SBM).
Input: Graph G, privacy parameter ε > 0

Operations:

1. Graph-splitting: Initialize G1 to be an empty graph on vertex set V (G). Independently
assign each edge of G to G1 with probability 1/2. Let G2 = G \G1.

2. Rough estimation on G1: Sample x̃ from the distribution with density

p(x) ∝ exp
( ε

2∆
⟨x, Y (G1)x⟩

)
,

where ∆ = 2
γd .

3. Majority voting on G2: Run the ε-DP majority voting algorithm (Algorithm C.13) with
input (G2, x̃(G1)). Denote its output by x̂.

4. Return x̂.

We first analyze the privacy guarantees of the above algorithm.

Lemma C.20. Algorithm C.19 is ε-DP.

Proof. For simplicity and clarity of notation, we will show that the algorithm satisfies 2ε-DP. Clearly,
the graph splitting step is 0-DP. Step 2 corresponds to the exponential mechanism. Since the sensitivity
of the score function is at most ∆ = 2

γd it follows by the standard analysis of the mechanism that this
step is ε-DP [43]. By Lemma C.14, the majority voting step is also ε-DP. Hence, the result follows
by composition (cf. Lemma A.4).

Next, we will analyze its utility.

Lemma C.21. Let γ
√
d ⩾ 12800 and x ∈ {±1}n be balanced. Let exp(−640) ⩾ ζ ⩾

2 exp
(
−γ2d

512

)
, ε ⩾ 64 log(2/ζ)

γd , and G ∼ SBMn(γ, d, x
∗), the output x̂ (G) ∈ {±1}n of Algo-

rithm C.19 satisfies
err (x̂(G), x∗) ⩽ ζ

with probability at least 1− ζ.

Proof. We will first show that the rough estimate x̃ obtained in step 2 achieves

err (x̃, x∗) ⩽
20√

log(1/ζ)

with probability e−n. This will prove the second part of the theorem - for this we don’t need that
ζ ⩽ exp(−640). In fact, arbitrary ζ works. The final error guarantee will then follow by Lemma C.16.
First, notice that similar to the proof of [28, Lemma 4.1], using Bernstein’s inequality and a union
bound, we can show that (cf. Fact H.2 for a full proof)

max
x∈{±1}n

∣∣∣∣⟨x, [Y (G)− 1

n
x∗(x∗)⊤

]
x⟩
∣∣∣∣ ⩽ 100n

γ
√
d

⩽
5√

log (1/ζ)

with probability at least 1 − exp−10n. Recall that sG(x) = ⟨x, Y (G)x⟩. Let α = 5√
log(1/ζ)

. We

call x ∈ {±1}n good if sG(x) ⩾ (1− 3α)n. It follows that for good x it holds that

1

n
· ⟨x, x∗⟩2 ⩾ ⟨x, Y (G)x⟩ −

∣∣∣∣〈x, [Y (G)− 1

n
x∗(x∗)⊤

]
x

〉∣∣∣∣ ⩾ (1− 4α)n .

Which implies that

2 err(x, x∗) ⩽ 1−
√
1− 4α = 1− 1− 4α√

1− 4α
⩽ 1− 1− 4α

1− 2α
=

2α

1− 2α
⩽ 4α ,
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where we used that α ⩽ 1/4 and that
√
1− 4x ⩽ 1− 2x for x ⩾ 0. Hence, we have for good x that

err(x, x∗) ⩽
20√

log (1/ζ)
.

Since sG(x∗) ⩾ (1− α)n,there is at least one good candidate. Hence, we can bound the probability
that we do not output a good x as

exp
(

ε
2∆ (1− 3α)n

)
· en

exp
(

ε
2∆ (1− α)n

)
· 1

= exp

((
1− 2εα

∆

)
n

)
⩽ e−n ,

where we used that

2εα

∆
⩾

64 log (2/ζ)

γd
· 5γd√

log (1/ζ)
⩾ 320

√
log (1/ζ) ⩾ 2 .

We will use Lemma C.16 to proof the final conclusion of the theorem. In what follows, assume
without loss of generality that Ham(x, x∗) < Ham(x,−x∗). The above discussion implies that

Ham(x, x∗) ⩽ 8αn ⩽
40n√

log (1/ζ)
⩽

n

16
,

where the last inequality uses ζ ⩽ e−640. Further, by Fact E.2 it also follows that the maximum
degree of G2 is at most O

(
log2 n

)
(by some margin). Recall that G2 ∼ SBM (d, γ, x∗). In the

parametrization of Lemma C.16 this means that

α =
(1 + γ) d

log n
, β =

(1− γ) d

log n
,

α− β =
2γd

log n
, α+ β =

2d

log n
.

Thus, it follows that the output x̂ of the majority voting step satisfies for every vertex v

P (x̂(G)v ̸= xv) ⩽ exp

(
− 1

64
· ε(α− β) · log n

)
+ 2 · exp

(
− 1

162
· (α− β)2

α+ β
· log n

)
⩽ exp

(
− 1

32
· εγd

)
+ exp

(
− 1

162
· γ2d

)
⩽ ζ2/4 + ζ2/4 ⩽ ζ2 .

By Markov’s Inequality it now follows that

P (err (x̂(G), x∗) ⩾ ζ) ⩽ ζ .

C.4 Lower bound on the parameters for private recovery

In this section, we prove a tight lower bound for private recovery for stochastic block models. Recall
the definition of error rate, err(u, v) := 1

n ·min{Ham(u, v),Ham(u,−v)} for u, v ∈ {±1}n. Our
main result is the following theorem.
Theorem C.22 (Full version of Theorem 1.5). Suppose there exists an ε-differentially private algo-
rithm such that for any balanced x ∈ {±1}n, on input G ∼ SBMn(d, γ, x), outputs x̂(G) ∈ {±1}n
satisfying

P (err(x̂(G), x) < ζ) ⩾ 1− η,

where30 1/n ⩽ ζ ⩽ 0.04 and the randomness is over both the algorithm and stochastic block models.
Then,

e2ε − 1 ⩾ Ω

(
log(1/ζ)

γd
+

log(1/η)

ζnγd

)
. (C.10)

30Error rate less than 1/n already means exact recovery. Thus it does not make sense to set ζ to any value
strictly smaller than 1/n. The upper bound ζ ⩽ 0.04 is just a technical condition our proof needs for Eq. (C.12).
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Remark C.23. Both terms in lower bound Eq. (C.10) are tight up to constants by the following
argument. Considering typical privacy parameters ε ⩽ 1, then e2ε− 1 ≈ 2ε. For exponentially small
failure probability, i.e. η = 2−Ω(n), the lower bound reads ε ⩾ Ω( 1

γd ·
1
ζ ), which is achieved by

Algorithm C.19 without the boosting step - see the discussion after Theorem C.18. For polynomially
small failure probability, i.e.η = 1/ poly(n), the lower bound Eq. (C.10) reads ε ⩾ Ω( 1

γd · log
1
ζ ),

which is achieved by Theorem C.18.

By setting ζ = 1/n in Theorem C.22, we directly obtain a tight lower bound for private exact recovery
as a corollary.
Corollary C.24. Suppose there exists an ε-differentially private algorithm such that for any balanced
x ∈ {±1}n, on input G ∼ SBMn(d, γ, x), outputs x̂(G) ∈ {±1}n satisfying

P (x̂(G) ∈ {x,−x}) ⩾ 1− η,

where the randomness is over both the algorithm and stochastic block models. Then,

e2ε − 1 ⩾ Ω

(
log(n) + log 1

η

γd

)
. (C.11)

Remark C.25. The lower bound Eq. (C.11) for priavte exact recovery is tight up to constants, since
there exists an (inefficient) ε-differentially priavte exact recovery algorithm with ε ⩽ O( logn

γd ) and
η = 1/ poly(n) by Theorem C.18 and [55, Theorem 3.7].

In rest of this section, we will prove Theorem C.22. The proof applies the packing lower bound
argument similar to [29, Theorem 7.1]. To this end, we first show err(·, ·) is a semimetric over
{±1}n.
Lemma C.26. err(·, ·) is a semimetric over {±1}n.

Proof. Symmetry and non-negativity are obvious from the definition. We will show err(·, ·) satisfies
triangle inequality via case analysis. Let u, v, w ∈ {±1}n be three arbitrary sign vectors. By
symmetry, we only need to consider the following four cases.

Case 1: Ham(u, v),Ham(u,w),Ham(v, w) ⩽ n/2. This case is reduced to showing Hamming
distance satisfies triangle inequality, which is obvious.

Case 2: Ham(u, v),Ham(u,w) ⩽ n/2 and Ham(v, w) ⩾ n/2. We need to check two subcases.
First,

err(u, v) ⩽ err(u,w) + err(v, w)⇔ Ham(u, v) + Ham(v, w) ⩽ Ham(u,w) + n

⇐ Ham(u, v) +H(u, v) +H(u,w) ⩽ Ham(u,w) + n

⇔ Ham(u, v) ⩽ n/2.

Second,
err(v, w) ⩽ err(u, v) + err(u,w)⇔ n ⩽ Ham(v, w) + Ham(u, v) + Ham(u,w)

⇐ n ⩽ 2Ham(v, w).

Case 3: Ham(u, v) ⩽ n/2 and Ham(u,w),Ham(v, w) ⩾ n/2. This case can be reduced to case 1
by considering u, v,−w.

Case 4: Ham(u, v),Ham(u,w),Ham(v, w) ⩾ n/2. This case can be reduced to case 2 by consider-
ing −u, v, w.

Proof of Theorem C.22. Suppose there exists an ε-differentially private algorithm satisfying the
theorem’s assumption.

We first make the following notation. Given a semimetric ρ over {±1}n, a center v ∈ {±1}n, and a
radius r ⩾ 0, define Bρ(v, r) := {w ∈ {±1}n : 1⊤w = 0, ρ(w, v) ⩽ r}.

Pick an arbitrary balanced x ∈ {±1}n. Let M = {x1, x2, . . . , xm} be a maximal 2ζ-packing of
Berr(x, 4ζ) in semimetric err(·, ·). By maximality of M , we have Berr(x, 4ζ) ⊆ ∪mi=1Berr(x

i, 2ζ),
which implies

|Berr(x, 4ζ)| ⩽
m∑
i=1

∣∣Berr(x
i, 2ζ)

∣∣
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=⇒ |BHam(x, 4ζ)| ⩽
m∑
i=1

2 ·
∣∣BHam(x

i, 2ζ)
∣∣ = 2m · |BHam(x, 2ζ)|

=⇒ 2m ⩾
|BHam(x, 4ζn)|
|BHam(x, 2ζn)|

=

(
n/2
2ζn

)2(
n/2
ζn

)2 ⩾

(
1
4ζ

)4ζn
(

e
2ζ

)2ζn =

(
1

8eζ

)2ζn

(C.12)

For each i ∈ [m], define Yi := {w ∈ {±1}n : err(w, xi) ⩽ ζ}. Then Yi’s are pairwise disjoint. For
each i ∈ [m], let Pi be the distribution over n-vertex graphs generated by SBMn(d, γ, x

i). By our
assumption on the algorithm, we have for any i ∈ [m] that

P
G∼Pi

(x̂(G) ∈ Yi) ⩾ 1− η.

Combining the fact that Yi’s are pairwise disjoint, we have
m∑
i=1

P
G∼P1

(x̂(G) ∈ Yi) = P
G∼P1

(x̂(G) ∈ ∪mi=1Yi) ⩽ 1 =⇒
m∑
i=2

P
G∼P1

(x̂(G) ∈ Yi) ⩽ η. (C.13)

In the following, we will lower bound PG∼P1
(x̂(G) ∈ Yi) for each i ∈ [m] \ {1} using group

privacy.

Note each Pi is a product of
(
n
2

)
independent Bernoulli distributions. Thus for any i, j ∈ [m], there

exists a coupling ωij of Pi and Pj such that, if (G,H) ∼ ω, then

Ham(G,H) ∼ Binomial(Nij , p),

where p = 2γd/n and Nij = Ham(xi, xj) · (n−Ham(xi, xj)). Applying group privacy, we have
for any two graphs G,H and for any S ⊆ {±1}n that31

P (x̂(G) ∈ S) ⩽ exp(ε ·Ham(G,H)) · P (x̂(H) ∈ S) . (C.14)

For each i ∈ [m], taking expectations on both sides of Eq. (C.14) with respect to coupling ωi1 and
setting S = Yi, we have

E
(G,H)∼ωi1

P (x̂(G) ∈ Yi) ⩽ E
(G,H)∼ωi1

exp(ε ·Ham(G,H)) · P (x̂(H) ∈ Yi) . (C.15)

The left side of Eq. (C.15) is equal to

E
(G,H)∼ωi1

P (x̂(G) ∈ Yi) = P
G∼Pi

(x̂(G) ∈ Yi) ⩾ 1− η.

Upper bounding the right side of Eq. (C.15) by Cauchy-Schwartz inequality, we have

E
(G,H)∼ωi1

exp(ε ·Ham(G,H)) · P (x̂(H) ∈ Yi)

⩽

(
E

(G,H)∼ωi1

exp(2ε ·Ham(G,H))

)1/2

·
(

E
(G,H)∼ωi1

P (x̂(H) ∈ Yi)
2

)1/2

=

(
E

X∼Binomial(Ni1,p)
exp(2ε ·X)

)1/2

·
(

E
H∼P1

P (x̂(H) ∈ Yi)
2

)1/2

.

Using the formula for the moment generating function of binomial distributions, we have

E
X∼Binomial(Ni1,p)

exp(2ε ·X) = (1− p+ p · e2ε)Ni1 ,

and it is easy to see

E
H∼P1

P (x̂(H) ∈ Yi)
2
= E

H∼P1

(
E1[x̂(H)∈Yi]

)2
⩽ P

H∼P1

(x̂(H) ∈ Yi) .

Putting things together, Eq. (C.15) implies for each i ∈ [m] that

P
H∼P1

(x̂(H) ∈ Yi) ⩾
(1− η)2

(1− p+ p · e2ε)Ni1
. (C.16)

31In Eq. (C.14), the randomness only comes from the algorithm.
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Since xi ∈ Berr(x, 4ζ) for i ∈ [m], by assuming ζ ⩽ 1/16, we have

Ni1 = Ham(xi, x1) · (n−Ham(x1, xi)) ⩽ 8ζn(n− 8ζn). (C.17)

Recalling p = 2γd/n and combining Eq. (C.12), Eq. (C.13), Eq. (C.16) and Eq. (C.17), we have

(m− 1) · (1− η)2

(1− p+ p · e2ε)8ζn(n−8ζn)
⩽ η.

By taking logarithm on both sides, using t ⩾ log(1 + t) for any t > −1, and assuming ζ ⩽ 1/(8e),
we have

e2ε − 1 ≳
log 1

8eζ

γd
+

log 1
η

ζnγd
.

D Private algorithms for learning mixtures of spherical Gaussians

In this section we present a private algorithm for recovering the centers of a mixtures of k Gaussians
(cf. Model 1.2). Let Y ⊆

(
Rd
)⊗n

be the collection of sets of n points in Rd. We consider the
following notion of adjacency.
Definition D.1 (Adjacent datasets). Two datasets Y, Y ′ ∈ Y are said to be adjacent if |Y ∩ Y ′| ⩾
n− 1 .

Remark D.2 (Problem parameters as public information). We consider the parameters n, k,∆ to be
public information given as input to the algorithm.

Next we present the main theorem of the section.
Theorem D.3 (Privately learning spherical mixtures of Gaussians). Consider an instance of Model 1.2.
Let t ∈ N be such that ∆ ⩾ O

(√
tk1/t

)
. For n ⩾ Ω

(
kO(1) · dO(t)

)
, k ⩾ (log n)1/5 , there exists

an algorithm, running in time (nd)O(t), that outputs vectors µ̂1, . . . , µ̂ℓ satisfying

max
ℓ∈[k]

∥∥µ̂ℓ − µπ(ℓ)

∥∥
2
⩽ O(k−12) ,

with high probability, for some permutation π : [k] → [k] .32 Moreover, for ε ⩾ k−10 , δ ⩾ n−10 ,
the algorithm is (ε, δ)-differentially private for any input Y .

We remark that our algorithm not only works for mixtures of Gaussians but for all mixtures of
2t-explicitly bounded distributions (cf. Definition A.19).

Our algorithm is based on the sum-of-squares hierarchy and at the heart lies the following sum-
of-squares program. The indeterminates z11, . . . , z1k, . . . , znk and vector-valued indeterminates
µ′
1, . . . , µ

′
k, will be central to the proof of Theorem D.3. Let n, k, t be fixed parameters.



z2iℓ = ziℓ ∀i ∈ [n] , ℓ ∈ [k] (indicators)∑
ℓ∈[k]

ziℓ ⩽ 1 ∀i ∈ [n] (cluster mem.)

ziℓ · ziℓ′ = 0 ∀i ∈ [n] , ℓ ∈ [k] (uniq. mem.)∑
i

ziℓ ⩽ n/k ∀ℓ ∈ [k] (size of clusters)

µ′
ℓ =

k

n

∑
i

ziℓ · yi ∀ℓ ∈ [k] (means of clusters)

∀v ∈ Rd :
k

n

n∑
i=1

ziℓ⟨yi − µ′
ℓ, v⟩2s +

∥∥Qv⊗s
∥∥2 = (2s)s · ∥v∥2s2 ∀s ⩽ t, ℓ ∈ [k] (t moment)


(Pn,k,t(Y ))

32We remark that we chose constants to optimize readibility and not the smallest possible ones.
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We remark that the moment constraint encodes the 2t-explicit 2-boundedness constraint introduced
in Definition A.19. Note that in the form stated above there are infinitely many constraints, one for
each vector v. This is just for notational convenience. This constraint postulates equality of two
polynomials in v. Formally, this can also be encoded by requiring there coefficients to agree and hence
eliminating the variable v. It is not hard to see that this can be done adding only polynomially many
constraints. Further, the matrix variable Q represents the SOS proof of the 2t-explicit 2-boundedness
constraint and we can hence deduce that for all 0 ⩽ s ⩽ t

P 2s
v

{
k

n

n∑
i=1

ziℓ⟨yi − µ′
ℓ, v⟩2s ⩽ (2s)s∥s∥2s2

}
.

Before presenting the algorithm we will introduce some additional notation which will be convenient.
We assume t, n, k to be fixed throughout the section and drop the corresponding subscripts. For
Y ∈ Y , let Z(Y ) be the set of degree-10t pseudo-distributions satisfying P(Y ). For each ζ ∈ Z(Y )
define W (ζ) as the n-by-n matrix satisfying

W (ζ)ij = Ẽζ

∑
ℓ∈[k]

ziℓ · zjℓ

 .

We letW(Y ) := {W (ζ) | ζ ∈ Z(Y )} .
Recall that J denotes the all-ones matrix. We define the function g : Rn×n → R as

g(W ) = ∥W∥2F − (10)10k300⟨J,W ⟩

and let

W (ζ̂(Y )) := argminW∈W(Y ) g(W ) .

We also consider the following function

Definition D.4 (Soft thresholding function). We denote by ϕ : [0, 1]→ [0, 1] the function

ϕ(x) =


0 if x ⩽ 0.8 ,

1 if x ⩾ 0.9 ,
x−0.8
0.9−0.8 otherwise .

Notice that ϕ(·) is 1
0.9−0.8 = 10 Lipschitz. Next we introduce our algorithm. Notice the algorithm

relies on certain private subroutines. We describe them later in the section to improve the presentation.
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Algorithm D.5 (Private algorithm for learning mixtures of Gaussians).
Input: Set of n points Y ⊆ Rd , ε , δ > 0 , k, t ∈ N , d∗ = 100 log n , b = k−15 .

1. Compute W = W (ζ̂(Y )).

2. Pick τ ∼ tLap
(
−n1.6

(
1 + log(1/δ)

ε

)
, n1.6

ε

)
.

3. If |τ | ⩾ n1.7 or ∥ϕ(W )∥1 ⩽ n2

k ·
(
1− 1

n0.1 − 1
k100

)
+ τ reject.

4. For all i ∈ [n] , compute the n-dimensional vector

ν(i) =

{
0 if ∥ϕ(Wi)∥1 = 0

∥ϕ(Wi)∥−1
1

∑
j ϕ(Wij) · yj otherwise.

5. Pick a set S of n0.01 indices i ∈ [n] uniformly at random.

6. For each i ∈ S let ν̄(i) = ν(i) +w where w ∼ N
(
0, n−0.18 · log(2/δ)ε2 · Id

)
.

7. Pick Φ ∼ N
(
0, 1

d∗

)d∗×d
,q

u.a.r.∼ [0, b] and run the histogram learner of Lemma A.13
with input Φν̄(1), . . . ,Φν̄(n0.01) and parameters

q, b, α = k−10, β = n−10, δ∗ =
δ

n
, ε∗ = ε · 10k

50

n0.01
.

Let B1, . . . ,Bk be the resulting d∗-dimensional bins with highest counts. Break ties
randomly.

8. Reject if mini∈[k]

∣∣{j ∣∣ Φν̄(j) ∈ Bi

}∣∣ < n0.01

2k .

9. For each l ∈ [k] output

µ̂l :=
1∣∣{j ∣∣ Φν̄(j) ∈ Bi

}∣∣ ·
 ∑

Φν̄(j)∈Bl

ν̄(j)

+w′ ,

where w′ ∼ N
(
0, N

(
0, 32 · k−120 · log(2kn/δ)ε2 · Id

))
.

For convenience, we introduce some preliminary facts.
Definition D.6 (Good Y ). Let Y be sampled according to Model 1.2. We say that Y is good if:

1. for each ℓ ∈ [k], there are at least n
k − n0.6 and most n

k + n0.6 points sampled from Dℓ in
Y. Let Yℓ ⊆ Y be such set of points.

2. Each Yℓ is 2t-explicitly 2-bounded.

It turns out that typical instances Y are indeed good.
Lemma D.7 ([30, 36]). Consider the settings of Theorem D.3. Then Y is good with high probability.
Further, in this case the sets Z(Y ) andW(Y ) are non-empty.

D.1 Privacy analysis

In this section we show that our clustering algorithm is private.
Lemma D.8 (Differential privacy of the algorithm). Consider the settings of Theorem D.3. Then
Algorithm D.5 is (ε, δ)-differentially private.

We split our analysis in multiple steps and combine them at the end. On a high level, we will argue
that on adjacent inputs Y, Y ′ many of the vectors ν(i) by the algorithm are close to each other and
a small part can be very far. We can then show that we can mask this small difference using the
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Gaussian mechanism and afterwards treat this subset of the vectors as privatized (cf. Lemma I.4).
Then we can combine this with known histogram learners to deal with the small set of ν(i)’s that is
far from each other on adjacent inputs.

D.1.1 Sensitivity of the matrix W

Here we use Lemma B.1 to reason about the sensitivity of ϕ(W (ζ̂(Y ))). For adjacent datasets Y, Y ′ ∈
Y we let ζ̂ , ζ̂ ′ be the pseudo-distribution corresponding to W (ζ̂(Y )) and W (ζ̂(Y ′)) computed in
step 1 of the algorithm, respectively. We prove the following result.

Lemma D.9 (ℓ1-sensitivity of ϕ(W )). Consider the settings of Theorem D.3. Let W,W ′ be re-
spectively be the matrices computed in step 1 by Algorithm D.5 on adjacent inputs Y, Y ′ ∈ Y .
Then

∥ϕ(W )− ϕ(W ′)∥1 ⩽ n1.6 .

For all but n0.8 rows i of ϕ(W ), ϕ(W ′), it holds

∥ϕ(W )i − ϕ(W ′)i∥1 ⩽ n0.8 .

Proof. The second inequality is an immediate consequence of the first via Markov’s inequality. Thus
it suffices to prove the first. Since ϕ(·) is 10-Lipschitz, we immediately obtain the result if∥∥∥W (ζ̂(Y ))−W (ζ̂(Y ′))

∥∥∥
1
⩽ n1.55 .

Thus we focus on this inequality. To prove it, we verify the two conditions of Lemma B.1. First
notice that g is 2-strongly convex with respect to its input W . Indeed for W,W ′ ∈ W(Y ), since
∀i, j ∈ [n] ,Wij ⩾ 0 it holds that

∥W ′∥2F = ∥W∥2F + ∥W −W ′∥2F + 2⟨W ′ −W,W ⟩

= ∥W∥2F + ∥W −W ′∥2F + 2⟨W ′ −W,W ⟩+ ⟨W ′ −W, (10)10k300(J − J)⟩

= g(W ) + ∥W −W ′∥2F + ⟨W ′ −W,∇g(W )⟩+ ⟨W ′, (10)10k300J⟩ ,

where we used that ∇g(W ) = 2W − (10)10k300J . Thus it remain to prove (i) of Lemma B.1.

Let ζ̂ ∈ Z(Y ) , ζ̂ ′ ∈ Z(Y ′) be the pseudo-distributions such that WY (ζ̂) = W and WY (ζ̂
′) = W ′.

We claim that there always exists ζadj ∈ Z (Y ) ∩ Z (Y ′) such that

1. |g(W (ζ))− g(W (ζadj)| ⩽ 2n
k ·
(
(10)10k300 + 1

)
⩽ 3 · (10)10k300n ,

2. |gY ′(W (ζadj))− g(W (ζadj)| = 0 .

Note that in this case the second point is always true since g doesn’t depend on Y . Together with
Lemma B.1 these two inequalities will imply that∥∥∥W (ζ̂(Y ))−W (ζ̂(Y ′))

∥∥∥2
F
⩽ 18 · (10)10k300n .

By assumption on n, an application of Cauchy-Schwarz will give us the desired result.

So, let i be the index at which Y, Y ′ differ. We construct ζadj as follows: for all polynomials p of
degree at most 10t we let

Ẽζadj [p] =

{
Ẽζ [p] if p does not contain variables ziℓ for any ℓ ∈ [k]

0 otherwise.

By construction ζadj ∈ Z(Y ) ∩ Z(Y ′). Moreover, W (ζ),W (ζadj) differ in at most 2n/k entries.
Since all entries of the two matrices are in [0, 1], the first inequality follows by definition of the
objective function.
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D.1.2 Sensitivity of the resulting vectors

In this section we argue that if the algorithm does not reject in step 3 then the vectors ν(i) are stable
on adjacent inputs. Concretely our statement goes as follows:

Lemma D.10 (Stability of the ν(i)’s). Consider the settings of Theorem D.3. Suppose Algorithm D.5
does not reject in step 3, on adjacent inputs Y , Y ′ ∈ Y . Then for all but 6n

k50 indices i ∈ [n], it holds:∥∥∥ν(i)Y − ν
(i)
Y ′

∥∥∥
2
⩽ O

(
n−0.1

)
.

The proof of Lemma D.10 crucially relies on the next statement.
Lemma D.11 (Covariance bound). Consider the settings of Theorem D.3. Let W be the matrix
computed by Algorithm D.5 on input Y ∈ Y . For i ∈ [n], if ∥ϕ(Wi)∥1 ⩾ n

k ·
(
1− 10

k50

)
then ν(i)

induces a 2-explicitly 40-bounded distribution over Y .

Proof. First, by assumption notice that there must be at least n
k ·
(
1− 10

k50

)
entries of ϕ(Wi) larger

than 0.8. We denote the set of j ∈ [n] such that Wij ⩾ 0.8 by G . Let ζ ∈ Z(Y ) be the degree 10t
pseudo-distribution so that W = W (ζ(Y )). Since ζ satisfies P(Y ), for ℓ ∈ [k] it follows from the
moment bound constraint for s = 1 that for all unit vectors u it holds that

P 4

0 ⩽
k

n

n∑
j=1

zjℓ⟨yj − µ′
l, u⟩2 ⩽ 2

 ,

Using the SOS triangle inequality (cf. Fact I.2) 2

a,b
(a+ b)2 ⩽ 2(a2 + b2) it now follows that

0 ⪯ Ẽζ

k2
n2

∑
j ,j′∈[n]

zjℓzj′ℓ · (yj − yj′)
⊗2

 ⪯ 8Id

and thus

0 ⪯ Ẽζ

k2
n2

∑
ℓ∈[k]

∑
j ,j′∈[n]

ziℓzjℓzj′ℓ · (yj − yj′)
⊗2

 ⪯ 8Id .

Furthermore using P(Y ) 2 {ziℓziℓ′ = 0} for ℓ ̸= ℓ′ we have

Ẽζ

∑
ℓ∈[k]

∑
j ,j′∈[n]

ziℓzjℓzj′ℓ

 = Ẽζ

 ∑
ℓ∈[k] ,j∈[n]

ziℓzjℓ

 ·
 ∑

ℓ′∈[k] ,j′∈[n]

ziℓ′zj′ℓ′

 .

Now, for fixed j , j′ ∈ [n], using{
a2 = a , b2 = b

}
O(1)

{
1 + ab− a− b = 1− ab− (a− b)2 ⩾ 0

}
with a =

∑
ℓ∈[k] ziℓzjℓ and b =

∑
ℓ′∈[k] ziℓ′zj′ℓ′ we get

Ẽζ

∑
ℓ∈[k]

ziℓzjℓ

∑
ℓ′∈[k]

ziℓ′zj′ℓ′

 ⩾ Ẽζ

∑
ℓ∈[k]

ziℓzjℓ +
∑
ℓ′∈[k]

ziℓ′zj′ℓ′

− 1

= Wij +Wij′ − 1 .

Now if j, j′ ∈ G we must have

∑
ℓ∈[k]

Ẽζ [ziℓzjℓzj′ℓ] = Ẽζ

∑
ℓ∈[k]

ziℓzjℓ

∑
ℓ′∈[k]

ziℓ′zj′ℓ′

 ⩾ 0.6 .

Since ϕ(Wij) ⩽ 1 by definition and ∥ϕ(Wi)∥1 ⩾ n
k ·
(
1− 10

k50

)
, we conclude

∥ϕ(Wi)∥1
−2

 ∑
j ,j′∈[n]

ϕ(Wij)ϕ(Wij′) (yj − yj′)
⊗2
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⪯ 5 · k
2

n2

∑
j ,j′∈[n] ,ℓ∈[k]

Ẽζ [ziℓzjℓzj′ℓ] · (yj − yj′)
⊗2

⪯ 40Id .

as desired.

We can now prove Lemma D.10.

Proof of Lemma D.10. Let W,W ′ be the matrices computed by Algorithm D.5 in step 1 on input
Y, Y ′, respectively. Let G ⊆ [n] be the set of indices i such that

∥ϕ(W )i − ϕ(W ′)i∥1 ⩽ n0.8 .

Notice that |G| ⩾ n− n0.8 by Lemma D.9. Since on input Y the algorithm did not reject in step 3 we
must have

∥ϕ(W )∥1 ⩾
n2

k
·
(
1− 1

n0.1
− 1

k100

)
− n1.7 ⩾

n2

k
·
(
1− 2

k100

)
.

Let gW be the number of indices i ∈ G such that ∥ϕ(W )i∥1 ⩾ n
k ·
(
1− 1

k50

)
. It holds that

n2

k
·
(
1− 2

k100

)
⩽ gW ·

n

k
+ (n− |G|) · n

k
+ (|G| − gw)

n

k
·
(
1− 1

k50

)
⩽ gW ·

n

k
· 1

k50
+

n1.8

k
+

n2

k
·
(
1− 1

k50

)
⩽ gW ·

n

k
· 1

k50
+

n2

k
·
(
1 +

1

k100
− 1

k50

)
.

Rearring now yields

gW ⩾ n ·
(
1− 3

k50

)
.

Similarly, let gW ′ be the number of indices i ∈ G such that ∥ϕ(W ′)i∥1 ⩾ n
k ·
(
1− 1

k50

)
. By an

analogous argument it follows that gW ′ ⩾ n ·
(
1− 3

k50

)
. Thus, by the pigeonhole principle there are

at least gW ⩾ n ·
(
1− 6

k50

)
indices i such that

1. ∥ϕ(W )i∥1 ⩾ n
k

(
1− 1

k50

)
,

2. ∥ϕ(W ′)i∥1 ⩾ n
k

(
1− 1

k50

)
,

3. ∥ϕ(W )i − ϕ(W ′)i∥1 ⩽ n0.8 .

Combining these with Lemma D.11 we may also add

4. the distribution induced by ∥ϕ(Wi)∥−1
1 ϕ(Wi) is 2-explicitly 40-bounded,

5. the distribution induced by ∥ϕ(W ′
i )∥

−1
1 ϕ(W ′

i ) is 2-explicitly 40-bounded.

Using that for non-zero vectors x, y it holds that
∥∥∥ x
∥x∥ −

y
∥y∥

∥∥∥ ⩽ 2
∥x∥ ∥x− y∥ points 1 to 3 above

imply that∥∥∥∥ϕ(Wi)∥−1
1 ϕ(Wi)− ∥ϕ(W ′

i )∥
−1
1 ϕ(W ′

i )
∥∥∥
1
⩽

2n0.8

n
k ·
(
1− 1

k50

) = O
(
n−0.2

)
.

Hence, applying Theorem A.21 with t = 1 it follows that∥∥∥ν(i)Y − ν
(i)
Y ′

∥∥∥
2
⩽ O

(
n−0.1

)
.
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D.1.3 From low sensitivity to privacy

In this section we argue privacy of the whole algorithm, proving Lemma D.8. Before doing that we
observe that low-sensitivity is preserved with high probability under subsampling.

Fact D.12 (Stability of S). Consider the settings of Theorem D.3. Suppose Algorithm D.5 does not
reject in step 3, on adjacent inputs Y , Y ′ ∈ Y . With probability at least 1− e−nΩ(1)

over the random
choices of S, for all but 10n0.01

k50 indices i ∈ S, it holds:∥∥∥ν(i)Y − ν
(i)
Y ′

∥∥∥
2
⩽ O

(
n−0.1

)
.

Proof. There are at most 6n
k50 such indices in [n] by Lemma D.10. By Chernoff’s bound, cf. Fact E.4,

the claim follows.

Finally, we prove our main privacy lemma.

Proof of Lemma D.8. For simplicity, we will prove that the algorithm is (5ε, 5δ)-private. Let Y, Y ′ ∈
Y be adjacent inputs. By Lemma A.10 and Lemma D.9 the test in step 3 of Algorithm D.5 is
(ε, δ)-private.

Thus suppose now the algorithm did not reject in step 3 on inputs Y, Y ′. By composition (cf.
Lemma A.4) it is enough to show that the rest of the algorithm is (ε, δ)-private with respect to Y, Y ′

under this condition. Next, let ν(1)Y , . . . , ν
(n)
Y and ν

(1)
Y ′ , . . . , ν

(n)
Y ′ be the vectors computed in step 4

of the algorithm and S be the random set of indices computed in step 5.33 By Lemma D.10 and
Fact D.12 with probability 1− e−nΩ(1)

over the random choices of S we get that for all but 10n0.01

k50

indices i ∈ S, it holds that ∥∥∥ν(i)Y − ν
(i)
Y ′

∥∥∥
2
⩽ O

(
n−0.1

)
.

Denote this set of indices by G. Note, that we may incorporate the failure probability e−nΩ(1)

⩽
min {ε/2, δ/2} into the final privacy parameters using Fact I.3.

Denote by V,V′ the |S|-by-d matrices respectively with rows ν(i1)Y , . . . , ν
(i|S|)

Y and ν
(i1)
Y ′ , . . . , ν

(i|S|)

Y ′ ,
where i1, . . . , i|S| are the indices in S . Recall, that |G| rows of V and V′ differ by at most O

(
n−0.1

)
in ℓ2-norm. Thus, by the Gaussian mechanism used in step 6 (cf. Lemma A.12) and Lemma I.4 it is
enough to show that step 7 to step 9 of the algorithm are private with respect to pairs of inputs V
and V ′ differing in at most 1 row.34 In particular, suppose these steps are (ε1, δ1)-private. Then, for
m = n0.01 − |G| ⩽ 10n0.01

k50 , by Lemma I.4 it follows that step 6 to step 9 are (ε′, δ′)-differentially
private with

ε′ := ε+mε1 ,

δ′ := eεme(m−1)ε1δ1 + δ .

Consider steps 7 and 8. Recall, that in step 7 we invoke the histogram learner with parameters

b = k−15,q
u.a.r.∼ [0, b], α = k−10, β = n−10, δ∗ =

δ

n
, ε∗ = ε · 10k

50

n0.01
.

Hence, by Lemma A.13 this step is (ε∗, δ∗)-private since

8

ε∗α
· log

(
2

δ∗β

)
⩽

200 · k10 · n0.01

10 · k50 · ε
· log n =

20 · n0.01

k40 · ε
· log n ⩽ n ,

for ε ⩾ k−10. Step 8 is private by post-processing.

33Note that since this does not depend on Y or Y ′, respectively, we can assume this to be the same in both
cases. Formally, this can be shown, e.g., via a direct calculation or using Lemma A.4.

34Note that for the remainder of the analysis, these do not correspond to V and V′, since those differ in m
rows. Lemma I.4 handles this difference.
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Next, we argue that step 9 is private by showing that the average over the bins has small ℓ2-sensitivity.
By Lemma A.4 we can consider the bins B1, . . . ,Bk computed in the previous step as fixed. Further,
we can assume that the algorithm did not reject in step 8, i.e., that each bin contains at least n0.01

2k
points of V and V ′ respectively. As a consequence, every bin contains at least two (projections of)
points of the input V or V ′ respectively. In particular, it contains at least one (projection of a) point
which is present in both V and V ′. Fix a bin Bl and let ν̄∗ be such that it is both in V and V ′ and
Φν̄∗ ∈ Bl. Also, define

Sl :=
∣∣∣{j ∣∣∣ Φν̄

(j)
Y ∈ Bi

}∣∣∣ ,
S′
l :=

∣∣∣{j ∣∣∣ Φν̄
(j)
Y ′ ∈ Bi

}∣∣∣ .
Assume V and V ′ differ on index j. We consider two cases. First, assume that Φν̄

(j)
Y and Φν̄

(j)
Y ′

both lie in Bl. In this case, Sl = S′
l and using Lemma E.5 it follows that with probability n−100 ⩽

min {ε/2, δ/2} it holds that∥∥∥ν̄(j)Y − ν̄
(j)
Y ′

∥∥∥
2
⩽
∥∥∥ν̄(j)Y − ν̄∗

∥∥∥
2
+
∥∥∥ν̄∗ − ν̄

(j)
Y ′

∥∥∥ ⩽ 10 ·
(∥∥∥Φν̄

(j)
Y −Φν̄∗

∥∥∥
2
+
∥∥∥Φν̄

(j)
Y ′ −Φν̄∗

∥∥∥
2

)
⩽ 20 ·

√
d∗ · b ⩽ 200 · k−12 .

And hence we can bound∥∥∥∥∥∥∥
1

Sl
·

 ∑
Φν̄

(j)
Y ∈Bl

ν̄
(j)
Y

− 1

S′
l

·

 ∑
Φν̄

(j)

Y ′ ∈Bl

ν̄
(j)
Y ′


∥∥∥∥∥∥∥
2

⩽

∥∥∥ν̄(j)Y − ν̄
(j)
Y ′

∥∥∥
2

Sl
⩽

400 · k−11

n0.01
.

Next, assume that Φν̄
(j)
Y ̸∈ Bl and Φν̄

(j)
Y ′ ∈ Bl (the other case works symetrically). It follows that

Sl = S′
l − 1 and we can bound∥∥∥∥∥∥∥

1

Sl
·

 ∑
Φν̄

(j)
Y ∈Bl

ν̄
(j)
Y

− 1

S′
l

·

 ∑
Φν̄

(j)

Y ′ ∈Bl

ν̄
(j)
Y ′


∥∥∥∥∥∥∥
2

=
1

Sl · S′
l

·

∥∥∥∥∥∥∥S′
l

 ∑
Φν̄

(j)
Y ∈Bl

ν̄
(j)
Y

− (S′
l − 1)

 ∑
Φν̄

(j)

Y ′ ∈Bl

ν̄
(j)
Y ′


∥∥∥∥∥∥∥
2

=
1

Sl · S′
l

·

∥∥∥∥∥∥∥S′
l · ν̄

(j)
Y ′ +

 ∑
Φν̄

(j)

Y ′ ∈Bl

ν̄
(j)
Y ′


∥∥∥∥∥∥∥
2

=
1

Sl
·

∥∥∥∥∥∥∥ν̄(j)Y ′ −
1

S′
l

 ∑
Φν̄

(j)

Y ′ ∈Bl

ν̄
(j)
Y ′


∥∥∥∥∥∥∥
2

⩽

√
d∗ · b
Sl

⩽
20 · k−11

n0.01
.

Hence, the ℓ2-sensitivity is at most ∆ := 400·k−11

n0.01 . Since

2∆2 · log(2/(δ
∗/k))

(ε∗/k)2
= 32 · k−120 · log(2kn/δ)

ε2

and w′ ∼ N
(
0, 32 · k−120 · log(2kn/δ)ε2 · Id

)
it follows that outputing µ̂l is (ε∗/k, δ∗/k)-DP by the

Gaussian Mechanism that. By Lemma A.4 it follows step 9 is (ε∗, δ∗)-private.

Hence, by Lemma A.4 it follows that step 7 to step 9 are (2ε∗, 2δ∗)-differentially private. Using
m ⩽ 10n0.01

k10 it now follows by Lemma I.4 that step 6 to step 9 are (ε′, δ′)-private for

ε′ = ε+ 2mε∗ ⩽ 3ε ,

δ′ = 2eεme(m−1)2ε∗δ∗ + δ ⩽ 2me3ε · δ
n
+ δ ⩽ 3δ .

Thus, combined with the private check and Fact I.3 in step 3 the whole algorithm is (5ε, 5δ)-private.
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D.2 Utility analysis

In this section we reason about the utility of Algorithm D.5 and prove Theorem D.3. We first introduce
some notation.
Definition D.13 (True solution). Let Y be an input sampled from Model 1.2. Denote by W ∗(Y) ∈
W(Y) the matrix induced by the true solution (or ground truth). I.e., let

W ∗(Y)ij =

{
1 if i , j were both sampled from the same component of the mixture,
0 otherwise.

Whenever the context is clear, we simply write W∗ to ease the notation.

First, we show that in the utility case step 3 of Algorithm D.5 rejects only with low probability.
Lemma D.14 (Algorithm does not reject on good inputs). Consider the settings of Theorem D.3.
Suppose Y is a good set as per Definition D.6. Then

∥∥∥W (ζ̂(Y))
∥∥∥
1
⩾ n2

k ·
(
1− n−0.4 − 1

(10)10k300

)
and Algorithm D.5 rejects with probability at most exp

(
−Ω

(
n1.7

))
.

Proof. Since Y is good, there exists W∗ ∈ W(Y), corresponding to the indicator matrix of the true
solution, such that

g(W∗) = ∥W∗∥2F − 1010k300⟨J,W∗⟩ ⩽ n2

k
+ n1.6 − (10)10k300

(
n2

k
− n1.6

)
=

n2

k

(
1 +

k

n0.4
− (10)10k300

(
1− k

n0.4

))
.

Since g(W (ζ̂(Y))) ⩽ g(W∗) it follows that

(10)10k300⟨J,W (ζ̂(Y))⟩ ⩾ |g(W (ζ̂(Y)))| ⩾ n2

k

(
(10)10k300

(
1− k

n0.4

)
− 1− k

n0.4

)
.

Since,
∥∥∥W (ζ̂(Y))

∥∥∥
1
⩾ ⟨J,W (ζ̂(Y))⟩ the first claim follows rearranging the terms. This means

that the algorithm rejects only if |τ | ⩾ n1.7. Recall that τ ∼ tLap
(
−n1.6

(
1 + log(1/δ)

ε

)
, n1.6

ε

)
.

Hence,by Lemma A.11 it follows that

P
(
|τ | ⩾ n1.7

)
⩽

exp
(
−n1.7 + ε+ log(1/δ)

)
2− exp (−ε− log(1/δ))

= exp
(
−Ω

(
n1.7

))
.

The next step shows that on a good input Y the matrix ϕ(W (ζ̂(Y))) is close to the true solution.
Lemma D.15 (Closeness to true solution on good inputs). Consider the settings of Theorem D.3.
Suppose Y is a good set as per Definition D.6. Let W (Y) ∈ W(Y) be the matrix computed by
Algorithm D.5. Suppose the algorithm does not reject. Then

∥ϕ(W (Y))−W∗∥1 ⩽
n2

k
· 3

k98
.

The proof is similar to the classical utility analysis of the sum-of-squares program found, e.g., in
[30, 26]. We defer it to Appendix I.

Together, the above results imply that the vectors ν(i) computed by the algorithm are close to the true
centers of the mixture.
Lemma D.16 (Closeness to true centers). Consider the settings of Theorem D.3. Suppose Y is a
good set as per Definition D.6. Let W ∈ W(Y) be the matrix computed by Algorithm D.5. Suppose
the algorithm does not reject in step 3. Then for each ℓ ∈ [k], there exists n

k ·
(
1− 2

k47

)
indices

i ∈ [n], such that ∥∥∥ν(i)(W)− µℓ

∥∥∥
2
⩽ O

(
k−25

)
.
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Proof. We aim to show that for most indices i ∈ [n] the vectors ∥ϕ(Wi)∥−1
1 ϕ(Wi) and

∥W∗
i ∥

−1
1 W∗

i induce a 2-explicitly 40-bounded distribution over Y. If additionally the two vectors
are close in ℓ1-norm, the result will follow by Theorem A.21.

Note that ∥W∗
i ∥

−1
1 W∗

i induces a 2-explicitly 40-bounded distribution by Lemma D.7. By Markov’s
inequality and Lemma D.15 there can be at most n/k48 indices j ∈ [n] such that∥∥ϕ(W)j −W∗

j

∥∥
1
⩾

n

k
· 3

k50
.

Consider all remaining indices i. It follows that

∥ϕ(Wi)∥1 ⩾ ∥W∗
i ∥1 − ∥ϕ(W)i −W∗

i ∥1 ⩾
n

k
·
(
1− k

n0.4
− 3

k50

)
⩾

n

k
·
(
1− 10

k50

)
.

Hence, by Lemma D.11 the distribution induced by ∥ϕ(Wi)∥−1
1 ϕ(Wi) is 2-explicitly 40-bounded

distribution. Further, using ∥W∗
i ∥1 ⩾ n

k

(
1− k

n0.4

)
we can bound∥∥∥∥ϕ(Wi)∥−1

1 ϕ(Wi)− ∥W∗
i ∥

−1
1 W∗

i

∥∥∥
1
= ∥ϕ(Wi)∥−1

1 ∥W
∗
i ∥

−1
1 · ∥∥W

∗
i ∥1 ϕ(Wi)− ∥ϕ(Wi)∥1 W

∗
i ∥1

⩽ ∥ϕ(Wi)∥−1
1 ∥W

∗
i ∥

−1
1 · (|∥ϕ(Wi)∥1 − ∥W

∗
i ∥1| · ∥ϕ(Wi)∥1 + ∥ϕ(Wi)∥1 · ∥ϕ(Wi)−W∗

i ∥1)

⩽ ∥W∗
i ∥

−1
1 · 2 ∥ϕ(Wi)−W∗

i ∥1 ⩽
6

k50 ·
(
1− k

n0.4

) ⩽
7

k50
.

Hence, by Theorem A.21 for each l ∈ [k] there are at least n
k − n0.6 − n

k48 ⩾ n
k ·
(
1− 2

k47

)
indices i

such that ∥∥∥∥∥∥ν(i)(W)− ∥W∗
i ∥

−1
1

n∑
j=1

W∗
i,jyj

∥∥∥∥∥∥
2

⩽ O
(
k−25

)
.

The result now follows by standard concentration bounds applied to the distribution induced by
∥W∗

i ∥
−1
1 W∗

i .

An immediate consequence of Lemma D.16 is that the vectors ν̄(i) inherits the good properties of the
vectors ν(i) with high probability.
Corollary D.17 (Closeness to true centers after sub-sampling). Consider the settings of Theorem D.3.
Suppose Y is a good set as per Definition D.6. Let W ∈ W(Y) be the matrix computed by
Algorithm D.5. Suppose the algorithm does not reject. Then with high probability for each ℓ ∈ [k],
there exists n0.01

k ·
(
1− 150

k47

)
indices i ∈ S, such that∥∥∥ν̄(i) − µℓ

∥∥∥
2
⩽ O

(
k−25

)
.

Proof. For each ℓ ∈ [k], denote by Tℓ the set of indices in [n] satisfying∥∥∥ν(i)(W)− µℓ

∥∥∥
2
⩽ O

(
k−25

)
.

By Lemma D.16 we know that Tℓ has size at least n
k ·
(
1− 2

k47

)
. Further, let S be the set of indices

selected by the algorithm. By Chernoff’s bound Fact E.4 with probability 1 − e−nΩ(1)

, we have
|S ∩ Tℓ| ⩾ n0.01

k ·
(
1− 150

k47

)
. Taking a union bound over all ℓ ∈ [k] we get that with probability

1− e−nΩ(1)

, for each ℓ ∈ [k], there exists n0.01

k ·
(
1− 150

k47

)
indices i ∈ S such that∥∥∥ν(i)(W)− µℓ

∥∥∥
2
⩽ O

(
k−25

)
.

Now, we obtain the corollary observing (cf. Fact E.1 with m = 1) that with probability at least
1− e−nΩ(1)

, for all i ∈ S∥∥∥ν̄(i) − ν(i)(W)
∥∥∥
2
= ∥w∥2 ⩽ n−0.05 ·

√
log(2/δ)

ε
·
√
d ⩽ n−0.04 ⩽ O

(
k−25

)
.

41



For each ℓ, denote by Gℓ ⊆ S the set of indices i ∈ S satisfying∥∥∥ν̄(i) − µℓ

∥∥∥
2
⩽ O

(
k−25

)
.

Let G :=
⋃

ℓ∈[k]

Gℓ . We now have all the tools to prove utility of Algorithm D.5. We achieve this by

showing thst with high probability, each bin returned by the algorithm at step 7 satisfies Gℓ′ ⊆ Bℓ

for some ℓ , ℓ′ ∈ [k] . Choosing the bins small enough will yield the desired result.
Lemma D.18 (Closeness of estimates). Consider the settings of Theorem D.3. Suppose Y is a good
set as per Definition D.6. Let W ∈ W(Y) be the matrix computed by Algorithm D.5. Suppose the
algorithm does not reject. Then with high probability, there exists a permutation π : [k]→ [k] such
that

max
ℓ∈[k]

∥∥µℓ − µ̂π(ℓ)

∥∥
2
⩽ O

(
k−20

)
Proof. Consider distinct ℓ, ℓ′ ∈ [k]. By Corollary D.17 for each ν̄(i) , ν̄(j) ∈ Gℓ it holds that∥∥∥ν̄(i) − ν̄(j)

∥∥∥
2
⩽ C · k−25 ,

for some universal constant C > 0. Moreover, by assumption on µℓ, µℓ′ for each ν̄(i) ∈ Gℓ and
ν̄(j) ∈ Gℓ′ ∥∥∥ν̄(i) − ν̄(j)

∥∥∥
2
⩾ ∆−O

(
k−25

)
.

Thus, by Lemma E.5 with probability at least 1 − eΩ(d∗) ⩾ 1 − n−100 it holds that or each
ν̄(i) , ν̄(j) ∈ Gℓ and ν̄r ∈ Gℓ′ with ℓ′ ̸= ℓ ,∥∥∥Φν̄(i) −Φν̄(j)

∥∥∥
2
⩽ C∗ · k−25 and

∥∥∥Φν̄(i) −Φν̄(r)
∥∥∥
2
⩾ ∆− C∗ · k−25

for some other universal constant C∗ > C. Let QΦ(Gℓ) ⊆ Rd∗
be a ball of radius C∗ ·

(
k−25

)
such

that ∀i ∈ Gℓ it holds Φν̄(i) ∈ QΦ(Gℓ). That is, QΦ(Gℓ) contains the projection of all points in Gℓ .

Recall that d∗ = 100 log(n) ⩽ 100k5 and b = k−15. Let B = {Bi}∞i=1 be the sequence of bins
computed by the histogram learner of Lemma A.13 for Rd∗

at step 7 of the algorithm. By choice of
b, and since q is chosen uniformly at random in [0, b], the probability that there exists a bin B ∈ B
containing QΦ(Gℓ) is at least

1− d∗ · C
∗

b
·
(
k−25

)
⩾ 1− 100C∗

b
· k−20 ⩾ 1−O

(
k−5

)
,

where we used that d∗ = 100 log n ⩽ 100k5. A simple union bound over ℓ ∈ [k] yields that with
high probability for all ℓ ∈ [k] , there exists B ∈ B such that QΦ(Gℓ) ⊆ B . For simplicity, denote
such bin by Bℓ.

We continue our analysis conditioning on the above events, happening with high probability. First,
notice that for all l ∈ [k]

max
u,u′∈Bℓ

∥u− u′∥22 ⩽ d∗ · b2 ⩽ 100k−25 ⩽
∆− C∗k−25

k10
,

and thus there cannot be ℓ, ℓ′ ∈ [k] such that QΦ(Gℓ) ⊆ Bℓ and QΦ(G′
ℓ) ⊆ Bℓ . Moreover, by

Corollary D.17 and

min
ℓ∈[k]
|Gℓ| ⩾

n0.01

k
·
(
1− 150

k47

)
,

and hence

|S \ G| ⩽ n0.01 · 150
k47

=
n0.01

k
· 150
k46

it must be that step 7 returned bins B1, . . . ,Bk. This also implies that the algorithm does not reject.
Further, by Lemma E.5 for all ν̄(i), ν̄(j) such that Φν̄(i),Φν̄(j) ∈ Bl it holds that∥∥∥ν̄(i) − ν̄(j)

∥∥∥
2
⩽ C∗ ·

∥∥∥Φν̄(i) −Φν̄(j)
∥∥∥
2
⩽ C∗ ·

√
d∗ · b ⩽ O

(
k−12

)
.
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And hence, by triangle inequality, we get∥∥∥ν̄(i) − µl

∥∥∥
2
⩽ O

(
k−12

)
.

Finally, recall that for each ℓ ∈ [k],

µ̂l :=
1∣∣{j ∣∣ Φν̄(j) ∈ Bi

}∣∣ ·
 ∑

Φν̄(j)∈Bl

ν̄(j)

+w′ ,

where w′ ∼ N
(
0, N

(
0, 32 · k−120 · log(2kn/δ)ε2 · Id

))
. Since by choice of n, k, ε it holds that

32 · k−120 · log(2kn/δ)
ε2

⩽ O
(
k−90

)
,

we get with probability at least 1− e−kΩ(1)

for each ℓ ∈ [k], by Fact E.1, with m = 1, and a union
bound that

∥w′∥ ⩽ O
(
k−20

)
.

Since all ν̄(i) such that Φν̄(i) ∈ Bl are at most O
(
k−12

)
-far from µl, also their average is. We

conclude that
∥µ̂ℓ − µl∥2 ⩽ O(k−12) + ∥w∥2 ⩽ O(k−12) .

This completes the proof.

Now Theorem D.3 is a trivial consequence.

Proof of Theorem D.3. The error guarantees and privacy guarantees immediately follows combining
Lemma D.8, Lemma D.15, Lemma D.14 and Lemma D.18. The running time follows by Fact A.16.

E Concentration inequalities

We introduce here several useful and standard concentration inequalities.
Fact E.1 (Concentration of spectral norm of Gaussian matrices). Let W ∼ N (0, 1)m×n. Then for
any t, we have

P
(√

m−
√
n− t ⩽ σmin(W) ⩽ σmax(W) ⩽

√
m+

√
n+ t

)
⩾ 1− 2 exp

(
− t2

2

)
,

where σmin(·) and σmax(·) denote the minimum and the maximum singular values of a matrix,
respectively.

Let W′ be an n-by-n symmetric matrix with independent entries sampled from N(0, σ2). Then
∥W′∥ ⩽ 3σ

√
n with probability at least 1− exp(−Ω(n)).

Fact E.2 (Maximum degree of Erdős-Rényi graphs). Let G be an Erdős-Rényi graph on n vertices
with edge probability p. Then with probability at least 1−n exp(−np/3), any vertex in G has degree
at most 2np.
Fact E.3 (Gaussian concentration bounds). Let X ∼ N (0, σ2). Then for any t ⩾ 0,

max {P (X ⩾ t) ,P (X ⩽ −t)} ⩽ exp

(
− t2

2σ2

)
.

Fact E.4 (Chernoff bound). Let X1, . . . ,Xn be independent random variables taking values in
{0, 1}. Let X :=

∑n
i=1 Xi and let µ := EX. Then for any δ > 0,

P (X ⩽ (1− δ)µ) ⩽ exp

(
−δ2µ

2

)
,

P (X ⩾ (1 + δ)µ) ⩽ exp

(
− δ2µ

2 + δ

)
.

Lemma E.5 ([31]). Let Φ be a d-by-n Gaussian matrix, with each entry independently chosen from
N(0, 1/d). Then, for every vector u ∈ Rn and every α ∈ (0, 1)

P (∥Φu∥ = (1± α) ∥u∥) ⩾ 1− e−Ω(α2d) .
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F Linear algebra

Lemma F.1 (Weyl’s inequality). Let A and B be symmetric matrices. Let R = A − B. Let
α1 ⩾ · · · ⩾ αn be the eigenvalues of A. Let β1 ⩾ · · · ⩾ βn be the eigenvalues of B. Then for each
i ∈ [n],

|αi − βi| ⩽ ∥R∥ .
Lemma F.2 (Davis-Kahan’s theorem). Let A and B be symmetric matrices. Let R = A − B.
Let α1 ⩾ · · · ⩾ αn be the eigenvalues of A with corresponding eigenvectors v1, . . . , vn. Let
β1 ⩾ · · · ⩾ βn be the eigenvalues of B with corresponding eigenvectors u1, . . . , un. Let θi be the
angle between ±vi and ±ui . Then for each i ∈ [n],

sin(2θi) ⩽
2 ∥R∥

minj ̸=i |αi − αj |
.

G Convex optimization

Proposition G.1. Let f : Rm → R be a convex function. Let K ⊆ Rm be a convex set. Then y∗ ∈ K
is a minimizer of f over K if and only if there exists a subgradient g ∈ ∂f(y∗) such that

⟨y − y∗, g⟩ ⩾ 0 ∀y ∈ K.

Proof. Define indicator function

IK(y) =

{
0, y ∈ K,
∞, y /∈ K.

Then for y ∈ K, one has

∂IK(y) = {g ∈ Rm : ⟨g, y − y′⟩ ⩾ 0 ∀y′ ∈ K} .
Note y∗ is a minimizer of f over K, if and only if y∗ is a minimizer of f + IK over Rm, if and
only if 0m ∈ ∂(f + IK)(y

∗) = ∂f(y∗) + ∂IK(y
∗), if and only if there exists g ∈ ∂f(y∗) such that

⟨g, y − y∗⟩ ⩾ 0 for any y ∈ K.

Proposition G.2 (Pythagorean theorem from strong convexity). Let f : Rm → R be a convex
function. Let K ⊆ Rm be a convex set. Suppose f is κ-strongly convex over K. Let x∗ ∈ K be a
minimizer of f over K. Then for any x ∈ K, one has

∥x− x∗∥2 ⩽
2

κ
(f(x)− f(x∗)).

Proof. By strong convexity, for any subgradient g ∈ ∂f(x∗) one has

f(x) ⩾ f(x∗) + ⟨x− x∗, g⟩+ κ

2
∥x− x∗∥2 .

By Proposition G.1, ⟨x− x∗, g⟩ ⩾ 0 for some g ∈ ∂f(x∗). Then the result follows.

H Deferred proofs SBM

We prove Lemma C.9 restated below.
Lemma H.1 (Restatement of Lemma C.9). Consider the settings of Lemma C.8. With probability
1− exp(−Ω(n)) over G ∼ SBMn(γ, d, x),∥∥∥∥X̂(Y (G))− 1

n
xx⊤

∥∥∥∥2
F

⩽
800

γ
√
d
.

Proof. Recall K = {X ∈ Rn×n : X ⪰ 0, Xii = 1/n ∀i}. Let X∗ := 1
nxx

⊤. Since X̂ = X̂(Y (G))

is a minimizer of minX∈K∥Y (G)−X∥2F and X∗ ∈ K, we have∥∥∥X̂ − Y (G)
∥∥∥2
F
⩽ ∥X∗ − Y (G)∥2F ⇐⇒

∥∥∥X̂ −X∗
∥∥∥2
F
⩽ 2

〈
X̂ −X∗, Y (G)−X∗

〉
.
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The infinity-to-one norm of a matrix M ∈ Rm×n is defined as

∥M∥∞→1 := max {⟨u,Mv⟩ : u ∈ {±1}m, v ∈ {±1}n} .

By [28, Fact 3.2], every Z ∈ K satisfies

|⟨Z, Y (G)−X∗⟩| ⩽ KG

n
· ∥Y (G)−X∗∥∞→1 ,

where KG ⩽ 1.783 is Grothendieck’s constant. Similar to the proof of [28, Lemma 4.1], using
Bernstein’s inequality and union bound, we can show (cf. Fact H.2)

∥Y (G)−X∗∥∞→1 ⩽
100n

γ
√
d

with probability 1− exp(−Ω(n)). Putting things together, we have∥∥∥∥X̂(Y (G))− 1

n
xx⊤

∥∥∥∥2
F

⩽
400 ·KG

γ
√
d

,

with probability 1− exp(−Ω(n)).

Fact H.2. Let γ > 0, d ∈ N, x∗ ∈ {±1}n, and G ∼ SBM (γ, d, x∗). Let Y (G) =
1
γd

(
A(G)− d

nJ
)
, where A((G)) is the adjacency matrix of (G) with entries d/n on the diago-

nal. Then

max
x∈{±1}n

∣∣x⊤ (Y (G)− 1
nx

∗(x∗)⊤
)
x
∣∣ ⩽ 100n

γ
√
d

with probability at least 1− e−10n.

Proof. The result will follow using Bernstein’s Inequality and a union bound. Define E := Y (G)−
1
nx

∗(x∗)⊤. Fix x ∈ {±1}n and for 1 ⩽ i < j ⩽ n, let Zi,j := Ei,jxixj . Then x⊤Ex =
2
∑

1⩽i<j⩽n Zi,j . Note that

EZi,j = 0 ,

|Zi,j | ⩽
1

γn
·
(n
d
− 1
)
+

1

γdn
⩽

1

γd
,

EZ2
i,j = Var [Y (G)i,j ] ⩽ EY (G)2i,j ⩽ (1 + γ)

d

n
· 1

γ2n2

[(n
d
− 1
)2
− 1

γ2n2

]
+

1

γ2n2

⩽ (1 + γ)
1

dγ2n
+

1

γ2n2
⩽

3

γ2dn
.

By Bernstein’s Inequality (cf. [62, Proposition 2.14]) it follows that

P

∑
i<j

Zi,j ⩾
50n

γ
√
d

 ⩽ P

∑
i<j

Zi,j ⩾
n2

2
· 100n
γ
√
d

 ⩽ 2 exp

(
−

104

γ2d
3

γ2dn + 100
3γ2d3/2n

)

= 2 exp

(
− 104n

3 + 100√
d

)
⩽ exp (−50n) .

Hence, by a union bound over all x ∈ {±1}n it follows that

max
x∈{±1}n

∣∣x⊤ (Y (G)− 1
nx

∗(x∗)⊤
)
x
∣∣ ⩽ 100n

γ
√
d

with probability at least 1− e−10n.
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I Deferred proofs for clustering

In this section, we will prove Lemma D.15 restated below.
Lemma (Restatement of Lemma D.15). Consider the settings of Theorem D.3. Suppose Y is a good
set as per Definition D.6. Let W (Y) ∈ W(Y) be the matrix computed by Algorithm D.5. Suppose
the algorithm does not reject. Then

∥ϕ(W (Y))−W∗∥1 ⩽
n2

k
· 3

k98
.

We will need the following fact about our clustering program. Similar facts where used, e.g., in
[30, 26]. One difference for us is that we don’t have a constraint on the lower bound on the cluster
size indicated by our SOS variables. However, since we maximize a variant of the ℓ1 norm of the
second moment matrix of the pseudo-distribution this will make up for this.
Fact I.1. Consider the same setting as in Lemma D.15. Let 0 < δ ⩽ 1

1.5·1010 ·
1

k201 and denote by
C1, . . . ,Ck ⊆ [n] the indices belonging to each true cluster. Then W (Y) satisfies the following
three properties:

1. For all i, j ∈ [n] it holds that 0 ⩽ Wi,j ⩽ 1,

2. for all i ∈ [n] it holds that
∑n

j=1 Wi,j ⩽ n
k and for at least (1− 1

1000k100 )n indices i ∈ [n]

it holds that
∑n

j=1 Wi,j ⩾ (1− 1
(10)6k200 ) · nk ,

3. for all r ∈ [k] it holds that
∑

i∈Cr,j ̸∈Cr
Wi,j ⩽ δ · n

2

k .

We will prove Fact I.1 at the end of this section. With this in hand, we can proof Lemma D.15.

Proof of Lemma D.15. For brevity, we write W = W (Y). Since ϕ(W∗) = W∗ and ϕ is 10-
Lipschitz we can also bound

∥ϕ(W)−W∗∥1 ⩽ 10 · ∥W −W∗∥1 .

Let δ ⩽ 1
1.5·1010 ·

1
k201 and again let C1, . . . ,Ck ⊆ [n] denote the indices belonging to each

true cluster. Note that by assumption that Y is a good sample it holds for each r ∈ [k] that
n
k − n0.6 ⩽ |Cr| ⩽ n

k + n0.6.

Let r, r′ ∈ [k]. We can write

∥W −W∗∥1 =

k∑
r=1

∑
i,j∈Cr

|Wi,j − 1|+
k∑

r=1

∑
i∈Cr,j ̸∈Cr

|Wi,j − 0| (I.1)

Note that we can bound the second sum by k · δ n2

k using Item 3. Further, in what follows consider
only indices i such that

∑n
j=1 Wi,j ⩾ (1− 1

(10)6k200 ) · nk . By Item 2 we can bound the contribution
of the other indices by

1

1000k100
n ·
(n
k
+ n0.6

)
⩽

2

1000k100
· n

2

k
.

Focusing only on such indices, for the first sum in Eq. (I.1), fix r ∈ [k]. We will aim to show that most
entries of W are large if and only if the corresponding entry of W∗ is 1. By Item 3 and Markov’s
Inequality, it follows that for at least a (1− 1

1000k100 )-fraction of the indices i ∈ Cr it holds that∑
j ̸∈Cr

Wi,j ⩽ 1000k100 · δ n2

k·|Cr| ⩽ 1000k100δ · n
1−k·n−0.4 ⩽ 2000k101δ · nk ,

where we used that |Cr| ⩾ n
k − n0.6. Call such indices good. Notice that for good indices it follows

using Item 2 that ∑
j∈Cr

Wi,j ⩾ n
k · (1−

1

(10)6k200
− 2000k101δ) .
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Denote by G the number of j ∈ Cr such that Wi,j ⩾ 1− 1
1000k100 . Using the previous display and

that Wi,j ⩽ 1 we obtain

n
k ·
(
1− 1

(10)6k200
− 2000k101δ

)
⩽
∑
j∈Cr

Wi,j ⩽ G · 1 + (|Cr| −G) · (1− 1
1000k100 )

⩽ G · 1
1000k100 + n

k · (1 +
1

kn0.4 ) · (1− 1
1000k100 )

⩽ G · 1
1000k100 + n

k · (1 +
1

kn0.4 ) ,

where we also used |Cr| ⩽ n
k + n0.6. Rearranging now yields

G ⩾
n

k
·
(
1− 1

1000k100
− 103k99

n0.4
− 2 · 106k101δ

)
⩾

n

k
·
(
1− 2

1000k100
− 2 · 106k101δ

)
.

We can now bound∑
i,j∈Cr

|Wi,j − 1| =
∑

i,j∈Cr,i is good

|Wi,j − 1|+
∑

i,j∈Cr,i is not good

|Wi,j − 1|

⩽ |Cr| ·
(
(|Cr| −G) · 1 + |Cr| · 1

1000k100

)
+ 1

1000k100 · |Cr|2

⩽ |Cr|2 (1 + 1
500k100 )−G · |Cr|

⩽ n2

k2 (1 +
k

n0.4 )
2(1 + 1

500k100 )− n2

k2 (1− 2
1000k100 − 2 · 106k101δ)(1− k

n0.4 )

⩽ n2

k2 · (30 · 106k101δ + 11
500k100 ) ⩽ n2

k · (30 · 10
6k100δ + 11

500k101 )

⩽ n2

k ·
3

125k101 .

Putting everything together, it follows that

∥ϕ(W)−W∗∥2F ⩽ ∥ϕ(W)−W∗∥1 ⩽ 10 · n
2

k

(
δk +

2

1000k100
+ 3

125k100

)
⩽ n2

k ·
4

k100 ⩽ n2

k ·
3

k98 .

It remains to verify Fact I.1.

Proof of Fact I.1. Let P = Pn,k,t(Y) be the system of Eq. (Pn,k,t(Y )). Recall that Wi,j =

Ẽ
∑

l∈[k] zi,lzj,l. Since

P 4

0 ⩽
∑
l∈[k]

zi,lzj,l ⩽
∑
l∈[k]

zi,l ⩽ 1

 ,

it follows that 0 ⩽ Wi,j ⩽ 1. Further, for each i ∈ [n] it holds that

P 4

 ∑
j∈[n],l∈[k]

zj,lzi,l ⩽ n
k

∑
l∈[k]

zi,l ⩽ n
k


implying that

∑
j∈[n] Wi,j ⩽ n

k . Further, by Lemma D.14

∥W∥1 ⩾
n2

k
·
(
1− n−0.4 − 1

(10)10k300

)
⩾

n2

k
·
(
1− 1

(10)9k300

)
.

Denote by Wi the i-th row of W and by L the number of rows which have ℓ1 norm at least
(1− 1

(10)6k200 ) · nk . Since for all i it holds that ∥Wi∥1 ⩽ n
k it follows that

n2

k
·
(
1− 1

(10)9k300

)
⩽
∑
i∈[n]

∥Wi∥1 ⩽ L · n
k
+ (n− L) ·

(
1− 1

(10)6k200

)
· n
k

= L · 1
(10)6k200 ·

n

k
+

n2

k
·
(
1− 1

(10)6k200

)

47



Rearranging then yields L ⩾ (1− 1
1000k100 ) · n which proofs Item 2.

It remains to verify Item 3. Fix r, l ∈ [k] and define zl(Cr) =
k
n

∑
i∈Cr

zi,l. Let t > 0 be an integer.
We aim to show that for all unit vectors v it holds that

P 10t

zl(Cr) ·
1

∆2t

∑
r′ ̸=r

zl(Cr′)⟨µr − µr′ , v⟩2t ⩽
δ

k

 , (I.2)

where ∆ is the minimal separation between the true means. Before proving this, let us examine how
we can use this fact to prove Item 3. Note, that for all r ̸= r′ it holds that∑

s,u∈[k]

〈
µr − µr′ ,

µs−µu

∥µs−µu∥

〉2t
⩾ ∆2t .

Hence, if the above SOS proof indeed exists, we obtain∑
i∈Cr,j ̸∈Cr

Wi,j =

k∑
l=1

Ẽ
∑

i∈Cr,j ̸∈Cr

zi,lzj,l =
n2

k2
Ẽzl(Cr) ·

∑
r′ ̸=r

zl(Cr′)

⩽
n2

∆2tk2

∑
s,u∈[k]

Ẽzl(Cr) ·
∑
r′ ̸=r

zl(Cr)
〈
µr − µr′ ,

µs−µu

∥µs−µu∥

〉2t
⩽

δ

k
k2 · n

2

k2
= δ · n

2

k
.

In the remainder of this proof we will prove Eq. (I.2). We will use the following SOS version of the
triangle Inequality (cf. Fact I.2)

2t

x,y
(x+ y)2t ⩽ 22t−1(x2t + y2t) .

Recall that µ′
l =

k
n

∑n
i=1 zi,lyi and denote by µπ(i) the true mean corresponding to the i-th sample.

Let v be an arbitrary unit vector, it follows that

P 10t {zl(Cr) ·
1

∆2t

∑
r′ ̸=r

zl(Cr′)⟨µr − µr′ , v⟩2t

⩽ zl(Cr) ·
22t−1

∆2t

∑
r′ ̸=r

zl(Cr′)
(
⟨µr − µ′

l, v⟩2t + ⟨µr′ − µ′
l, v⟩2t

)
⩽

22t−1

∆2t

k∑
r=1

zl(Cr)⟨µr − µ′
l, v⟩2t =

22t−1

∆2t
· k
n

n∑
i=1

zi,l⟨µπ(i) − µ′
l, v⟩2t} ,

where we used that P 1

∑k
r=1 zl(Cr) ⩽ 1. Using the SOS triangle inequality again and that

P 2 zi,l ⩽ 1 we obtain

P 10t {zl(Cr) ·
1

∆2t

∑
r′ ̸=r

zl(Cr′)⟨µr − µr′ , v⟩2t

⩽
24t−1

∆2t
·

(
k · 1

n

n∑
i=1

⟨yi − µπ(i), v⟩2t +
k

n

n∑
i=1

zi,l⟨yi − µ′
l, v⟩2t

)
} .

We start by bounding the first sum. Recall that by assumption the uniform distribution over each true
cluster is 2t-explicitly 2-bounded. It follows that

2t {
1

n

n∑
i=1

⟨yi − µπ(i), v⟩2t =
1

k

k∑
r=1

k

n

∑
i∈Cr

⟨yi − µr, v⟩2t ⩽
1

k

k∑
r=1

k

n
· |Cr| · (2t)t · ∥v∥2t2 (I.3)

⩽

(
1 +

k

n0.4

)
· (2t)t ⩽ 2(2t)t} , (I.4)
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where we used that |Cr| ⩽ n
k + n0.6. To bound the second sum, we will use the moment bound

constraints. In particular, we know that

P 10t

{
k

n

n∑
i=1

zi,l⟨yi − µ′
l, v⟩2t ⩽ (2t)t

}
. (I.5)

Combining Eq. (I.4) and Eq. (I.5) now yields

P 10t

zl(Cr) ·
1

∆2t

∑
r′ ̸=r

zl(Cr′)⟨µr − µr′ , v⟩2t ⩽ k
22t+1(2t)t

∆2t
⩽ k

(
8t

∆2

)t
 .

Note that by assumption ∆ ⩾ O(
√
tk1/t). Overloading notation, we can choose the t parameter in

the SOS proof to be 202 times the t parameter in the lower bound in the separation to obtain35

∑
i∈Cr,j ̸∈Cr

Wi,j ⩽ δ · n
2

k
.

I.1 Small Lemmas

Fact I.2 (Lemma A.2 in [36]). For all integers t > 0 it holds that

2t

x,y
(x+ y)2t ⩽ 22t−1(x2t + y2t) .

Fact I.3. Let ε, δ > 0. LetM : Y → O be a randomized algorithm that, for every pair of adjacent
inputs, with probability at least 1 − γ ⩾ 1/2 over the internal randomness of Y36 satisfies (ε, δ)-
privacy. ThenM is (ε+ 2γ, δ + γ)-private.

Proof. Let X,X ′ be adjacent input and let B be the event under which M is (ε, δ)-private. By
assumption, we know that P (B) ⩾ 1− γ. Let S ∈ O, it follows that

P (M(X) ∈ S) = P(B) · P (M(X) ∈ S | B) + P(Bc) · P (M(X) ∈ S | Bc)

⩽ P (M(X) ∈ S | B) + γ

⩽ eεP (M(X) ∈ S | B) + δ + γ

⩽
eε

P (B)
· P (M(X) ∈ S) + δ + γ

⩽ e
ε+log

(
1

1−γ

)
· P (M(X) ∈ S) + (δ + γ)

⩽ eε+2γ · P (M(X) ∈ S) + (δ + γ) ,

where we used that log(1− γ) ⩾ −2γ for γ ∈ [0, 1/2].

I.2 Privatizing input using the Gaussian Mechanism

In this section, we will proof the following helpful lemma used in the privacy analysis of our clustering
algorithm (Algorithm D.5). In summary, it says that when restricted to some set our input has small
ℓ2 sensitivity, we can first add Gaussian noise proportional to this sensitivity and afterwards treat this
part of the input as "privatized". In particular, for the remainder of the privacy analysis we can treat
this part as the same on adjacent inputs. Note that we phrase the lemma in terms of matrix inputs
since this is what we use in our application. Of course, it also holds for more general inputs.

35Note that this influences the exponent in the running time and sample complexity only by a constant factor
and hence doesn’t violate the assumptions of Theorem D.3.

36In particular, this randomness is independent of the input
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Lemma I.4. Let V, V ′ ∈ Rn×d,m ∈ [n] and ∆ > 0 be such that there exists a set S of size at least
n−m satisfying

∀i ∈ S. ∥Vi − V ′
i ∥

2
2 ⩽ ∆2 ,

where Vi, V
′
i denote the rows of V, V ′, respectively. Let A2 : Rn×d → O be an algorithm that

is (ε2, δ2)-differentially private in the standard sense, i.e,., for all sets S ⊆ O and datasets
X,X ′ ∈ : Rn×d differing only in a single row it holds that

P (A2 (X) ∈ S) ⩽ eε2P (A2 (X
′) ∈ S) + δ2 .

Further, letA1 : Rn×d → Rn×d be the Gaussian Mechanism with parameters ∆, ε1, δ1. I.e., on input

M it samples W ∼ N
(
0, 2∆2 · log(2/δ1)

ε21

)n×d

and outputs M +W.

Then for

ε′ := ε1 +mε2 ,

δ′ := eε1me(m−1)ε2δ2 + δ1 .

A2 ◦A1 is (ε′, δ′)-differentially private with respect to V and V ′, i.e., for all sets S ⊆ O it holds that

P ((A2 ◦ A1) (V ) ∈ S) ⩽ eε
′
P ((A2 ◦ A1) (V

′) ∈ S) + δ′ .

Proof. Without loss of generality, assume that S = {1, . . . ,m}. Denote by V1, V2 the first m and
last n−m rows of V respectively. Analogously for V ′

1 , V
′
2 . We will later partitin the noise W of the

Gaussian mechanism in the same way. Further, for a subset A of Rn×n and Y ∈ Rm×n define

TA,Y =

{
X ∈ R(n−m)×n

∣∣∣∣ (XY
)
∈ A

}
⊆ R(n−m)×n .

Note that
(
X
Y

)
∈ A if and only if X ∈ TA,Y .

Let S ⊆ O. It now follows that

PA2,W [(A2 ◦ A1) (V ) ∈ S] = E
A2,W

[
⊮
{
V +W ∈ A−1

2 (S)
}]

= E
A2,W2

[
E
W1

[
⊮
{(

V1 +W1

V2 +W2

)
∈ A−1

2 (S)

}] ∣∣∣∣W2

]
= E

A2,W2

[
E
W1

[
⊮
{
V1 +W1 ∈ TA−1

2 (S),V2+W2

}] ∣∣∣∣W2

]
⩽ eε1 · E

A2,W2

[
E
W1

[
⊮
{
V ′
1 +W1 ∈ TA−1

2 (S),V2+W2

}] ∣∣∣∣W2

]
+ δ1

= eε1 · E
A2,W

[
⊮
{(

V ′
1 +W1

V2 +W2

)
∈ A−1

2 (S)

}]
+ δ1 ,

where the inequality follows by the guarantees of the Gaussian Mechanism. Further, we can bound

E
A2,W

[
⊮
{(

V ′
1 +W1

V2 +W2

)
∈ A−1

2 (S)

}]
= E

W

[
E
A2

[
⊮
{
A2

(
V ′
1 +W1

V2 +W2

)
∈ S

} ∣∣∣∣W]]
⩽ emε2 · E

W

[
E
A2

[
⊮
{
A2

(
V ′
1 +W1

V ′
2 +W2

)
∈ S

} ∣∣∣∣W]]
+me(m−1)ε2δ2

= emε2 · E
A2,W

[
⊮
{(

V ′
1 +W1

V ′
2 +W2

)
∈ A−1

2 (S)

}]
+me(m−1)ε2δ2 ,

where the inequality follows by the privacy guarantees of A2 combined with standard group privacy
arguments.

Putting the above two displays together and plugging in the definition of ε′, δ′ we finally obtain

PA2,W [(A2 ◦ A1) (V ) ∈ S] ⩽ eε
′
PA2,W [(A2 ◦ A1) (V

′) ∈ S] + δ′ .
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