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Abstract

Unsupervised monocular depth estimation techniques have demonstrated encour-
aging results but typically assume that the scene is static. These techniques suffer
when trained on dynamical scenes, where apparent object motion can equally be ex-
plained by hypothesizing the object’s independent motion, or by altering its depth.
This ambiguity causes depth estimators to predict erroneous depth for moving
objects. To resolve this issue, we introduce Dynamo-Depth, an unifying approach
that disambiguates dynamical motion by jointly learning monocular depth, 3D
independent flow field, and motion segmentation from unlabeled monocular videos.
Specifically, we offer our key insight that a good initial estimation of motion seg-
mentation is sufficient for jointly learning depth and independent motion despite the
fundamental underlying ambiguity. Our proposed method achieves state-of-the-art
performance on monocular depth estimation on Waymo Open [34] and nuScenes
[3] Dataset with significant improvement in the depth of moving objects. Code and
additional results are available at https://dynamo-depth.github.io.

1 Introduction

Embodied agents acting in the real world need to perceive both the 3D scene around them as well as
how objects around them might behave. For instance, a self-driving car executing a lane change will
need to know where the nearby cars are and how fast they are moving. Instead of relying on expensive
sensors such as LiDAR to estimate this structure, a promising alternative is to use commodity cameras.
This has motivated a long line of work on monocular depth estimation using neural networks.

While neural networks can learn to estimate depth, the dominant training approach requires expensive
3D sensors in the training phase. This limits the amount of training data we can capture, resulting
in downstream generalization challenges. One would prefer to train these depth estimators without
supervision, for e.g., using unlabeled videos captured from a driving car. This is possible to do if the
videos are produced by a camera moving in a static scene, since the apparent motion (i.e., optical
flow) of each pixel is then inversely proportional to the depth of the pixel. This provides a useful
supervisory signal for learning depth estimation and has been used effectively in the past [48, 36].

However, for unsupervised approaches to learn depth, dynamic scenes with moving objects pose
a challenge. Here, the apparent pixels motion on the image plane is a combined effect of camera
ego-motion (or rigid scene motion) and the independent motion of objects in the scene. Methods that
ignore the presence of moving objects and treat the scene as static will then learn erroneous depth,
where the depths of moving objects are altered to match their observed motion, as shown in Figure 1
(b). Past works have tried to overcome this issue by having another module predict independent
object motion [31, 24, 15], but the presence of multiple equivalent solutions makes training difficult:
even with sophisticated regularizers, the training can converge to the degenerate solution of either
predicting the whole scene as static with incorrect depth, or predicting the entire scene as moving on a
flat canvas. This results in depth error on moving objects at least 4 times as large as the error on static
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Figure 1: Visualization of erroneous cases of infinite object depth and floating objects that arise
from the static scene constraint. The motion of the black SUVs and white van are explained via
(b) incorrect depth predictions to generate (c) the correct rigid flow for reconstruction under the
static scene constraint. In contrast, Dynamo-Depth predicts (d) correct monocular depth by explicitly
disentangling (f) the 3D independent flow field from (e) the camera ego-motion induced rigid flow.

background even for state-of-the-art methods. Since navigating safely around moving objects is a
primary challenge in self-driving, poor depth estimation of moving objects is particularly problematic.

In this paper, we propose a new architecture and training formulation for this unsupervised learning
problem that substantially improves depth accuracy for moving objects. Our key insight is that we
need a good initial estimate for which pixels are independently moving (a “motion mask”). With this
motion mask at hand, one can easily train depth estimation using the static pixels, and account for
independent motion to correctly estimate the depth of the moving objects. However, the challenge
is obtaining this motion mask in the first place: how do we identify which pixels are independently
moving? First, we introduce two separate network modules that predict complete 3D scene flow and
camera ego-motion. The difference between these can then be used to identify the moving objects.
Second, we introduce a novel initialization scheme that stops depth training early to prevent the depth
estimator from learning erroneous depth for the moving objects. This allows the motion estimation
networks to learn the correct scene flow. In sum, we make the following contributions:

1. We propose a new approach, Dynamo-Depth, for learning depth estimation for dynamic scenes
solely from unlabeled videos. In addition to monocular depth, Dynamo-Depth also predicts
camera ego-motion, 3D independent flow, and motion segmentation.

2. We propose a new architecture that identifies independent object motion via the difference
between the rigid flow field induced by camera ego-motion and a complete scene flow field to
facilitate learning and regularization.

3. We propose a novel motion initialization technique that learns an early estimation of motion
segmentation to explicitly resolve the ambiguity and disentangle independent motion from
camera ego-motion (Figure 1). This allows the entire architecture to learn end-to-end without
any additional supervision from auxiliary model predictions or ground-truth labels.

4. We evaluate on both nuScenes [3] and Waymo Open [34] and demonstrate not only state-of-the-
art performance in terms of overall depth accuracy and error, but also show large improvements
on moving objects by up to 62% relative gain in accuracy and 68% relative reduction in error,
while achieving up to 71.8% in F1 score in motion segmentation without any supervision.

2 Related Work

2.1 Unsupervised Monocular Depth Estimation

The framework for jointly learning monocular depth and ego-motion from unlabeled consecutive
frames was first explored in [48, 36], where the objective was posed as a novel-view synthesis problem.
Here, the monocular depth estimated from the target frame is coupled with the predicted ego-motion
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to warp the reference frame to be photometrically consistent with the target frame. Following these
works, 3D geometric consistency [28] and depth prediction consistency [1] were imposed across
consecutive frames to further constrain the unsupervised learning objective. Furthermore, discrete
volumes [19], uncertainty estimation [30], optical flow based pose estimation [47], minimal projection
loss with auto-masking [10], and multiple input frames during inference [40, 25] were also proposed
to improve depth predictions and mitigate influence of occlusion and relative stationary pixels.

Unsupervised Scene Flow. In addition to predicting depth from a single frame, a closely related
task of scene flow estimation - obtaining both the 3D structure and 3D motion from two temporally
consecutive images - can also be learned by leveraging the same novel-view reconstruction objective.
When trained on sequences of stereo-frames, scene flow can be estimated from both stereo [18, 41]
and monocular [16, 17] inputs during inference. Additionally, DRAFT [13] learned from monocular
sequences only by utilizing synthetic data and multiple consecutive frames during inference.

2.2 Mitigating Static Scene Constraint

In essence, the reconstruction objective encourages pixels to be predicted at an appropriate distance
away to explain its apparent motion on the image plane, when coupled with the predicted ego-motion.
This assumes that all pixel motion can be sufficiently modeled by depth and camera ego-motion
alone, which implies an underlying static scene. However, since dynamical objects are common in
the wild, such static scene assumption is often violated. To disambiguate independent motion, recent
works were proposed to leverage stereo-view information [38, 26, 11], additional input modalities
[45, 8], synthetic data [13], supervised segmentation task [21], and auxiliary monocular depth network
[33]. Extending from these methods, additional works proposed to mitigate the negative effects by
modeling the behavior of dynamical objects without the use of additional modalities and labels.

Modeling Independent Motion via Optical Flow. Although an explainability mask [48] can be used
to ignore the independently moving regions, recent works exploited the jointly learned optical flow to
refine the depth prediction under non-rigid scene settings. This includes predicting a residual optical
flow [43, 35] to account for dynamical objects and enforcing forward-backward flow consistency [49]
to discount dynamical regions. EPC++ [27] directly modeled the dynamical objects by integrating
its depth, ego-motion, and optical flow predictions. Additionally, CC [31] proposed a coordinated
learning framework for joint depth and optical flow estimation assisted by a segmentation branch.

Modeling Independent Motion via 3D Non-Rigid Flow Field. Instead of modeling dynamical
objects via 2D optical flow, additional works proposed to explicitly model their 3D independent
flow field to encourage accurate depth learning for dynamical objects. To facilitate independent
motion learning, various methods [4, 12, 22, 23, 2, 32] leveraged semantic priors from off-the-
shelf pretrained detection or segmentation models to estimate regions that are “possibly moving.”
Additionally, Dyna-DepthFormer [46] used multi-frame information to compute the depth map, while
iteratively refining the residual 3D flow field via a jointly trained motion network. Finally, Li et al.
[24] proposed to jointly learn monocular depth, ego-motion, and residual flow field via a sparsity loss
and RM-Depth [15] improved upon it via an outlier-aware regularization loss. Unlike [24, 15] where
the residual/independent flow is predicted directly, we propose to model the 3D independent flow
field via the complete scene flow, which facilitates training and effectively enforces sparsity.

3 Motivation and background

When a camera moves in a rigid scene, the apparent motion of image pixels is entirely explained
by (a) their 3D position relative to the camera, and (b) the motion of the camera. This fact is used
by unsupervised techniques that learn to predict depth from unlabeled videos captured as a camera
moves through the scene (as in driving footage). Concretely, one network predicts depth from a target
frame and another predicts the motion of the camera from the source frame to the target frame. The
two predictions are then used to reconstruct a target frame from the source frame, and a reconstruction
loss would serve as the primary training objective.

What happens if there are moving objects in the scene? Clearly, depth and camera-motion are not
sufficient to explain the apparent image motion of these objects, resulting in a high reconstruction
loss for these dynamical regions. In principle, the motion of these objects are unpredictable from a
single frame, and so even though the network sees a high loss for these objects, the best it can do is to
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fit the average case of a static object. As such, in principle, moving objects should not be a concern
for learning-based techniques. However, in practical driving scenes, there is a large class of moving
objects for which the network can in fact minimize the reconstruction loss by predicting an incorrect
depth estimate. We describe this class below.

Epipolar ambiguity in driving scenes:

Consider the simple case of a pinhole camera moving forward along the Z axis (i.e., along its viewing
direction). This is in fact the common case of a car driving down the road. In this case, the image
location (x, y) and corresponding optical flow (ẋ, ẏ) for a 3D point (X,Y, Z) in the world would be:

x =
X

Z
, y =

Y

Z
, ẋ =

−XŻ

Z2
= − Ż

Z
x, ẏ =

−Y Ż

Z2
= − Ż

Z
y (1)

Consider what happens when this 3D point is on an object moving collinear to the camera (e.g., cars
in front of the ego-car, or oncoming traffic). In this case, there are two contributions to Ż: the camera
motion and the independent motion of the object. Thus, given ego-motion, one can produce the same
optical flow by adding the appropriate amount of independent motion to Ż, or changing the depth Z.
For example, an object can appear to move faster if it is either closer and static (i.e., Z is smaller)
or it is farther and moving towards the camera (i.e., Ż is larger). This is a special case of epipolar
ambiguity [42]. This implies that it is possible to model independent motion under the static scene
constraint using an erroneous depth estimation. Unfortunately, there are statistical regularities that
enable such erroneous learning.

Statistical regularities:

In self-driving scenes, there is often enough information in object appearance to predict its motion
even from a single frame. The high capacity monocular depth network can learn to recover this
information, and then alter its depth prediction to better reconstruct the target frame. For instance, in
Figure 1 (b) the depth network may have learnt to recognize the backs of cars on the same or nearby
lanes. In the training data, cars seen from the back often travel in the same direction with similar
speed as the ego car, and thus have a very small optical flow in consecutive frames. The depth network
therefore predicts that the car should be very far away; thus correctly predicting its optical flow, but
incorrectly predicting its depth. A similar effect happens when the white van is recognized in its
frontal view on the opposite lane, and the depth network predicts it to be closer to the ego-car. This
allows the depth network to model the statistically-likely higher optical flow as a result of the object
moving towards the camera. Furthermore, the speed of the object can also be roughly estimated from
object identity (pedestrian < cyclist < car) and background context (residential < city < highway).
Therefore, by recognizing the statistical regularities that give away object motion, the depth model
can model the behavior of dynamical objects by predicting incorrect depth values to minimize the
reconstruction objective.

This suggests that simply training a depth network on dynamic scenes is not a good solution, and an
alternative framework is needed. However, we do note that learning these statistical regularities about
object motion is much harder than learning the depth of the static background, since the background
is a lot more consistent in its optical flow across videos and frames. Thus, we observe that this kind
of overfitting to dynamical objects only happens later in training; a fact we use below.

4 Method

Following past works, we formulate the learning objective as a novel-view synthesis where the target
frame is reconstructed from the source frame. As shown in Section 3, modeling the rigid flow induced
by camera motion alone is not sufficient for modeling the behavior of dynamical objects and causes
performance degradation for moving objects. We address this by learning a separate 3D flow field
that captures the independent motion of dynamical objects.

4.1 Architecture

The proposed architecture (Figure 2) contains two components that collaborate together to explain the
apparent pixels motion on the image plane. Section 4.1.1 details the rigid motion networks that model
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Figure 2: Overview of the proposed Dynamo-Depth. The target frame It is reconstructed from
source frame Is by composing the 3D rigid flow FR (predicted via Depth D & Pose P) and 3D
independent flow FI (predicted via Complete Flow C & Motion Mask M). 1

the 3D rigid flow field (motion induced by camera while assuming a static scene), which includes
the depth network D and ego-motion pose network P . Section 4.1.2 details the independent motion
networks that model the 3D independent flow field (motion of dynamical objects), which includes the
complete flow network C and motion mask network M.

4.1.1 Rigid Motion Networks: Depth D & Pose P

Given a source frame Is and a target frame It, we compute the 3D rigid flow induced by camera
motion, FR(pt), for each target pixel pt as follows. We first obtain the monocular depth map dt by
passing It to the depth network D (Eq. 2). We pass Is and It to the ego-motion pose network P to
obtain the relative camera pose Tt−→s (rotation and translation) (Eq. 3). We then use the depth and
inverse camera intrinsics K−1 to back-project every target pixel pt to compute its 3D location Pt,
and transform Pt into its corresponding 3D location, P̂s, in the source frame via Tt−→s. (Eq. 4). The
“rigid flow” induced by camera motion is then simply FR(pt) = P̂s − Pt. 2

D : RH×W×3 −→ RH×W dt = D(It) (2)

P : RH×W×3 × RH×W×3 −→ R3×4 Tt−→s = P(It, Is) (3)

Pt = dt(pt)K
−1−→pt , P̂s = Tt−→s

−→
Pt, FR(pt) = P̂s − Pt ∈ R3 (4)

4.1.2 Independent Motion Networks: Complete Flow C & Motion Mask M

In addition to the rigid flow FR, we also wish to model object motion via the 3D independent
flow, denoted as FI . With independent motion explicitly modeled by FI , we reformulate P̂s as
P̂s = (FI(pt) + FR(pt) + Pt) to integrate the contribution of the independent flow vector FI(pt).
However, directly estimating FI via a network turns out to be difficult for two reasons:

(a) Learning. During training, the network will need to fill in the missing independent motion vector
that is appropriate for the current separately predicted monocular depth and ego-motion for a correct
reconstruction: a “moving target” during training. Furthermore, it is intuitively much more difficult to
learn and predict independent motion directly when the apparent motion in the input frames consists
of both rigid and independent motion entangled together, especially in the ambiguous scenarios
illustrated in Section 3.

(b) Regularization. Adding to this complexity, FI(pt) should be non-zero if and only if the pixel
It(pt) is independently moving. One could regularize this network to encourage sparsity, but early
on when depth and ego-motion predictions are noisy, a high sparsity term would encourage this

1FC , FR, FI and FI + FR are all 3D flow fields visualized as optical flow on the image plane.
2−→· denotes the conversion from Cartesian to homogeneous coordinate.
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network to turn off entirely. At the other end of the spectrum, a weak sparsity regularization allows
independent flow FI to be active on static regions of the scene, which would “explain away” the
rigid motion FR(pt) when computing P̂s and corrupt the learning signal for depth estimation. Also,
conventional sparsity regularization on FI (e.g., L1/2 sparsity loss [24]) would dampen the magnitude
of predicted motion, which reduces FI ’s capacity to model fast or far-away moving objects.

To address these issues, we propose to decompose the prediction of independent flow FI(pt) in two:
(1) predicting whether pixel It(pt) is independently moving and (2) predicting how it is moving. For
(1), we model the probability of independent motion as a binary motion segmentation task where
motion mask network M takes the consecutive frames It and Is and predict a per-pixel motion
mask M as shown in Eq. 5. For (2), instead of directly predicting the independent motion, we predict
the complete scene flow FC(pt) via a complete flow network C as shown in Eq. 6.

M : RH×W×3 × RH×W×3 → RH×W M = σ(M(It, Is)) (5)

C : RH×W×3 × RH×W×3 → RH×W×3 FC = C(It, Is) (6)
From these predictions, we formulate the independent flow field as FI = M · (FC − FR), i.e.,
the residual flow between FC and FR gated by the motion mask M . Intuitively, computing
P̂s = (FI(pt) + FR(pt) + Pt) can be thought of as combining the contribution of the complete flow
FC(pt) and rigid flow FR(pt) as a weighted average via M(pt) (Eq. 8).

FI = M · (FC − FR) (7)

P̂s = FI(pt) + FR(pt) + Pt = M(pt) · FC(pt) + (1−M(pt)) · FR(pt) + Pt (8)
This formulation directly resolves the two aforementioned issues. For (a), C has a simpler learning
objective of modeling the full scene flow with per-pixel predictions, i.e. P̂s = FC(pt) + Pt. For (b),
the sparsity regularization can be applied to M alone without any impact to the learning of C and its
ability to learn the complete scene flow.

Finally, we compute the reconstruction Ît(pt) by sampling Is at the corresponding pixel coordinate
p̂s via

−→
p̂s ≡ KP̂s for every target pixel pt.

4.2 Loss Function

We present the overall loss function in Eq. 9. The photometric loss Lrecon in Eq. 10 serves as the
main learning objective, which evaluates the reconstruction Ît via SSIM [39] and L1 weighted by α.

L = Lrecon + Ls + γcLc + γmLm + γgLg (9)

Lrecon =
α

2
(1− SSIM(It, Ît)) + (1− α)||It − Ît||1 (10)

The smoothness loss Ls in Eq. 11 regularizes the smoothness of the predicted depth map dt, complete
flow FC , and motion mask M . The edge-aware smoothness loss ls(z, I) = |δxz| exp(−|δxI|) +
|δyz|| exp(−|δyI|) is weaker around pixels with high color variation. We also use the mean-
normalized inverse depth d∗

t to discourage shrinking of the estimated depth [37].
Ls = γsdls(d

∗
t , It) + γscls(FC , It) + γsmls(M , It) (11)

The motion consistency loss Lc in Eq. 12 computes the flow discrepancy FD(p) between the complete
scene flow FC(p) and rigid flow FR(p) for static pixels. The probability of pixel p being static is
approximated by (1−M(p)).

Lc =
1

HW

∑
p

(1−M(p)) · FD(p), FD(p) = ||FC(p)− FR(p)||1 (12)

The motion sparsity loss Lm in Eq. 13 considers all pixels with flow discrepancy FD lower than the
mean value over the frame as putative background, and encourages the motion mask to be 0 by using
the cross entropy against label 0⃗, which is denoted as g(·).

Lm = g
(
{M(p) : ∀p s.t. FD(p) ≤ mean(FD)}

)
(13)

Finally, the above-ground loss Lg in Eq. 14 penalizes projected 3D points below the estimated ground
plane (via RANSAC) where dgt denotes the mean-normalized inverse depth of the ground plane.

Lg =
1

HW

∑
p

ReLU(dgt (p)− d∗
t (p)) (14)
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4.3 Motion Initialization

Since the reconstruction loss is the main learning signal in the unsupervised approach, the gradient
from the reconstruction loss between It and Ît at pixel pt would propagate through the computed
sample coordinate

−→
p̂s ≡ KP̂s ≡ K(FI(pt)+FR(pt)+Pt). Here, although it may be ideal to jointly

train all models end-to-end from start to finish, in practice, updating the rigid flow vector FR(pt) and
the independent flow vector FI(pt) jointly from the start would cause the learning problem to be
ill-posed, since each component has the capacity to overfit and explain away the other’s prediction.
Due to the ambiguity between camera motion and object motion as discussed in Section 3, the image
reconstruction error alone is not a strong enough supervisory signal to enforce the accurate prediction
of all underlying sub-tasks jointly, as a family of solutions of depth and object motion would all
satisfy the training objective, ranging from predicting the whole scene as static with incorrect depth
to predicting the scene as moving objects on a flat canvas.

Here, we offer our key insight that a good initial estimate of motion segmentation M would
allow the system to properly converge without arising degenerate solutions. As shown in Eq. 8,
P̂s = M(pt) ·FC(pt)+ (1−M(pt)) ·FR(pt)+Pt. For any pixel pt, P̂s ≈ FC(pt)+Pt if M(pt)
is near 1, and approximates FR(pt) +Pt if M(pt) is near 0. From this, it is clear that a good motion
mask would route the back-propagating gradient to the complete flow network C via FC if pt is
moving and route the gradient to the rigid motion networks D and P via FR(pt) if pt is static.

Of course, the question is how one can initialize a good motion mask, since it requires identifying the
moving objects. Ideally, moving objects would be identified as the pixels that are poorly reconstructed
based on depth and ego-motion alone, but as discussed in Section 3, the depth network has the capacity
to alter its depth predictions and reconstruct even the moving objects. Nevertheless, we observe that
overfitting to the moving objects in this way is difficult, and only happens in later iterations. In earlier
training iterations, reconstruction errors for dynamical pixels are ignored (Appendix B.5).

To ensure a good motion mask M , we first train a depth network assuming a static scene, but stop
updates to the depth network at an early stage. We then initialize the independent motion networks C
and M from a coarse depth sketch predicted by this frozen early-stage depth network. Thus, without
access to any labels or auxiliary pretrained networks, we obtain an initialization for motion mask M
that helps in disambiguating and accurately estimating the rigid flow FR and independent flow FI .

5 Experiments

Dataset. While Dynamo-Depth is proposed for general applications where camera motion is infor-
mative for scene geometry, we focus our attention on the challenging self-driving setting, where the
epipolar ambiguity and the statistical regularities mentioned in Section 3 that lead to erroneous depth
predictions are highly prevalent. Specifically, we evaluate on three datasets - Waymo Open [34],
nuScenes [3], and KITTI [9] with Eigen split [6].

On all datasets, we only use the unlabeled video frames for training; ground truth LiDAR depth is
only used for evaluation. We evaluate both overall depth estimation accuracy, as well as accuracy
computed separately for static scene and moving objects. For the latter evaluation, we use Waymo
Open and nuScenes and identify moving objects by rectifying the panoptic labels with 3D box labels
to obtain masks for static/moving objects. It is worth quantifying the number of moveable objects
per frame in each dataset. Waymo Open has a mean of 12.12 with a median of 9. In nuScenes, the
mean is 7.78 with a median of 7. In KITTI, due to lack of per-frame labels, we approximate using
its curated object detection dataset, which only has a mean of 5.26 with a median of 4. Additional
dataset information and distribution histograms are found in Appendix C.

Model and Training setup. The proposed method is trained on four NVIDIA 2080 Ti with a total
batch size of 12 and an epoch size of 8000 sampled batches. Adam optimizer [20] is used with an
initial learning rate of 5e-5 and drops to 2.5e-5 after 10 epochs. Motion Initialization lasts 5 epochs
and takes place after the depth network and complete flow network have been trained for 1 epoch
each. After initialization, the system is trained for 20 epochs, totalling approximately 20 hours. The
hyperparameter values are the same for all experiments and are provided in Appendix B.1, along
with the rest of the details of the model architecture. To demonstrate the generality of the proposed
framework, we adopt two architectures for the depth network D, one with a ResNet18 [14] backbone
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Table 1: Depth evaluation on the KITTI (K), nuScenes (N), and Waymo Open (W) Dataset. IM stands
for independent motion where ✗ denotes a lack of independent motion modeling. Sem indicates the
amount of semantic information given during training, where ‘m’ indicates mask-level supervision
and ‘b’ indicates box-level supervision. Manual replication with released code is indicated by †.

IM Sem D Error metric (↓) Accuracy metric (↑)
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 [10] ✗ K 0.115 0.882 4.701 0.190 0.879 0.961 0.982
LiteMono [44] ✗ K 0.101 0.729 4.454 0.178 0.897 0.965 0.983
Struct2Depth [4] m K 0.141 1.026 5.290 0.215 0.816 0.945 0.979
Dyna-DM [32] m K 0.115 0.785 4.698 0.192 0.871 0.959 0.982
Lee et al. [23] b K 0.114 0.876 4.715 0.191 0.872 0.955 0.981
SGDepth [21] m K 0.113 0.835 4.693 0.191 0.879 0.961 0.981
Boulahbal et al. [2] m K 0.110 0.719 4.486 0.184 0.878 0.964 0.984
GeoNet [43] K 0.155 1.296 5.857 0.233 0.793 0.931 0.973
EPC++ [27] K 0.141 1.029 5.350 0.216 0.816 0.941 0.976
CC [31] K 0.140 1.070 5.326 0.217 0.826 0.941 0.975
TrianFlow [47] K 0.113 0.704 4.581 0.184 0.871 0.961 0.984
Li et al. [24] K 0.130 0.950 5.138 0.209 0.843 0.948 0.978
RM-Depth [15] K 0.107 0.687 4.476 0.181 0.883 0.964 0.984
Dynamo-Depth (MD2) K 0.120 0.864 4.850 0.195 0.858 0.956 0.982
Dynamo-Depth K 0.112 0.758 4.505 0.183 0.873 0.959 0.984

Monodepth2† [10] ✗ N 0.425 16.592 10.040 0.402 0.723 0.837 0.887
LiteMono† [44] ✗ N 0.419 15.578 9.807 0.449 0.720 0.831 0.879
Dynamo-Depth (MD2) N 0.193 2.285 7.357 0.287 0.765 0.885 0.935
Dynamo-Depth N 0.179 2.118 7.050 0.271 0.787 0.896 0.940

Monodepth2† [10] ✗ W 0.173 2.731 7.708 0.227 0.797 0.930 0.968
LiteMono† [44] ✗ W 0.158 2.305 7.394 0.210 0.816 0.944 0.976
Struct2Depth [4] m W 0.180 1.782 8.583 0.244 - - -
Li et al. [24] m W 0.157 1.531 7.090 0.205 - - -
Lee et al. [23] b W 0.148 1.686 7.420 0.210 - - -
Li et al. [24] W 0.162 1.711 7.833 0.223 - - -
Dynamo-Depth (MD2) W 0.130 1.439 6.646 0.183 0.851 0.959 0.985
Dynamo-Depth W 0.116 1.156 6.000 0.166 0.878 0.969 0.989

from Monodepth2 [10] and another with a CNN/Transformer hybrid backbone from LiteMono [44],
denoted as Dynamo-Depth (MD2) and Dynamo-Depth, respectively. To be commensurate with
baselines, the encoders are initialized with ImageNet [5] pretrained weights.

Metrics. Depth performance is reported via commonly used metrics proposed in [7], including 4
error metrics (Abs Rel, Sq Rel, RMSE, and RMSE log) and 3 accuracy metrics (δ < 1.25, δ < 1.252,
and δ < 1.253). We also report precision-recall curve for evaluating binary motion segmentation.

5.1 Monocular Depth Estimation

As shown in Table 1, our proposed approach outperforms prior arts on both nuScenes and Waymo
Open across all metrics, with over 57% and 21% reduction in overall Abs Rel for nuScenes and
Waymo Open, respectively. This improvement is significant: we repeat the experiment for Dynamo-
Depth on Waymo Open 3 times and obtained a 95% confidence interval of 0.119± 0.003 for Abs Rel
and 0.874± 0.004 for δ < 1.25. This suggests the challenge and importance of estimating accurate
depth for moving objects in realistic scenes. On KITTI, our approach is competitive with prior art.
However, KITTI has fewer moveable objects, which better conforms to the static scene constraint
and diminishes the importance in modeling independent motion. For instance, LiteMono [44], which
does not model independent motion, demonstrates superior performance on KITTI but drastically
underperforms in nuScenes and Waymo Open, with both datasets having many more moving objects.

To further evaluate the effectiveness of our approach in modeling independent motion, we split
nuScenes and Waymo Open into static background, static objects and moving objects and evaluate
depth estimation performance on each partition. As we adopt our depth model from Monodepth2 [10]
and LiteMono [44], in Table 2, we compare our approach against the respective baseline with the same
depth architecture. For simplicity, we report Abs Rel and δ < 1.25. Notably, by explicitly modeling
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Table 2: Depth evaluation with semantic split on the nuScenes (N) and Waymo Open (W) Dataset.
S.B., S.O. and M.O. denotes the partition of pixels that are static background, static moveable object
and moving object, respectively. Manual replication with released code is indicated by †.

D Abs Rel (↓) δ < 1.25 (↑)
All S.B. S.O. M.O. All S.B. S.O. M.O.

Monodepth2† [10] N 0.425 0.447 0.232 0.418 0.723 0.735 0.704 0.570
Dynamo-Depth (MD2) N 0.193 0.196 0.196 0.228 0.765 0.761 0.759 0.684
∆ (%) -54.6 -56.2 -15.5 -45.5 +5.8 +3.5 +7.8 +20.0
LiteMono† [44] N 0.419 0.431 0.248 0.502 0.720 0.734 0.718 0.517
Dynamo-Depth N 0.179 0.184 0.182 0.198 0.787 0.781 0.774 0.753
∆ (%) -57.3 -57.3 -26.6 -60.6 +9.3 +6.4 +7.8 +45.6

Monodepth2† [10] W 0.173 0.152 0.215 0.749 0.797 0.810 0.683 0.416
Dynamo-Depth (MD2) W 0.130 0.122 0.175 0.234 0.851 0.862 0.778 0.674
∆ (%) -24.9 -19.7 -18.6 -68.8 +6.8 +6.4 +13.9 +62.0
LiteMono† [44] W 0.158 0.140 0.179 0.599 0.816 0.827 0.733 0.506
Dynamo-Depth W 0.116 0.110 0.155 0.194 0.878 0.891 0.812 0.750
∆ (%) -26.6 -21.4 -13.4 -67.6 +7.6 +7.7 +10.8 +48.2

K
IT

TI
W

ay
m

o 
O

pe
n 

D
at

as
et

nu
S

ce
ne

s

(a) Input Frames (b) Monocular Depth (c) Rigid Flow (d) Independent Flow (e) Motion Mask

Figure 3: Qualitative results of our proposed approach that learns from (a) unlabeled video sequences
and predicts (b) monocular depth, (c) rigid flow, (d) independent flow, and (e) motion segmentation. 3

independent motion, we observe a consistent and significant improvement on moving objects (M.O.)
across both architectures and both datasets, with over 48% relative improvement in accuracy and
over 67% relative reduction in error for both architectures on Waymo Open. Additionally, we see
a substantial improvement on both static moveable objects (S.O.) and static background (S.B.) for
both datasets and both architectures. Interestingly, the large reduction in error on static background
in nuScenes does not match the corresponding improvement in accuracy, as the large errors on
background mainly come from night-time instances where all methods fail, but differ in their
respective artifacts (discussed further in Appendix D.2).

3All motion segmentation in (e) are uniformly visualized with a range of [0, 1], and corresponding video
sequences that contain each example are found in https://dynamo-depth.github.io.
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Table 3: Depth ablation results on the Waymo Open Dataset with Dynamo-Depth.

Lc
Motion

Lg
ImageNet Abs Rel (↓) δ < 1.25 (↑)

Initialization Pretraining All S.B. S.O. M.O. All S.B. S.O. M.O.

✗ 0.525 0.489 0.625 0.447 0.254 0.274 0.210 0.325
✗ 0.522 0.487 0.621 0.444 0.256 0.275 0.212 0.326

✗ 0.266 0.237 0.167 0.211 0.816 0.844 0.792 0.743
✗[2] 0.136 0.132 0.177 0.201 0.833 0.839 0.778 0.730

0.116 0.110 0.155 0.194 0.878 0.891 0.812 0.750

In sum, by explicitly modeling independent motion, we are able to outperform the respective baselines
and achieve state-of-the-art performances on both Waymo Open and nuScenes Dataset. Qualitative
results are found in Figure 1 and Figure 3, where “Static Scene Constraint” refers to performance of
LiteMono [44] in Figure 1.

5.2 Motion Segmentation and Method Ablation
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Figure 4: Precision-Recall curve for motion
segmentation on the Waymo Open Dataset.

Figure 4 evaluates the quality of the jointly learned
binary motion mask network using precision and
recall. We observe a high precision with increasing
recall, achieving a F1 score of 71.8% on Waymo
Open [34]. Note that this segmentation quality
is achieved without any labels. On nuScenes,
Dynamo-Depth achieves a F1 score of 42.8% with
57.2% on day-clear conditions and 21.1% on all
other conditions. Notably, the motion mask net-
work is able to segment out small dynamical ob-
jects, such as the cyclist in the first row of Figure 3.

In addition, we show our ablation results on Waymo
Open in Table 3. First, we found that ablating the
motion consistency loss removes the regularization
on the complete flow prediction, which causes the
degenerate solution of moving objects on a flat
canvas, as indicated by the poor segmentation per-
formance in Figure 4. Similarly, by ablating motion
initialization, initial independent motion prediction lead to large reconstruction errors, which diverges
depth training. In addition, we observe that ablating the above ground prior preserves the performance
of motion segmentation and depth of moving objects, but degrades the performance of depth on static
background. Intuitively, this prior regularizes the structural integrity of the ground plane. Finally, we
observed that the original set of hyperparameter values leads to training divergence when ablating the
ImageNet pretrained weights. To compensate, we increase the initial number of epochs for depth
learning from 1 to 2 (marked as ✗[2]) without performing any hyperparameter sweeps.

6 Conclusion

In this work, we identify the effects of dynamical objects in unsupervised monocular depth estimation
with static scene constraint. To mitigate the negative impacts, we propose to jointly learn depth,
ego-motion, 3D independent motion and motion segmentation from unlabeled videos. Our key insight
is that a good initial estimation of motion segmentation encourages joint depth and independent
motion learning and prevents degenerate solutions from arising. As a result, our approach is able to
achieve state-of-the-art performance on both Waymo Open and nuScenes Dataset.

Limitations and Societal Impact. Our work makes a brightness consistency assumption, where the
brightness of a pixel will remain the same. Although common in optical flow, this assumption limits
the our method’s ability to model scenes with dynamical shadows, multiple moving light sources,
and lighting phenomenons (e.g., lens flare). In addition, our work does not introduce any foreseeable
societal impacts, but will generally promote more label-efficient and robust computer vision models.
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A Visualizations

In Figure 5, we show qualitative comparison between LiteMono [44] and our Dynamo-Depth. We
select absolute relative difference (Abs Rel in quantitative results) as the measure of error, as shown
in Eq. 15 with predicted depth d, ground truth depth d∗, and pixel coordinate p.

Abs Rel(p) =
{
|d(p)− d∗(p)|/d∗(p), if p is a LiDAR point
0, otherwise

(15)
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Figure 5: Qualitative comparison between LiteMono [44] and our proposed Dynamo-Depth. The
input frame is shown in column (a). Column (b) and (c) show the depth predictions and column (d)
and (e) show the absolute relative difference for each LiDAR point with a fixed error range of [0, 1].

B Implementational Details

B.1 Hyperparameters

Please refer to Table 4 for the hyperparameters used for training. The values are found via Waymo
Open and kept the same for other datasets. The trade-off coefficient α and depth smoothness
coefficient γsd are set to 0.85 and 0.001, respectively, as in [10]. The motion smoothness coefficient
γsc is set to 0.001 to be consistent with γsd and was not tuned further. The mask smoothness
coefficient γsm is set to a much higher value of 0.1 to remove sporadic false positives induced by
high frequency image features such as trees and buildings. Since both rigid motion FR and complete
motion FC have relatively small magnitudes, we set the motion consistency coefficient γc to be 5.0
to properly enforce consistency. Due to the high loss values outputted by binary cross entropy, we set
the mask sparsity coefficient to be 0.04 to accommodate. The above ground coefficient γg is set to
0.1 after searching across the values 0.01, 0.1, and 1.0.

B.2 Architectural Details

The depth network D is adopted from two architectures, one with a ResNet18 [14] backbone from
Monodepth2 [10] and another with a CNN/Transformer hybrid backbone from LiteMono [44], denoted
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Table 4: List of hyperparameters used.

Hyperparameter Value

α 0.85
γsd 0.001
γsc 0.001
γsm 0.1
γc 5.0
γm 0.04
γg 0.1

as Dynamo-Depth (MD2) and Dynamo-Depth, respectively. For both versions of our model, the
pose network P is adopted from Monodepth2 [10]. The encoders of the complete flow network C
and motion mask network M are shared and have the same architecture as P . To obtain per-pixel
predictions, the features of the shared encoder are fed into the the separate decoders with the same
architecture as the depth decoder in Monodepth2 [10] and with output per-pixel dimension of 3 and 1
for C and M, respectively.

B.3 Training Details

For notational simplicity, Figure 2 only considers the case of a single source frame Is, while in
practice, Dynamo-Depth is trained with two source frames: one frame previous and one frame after
the target It. Here, the two respective reconstructions are rectified via a minimal projection loss
proposed in [10] to obtain Ît. To enforce forward-backward consistency, the independent motion
networks C and M predict a single independent flow field FI that is used to warp both source frames
into the target frame, with the appropriate sign change.

Following Monodepth2 [10] and LiteMono [44], we perform auto-masking to facilitate learning
during depth initialization. Afterwards, auto-masking is turned off as the apparently static pixels may
belong to dynamical objects traveling with the ego-camera, in which case auto-masking would mask
out the corresponding reconstruction loss essential for independent motion learning.

There is a linear weight ramp for all loss terms that include FC and M at the beginning of each
training stage, with the length of 2666 iterations for Waymo and nuScenes, and 8000 iterations for
KITTI due to the its limited number of moving objects.

B.4 Ground Plane Estimation

Concretely, 3D projected points (Pt in Eq. 4) belonging to the bottom half of the image are sampled
to construct the ground plane dgt via RANSAC (5 points are selected per iteration, for a total of 100
iterations). This assumption does break under cases of traffic jams, but due to the rare occurrence of
these scenarios for this learning task assuming a moving camera, the negative effects are limited.

B.5 Difficulties in Overfitting to Dynamical Objects

In Figure 6, we show a qualitative example where a depth network learned with static scene constraint
(LiteMono [44] in this case) would ignore the high reconstruction loss in earlier iterations in (b) and
overfit to the moving objects via erroneous depth predictions only in later iterations in (c)-(f).

(b) After 1 Epoch

Static Scene ConstraintInput

(a) Input Frames (c) After 2 Epochs (d) After 3 Epochs (e) After 5 Epochs (f) After 10 Epochs

Figure 6: Visualization of the overfitting phenomenon as shown via LiteMono [44], where erroneous
depth for the black SUV and the oncoming car is only learned in later iterations, in (c)-(f).

16



C Dataset Details

We provide additional information of the three datasets used for evaluation.

For the Waymo Open Dataset [34], 76,852 front camera image-triplets from the provided train set
containing 798 video sequences are used for training while 2,216 front camera images uniformly
sampled from the provided validation set containing 202 video sequences are used for evaluation.
During training, frames are downsampled to 480× 320. We rectify the panoptic labels [29] with 3D
box labels to obtain the corresponding masks for static and moving objects.
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Figure 7: Histogram of the number of moveable
objects per frame for all three dataset.

For the nuScenes Dataset [3], 79,760 front
camera image-triplets from the provided train
set containing 700 video sequences are used
for training while 6019 front camera images
from the official validation set containing 150
video sequences are used for evaluation (of
which 4449 are day-clear). Following [8], we
consider a sequence to be in the day-clear sub-
set if its description does not contain “night”
or “rain”. During training, frames are down-
sampled to 512× 288. We rectify the panop-
tic LiDAR labels with annotated 3D bounding
boxes to obtain motion attributes for LiDAR
points.

Notably, as our method learns to explicitly
model independent motion, there is no filter-
ing based on camera velocity recordings when
constructing the training dataset.

For the KITTI Dataset [9], we follow the Eigen split [6] with 39,180 image-triplets used for training
and 697 images used for evaluation. During training, frames are downsampled to 640× 192.

Finally, we plot the histogram of the number of moveable objects per frame for all three datasets.
Shown in Figure 7, Waymo Open Dataset has the most moveable objects with a mean of 12.12,
followed by nuScenes with a mean of 7.78. Due to the lack of per-frame object labels in KITTI,
we evaluate on its curated object detection dataset, which has a mean of 5.26. We note that the
real distribution should be much tighter near 0, compared to the detection dataset with all images
containing at least 1 moveable object.

Table 5: Additional depth evaluation on the KITTI Dataset. Stereo Train and Stereo Infer. stand
for the use of stereo-view during training and inference, respectively. Multi-Frame denotes the
use of multiple frames as inputs during inference. Add. Sup. stands for additional supervision
during training where I, S, and D stand for IMU-level, synthetic-data, and pretrained depth model
supervision, respectively.

Stereo Multi- Add. Error metric (↓) Accuracy metric (↑)
Train Infer. Frame Sup. Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

UnOS [38] ✓ ✓ 0.049 0.515 3.404 0.121 0.965 0.984 0.992
EffiScene [18] ✓ ✓ 0.049 0.522 3.461 0.120 0.961 0.984 0.992
Xiang et al. [41] ✓ ✓ 0.048 0.487 3.447 0.117 0.964 0.985 0.992
Liu et al. [26] (stereo) ✓ ✓ 0.051 0.532 3.780 0.126 0.957 0.982 0.991
Liu et al. [26] (mono) ✓ 0.108 1.020 5.528 0.195 0.863 0.948 0.980
Hur et al. [16] ✓ 0.125 0.978 4.877 0.208 0.851 0.950 0.978
PLADE-Net [11] ✓ 0.089 0.590 4.008 0.172 0.900 0.967 0.985

DRAFT [13] ✓ S 0.097 0.647 3.991 0.169 0.899 0.968 0.984
Dyna-DepthFormer [46] ✓ 0.094 0.734 4.442 0.169 0.893 0.967 0.983
ManyDepth [40] ✓ 0.090 0.713 4.261 0.170 0.914 0.966 0.983
DepthFormer [25] ✓ 0.090 0.661 4.149 0.175 0.905 0.967 0.984

Zhang et al. [45] I 0.108 0.761 4.608 0.187 0.883 0.962 0.982
SC-DepthV3 [33] D 0.118 0.756 4.709 0.188 0.864 0.960 0.984

Dynamo-Depth 0.112 0.758 4.505 0.183 0.873 0.959 0.984
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Table 6: Depth evaluation on the nuScenes Dataset with day-clear split. IM stands for independent
motion where ✗ denotes a lack of independent motion modeling. Sup. indicates additional supervision
given during training, where ‘V’ indicates camera velocity recordings and ‘R’ indicates radar scans.
Manual replication with released code is indicated by †.

IM Sup. Error metric (↓) Accuracy metric (↑)
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2† [10] ✗ 0.157 2.432 6.943 0.248 0.844 0.940 0.968
LiteMono† [44] ✗ 0.161 2.618 6.818 0.251 0.846 0.939 0.966
R4Dyn-L [8] V,R 0.130 1.658 6.536 - 0.858 - -
Dynamo-Depth (MD2) 0.149 1.792 6.536 0.236 0.830 0.938 0.972
Dynamo-Depth 0.132 1.571 6.158 0.216 0.856 0.951 0.977

Table 7: Depth evaluation with semantic split on the nuScenes Dataset with day-clear split. S.B.,
S.O. and M.O. denotes the partition of pixels that are static background, static moveable object and
moving object, respectively. Manual replication with released code is indicated by †.

Abs Rel (↓) δ < 1.25 (↑)
All S.B. S.O. M.O. All S.B. S.O. M.O.

Monodepth2† [10] 0.157 0.150 0.214 0.324 0.844 0.850 0.774 0.626
Dynamo-Depth (MD2) 0.149 0.146 0.186 0.197 0.830 0.834 0.779 0.737
∆ (%) -5.1 -2.7 -13.1 -39.2 -1.7 -1.9 +0.6 +17.7
LiteMono† [44] 0.161 0.151 0.232 0.373 0.846 0.853 0.781 0.572
Dynamo-Depth 0.132 0.130 0.168 0.167 0.856 0.857 0.795 0.804
∆ (%) -18.0 -13.9 -27.6 -55.2 +1.2 +0.5 +1.8 +40.6

D Additional Results

D.1 Additional KITTI Comparisons

Please refer to Table 5 for additional comparisons on KITTI, where the compared methods leverage
either additional modalities or additional supervision beyond the use of semantic information as
shown in Table 1.

D.2 Additional nuScenes Comparisons
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Figure 8: Precision-Recall curve for motion segmen-
tation on the nuScenes Dataset, which is partitioned
into the day-clear and other subsets.

Please refer to Table 6 and Table 7 for depth
performance comparisons on the nuScenes val-
idation day-clear subset, along with precision-
recall curve for motion segmentation in Fig-
ure 8. Note that R4Dyn-L [8] is only trained
on the day-clear subset with velocity filtering,
while the rest of the methods are all trained
with the entire dataset without any filtering.
Furthermore, Table 7 still demonstrates the
trend as observed in Table 2, where the a sig-
nificant improvement on moving objects are
observed in terms of both accuracy and er-
ror. Finally, as shown in Figure 9, both meth-
ods fail under low-light conditions where the
brightness consistency assumption no longer
holds. Due to the rigid scene constraint, arti-
facts appear in the respective depth prediction
in (b), which causes a much larger error com-
pared to the prediction in (d), as discussed in
Section 5.1.
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(b) Monocular Depth (c) Rigid Flow (f) Independent Flow

Dynamo-Depth (Ours)Static Scene ConstraintInput

(d) Monocular Depth (e) Rigid Flow(a) Input Frames

Figure 9: Visualizing predictions under night-time conditions in the nuScenes dataset.

D.3 Odometry Evaluation

Please refer to Table 8 for odometry evaluation for Dynamo-Depth and Dynamo-Depth (MD2) on
both nuScenes day-clear subset and Waymo Open Dataset.

Table 8: Odometry results on the nuScenes (day-clear subset) and Waymo Open Dataset. Results
show the average absolute trajectory error over all overlapping 5-frame snippets and 100-frame
snippets in the test sequences, and standard deviation, in meters. For consistency, the first 100 test
sequences for both datasets are evaluated. Manual replication with released code is indicated by †.

Dataset nuScenes Waymo
Speed (m/s) 5.657 ± 4.188 6.978 ± 6.028

Snippet Length (# frames) 5 100 5 100
Snippet Duration (seconds) 0.3 7.4 0.4 9.9
Snippet Counts 22820 13320 19364 9864

Monodepth2† [10] 0.016 ± 0.017 0.097 ± 0.069 0.018 ± 0.029 0.143 ± 0.194
Dynamo-Depth (MD2) 0.019 ± 0.029 0.112 ± 0.160 0.015 ± 0.027 0.091 ± 0.121

LiteMono† [44] 0.018 ± 0.018 0.090 ± 0.065 0.022 ± 0.044 0.156 ± 0.194
Dynamo-Depth 0.017 ± 0.019 0.081 ± 0.070 0.017 ± 0.036 0.107 ± 0.164

D.4 Scene Flow Comparisons

We were not able to compare against the mentioned related works in unsupervised scene flow
estimation due to the large difference in methodology (stereo-view during training [18, 41, 16, 17])
and lack of codebase for reproducibility [13].

E Limitations

As shown in Figure 10, dynamical shadows and moving light sources in low-light conditions violate
the brightness consistency assumption, which results in erroneous predictions of motion segmentation
and monocular depth, respectively.

(a) Input Frames (b) Monocular Depth (c) Rigid Flow (d) Independent Flow (e) Motion Mask

Figure 10: Limitations of Dynamo-Depth.
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