
A Appendix

A.1 Methodology Details.

For protein-level prediction tasks, we extract representation features from the [CLS] token of the last
layer of ESM-1b and MSA-Transformer and add a new linear layer on top of it. Since there is no
[CLS] token appended in AlphaFold, we average all residue embeddings from the last layer and add
the same linear layer on top. For residue-level supervised prediction tasks (i.e. SS prediction), we
add a linear layer on top of each residue embedding the last layer in all three PLMs. We train these
models for each non-zero-shot task by fine-tuning all parameters, including both the new linear layer
and the backbone representation model.

For contact prediction, we perform experiments differently for the three models given that the pairwise
distance matrix of Evoformer can be directly extracted. For MSA-Transformer and ESM-1b, we
follow the [28], extracting and normalizing the attention map from all hidden layers and then training
a linear layer on these 2D maps and performing the regression task.

For zero-shot fitness prediction, MSAs are searched in the BFD dataset [23] using Jackhmmer [22]
with the default parameters. For annotation prediction tasks, we search MSAs from Uniref90 [42]
database with Jackhmmer. For SS and contact prediction, we use the MSAs provided by [35]. MSAs
are not used in the two supervised fitness prediction tasks because all sequences are highly similar
with only a few positions different. We report all results of Evoformer without template to avoid
information leaking for the structure tasks.

A.2 ESM-MSA details

A.2.1 Training set construction

ESM-MSA is essentially a two-tower-based network following sentence-BERT [31] where each
tower is represented by the ESM-1b encoder. Unlike sentence-BERT, we have developed an effective
negative sampling method to choose more informative negative protein sequences rather than perform
random sampling. The schematic of ESM-MSA is shown in Figure 6 and more details are given
below:

We first collect high-quality homologous sequence datasets. We use the public trRosetta training set§
as the ground truth data in this work. Define H = {h1, h2, ..., hn} as the entire protein sequence
data set, where hi represents the aligned homologous sequences for protein i, usually called an MSA.
Define hi = {q1, q2, ..., qn} , where qi is an individual sequence in a same homologous family. Then
define Dneg = {d1, d2, ..., dn} as the data for negative sampling, where di also denotes an individual
protein sequence. We use Uniclust30¶ for sampling non-homologous sequences, which include 200
million individual protein sequences. We then construct a training set including homologous sequence
pairs and non-homologous sequence pairs to train the model. Specifically, for a protein sequence qi

belonging to set hi, we randomly sample its homologous sequence qpos 2 hi from the same set

§https://github.com/gjoni/trRosetta
¶https://uniclust.mmseqs.com/

13

Figure 6: Training and serving schematic of ESM-MSA.

and calculate the biological identity s 2 [0, 1] between the two sequences. Finally, we construct
a positive sample pair in the training set ppos . Similarly, for the original sequence qi 2 hi , we
sample a sequence qneg 2 D from the Uniclust30 database as a negative sample(non-homologous
sequence), thus constructing a negative sample pair Pneg . We finally obtain the set of positive pairs
Spos = {ppos1 , p

pos
2 ,, p

pos
n } , and the set of negative pairs Sneg = {pneg1 , p

neg
2 ,, p

neg
m } , and

then obtain the complete training set S = Spos
S
Sneg .

A.2.2 Dynamic negative sampling

In this paper, we use dynamic negative sampling at the training stage, a.k.a. hard negative sam-
pling [46]. That is, instead of randomly sampling sequences, we continuously select samples that
are more difficult for the model to distinguish. By this way, the model convergence speed is greatly
accelerated and the performance of the model is largely improved. Specifically, for the newly ini-
tialized model, we randomly select a batch of samples from the database as negative samples for
training. After that, in every new round, for each sequence qi, we randomly sample n sequences
from the database and calculate the Euclidean distance between the original sequence and sampled
sequences by the model. We select the sampled sequence with the closest Euclidean distance to the
original sequence representation as the negative sample. Since the closest Euclidean distance means
that the model is not able to distinguish it as negative. To reduce the computational cost, we use a
sequence pooling approach, i.e., we first randomly sample N sequences(N � n) from the database
as a sub-database, and then perform subsequent sampling operations on such sub-database after the
corresponding scores are computed by the model.

A.2.3 Objective Function

For the positive sample pair, the loss function is defined as follows:
Loss(p, q)pos = (dist(p, q)� (1� s))2

where p is the original sequence, q is the homologous sequence of p , and s is the biological identity
of the two sequences. The definition is based on the hypothesis that the greater the biological
sequence identity of the homologous sequences, the closer the Euclidean distance between the two
should be through the representations given by the model. This means that between homologous
sequences, the Euclidean distance also varies according to the biological sequence identity, and thus
the model can obtain better generalization performance. Therefore, we used the mean square error
loss function. Because s 2 [0, 1], setting the distance threshold to 1 not only conforms to Occam’s
razor principle [9], but also fits well with the loss function.

For the negative sample pair, the loss function is defined as follows:
Loss(p, q)neg = �logz(p, q)

where z(p, q) = edist(p,1)

edist(p,q)+et
, t is distance threshold. Actually, this is Cross Entropy function. For

non-homologous sequences, we want the model to keep increasing the Euclidean distance between p

and q, so it is reasonable to use the distance threshold t as a reference for the Cross Entropy, so that
the Euclidean distance of the representations keeps moving away from the distance threshold.

14

Table 9: Contact map prediction, Precision@L, L/5, L/2.

Model Precision@L Precision@L/2 Precision@L/5

ESM-1b 0.540 0.668 0.783
MSA Transformer 0.660 0.784 0.872
Evoformer 0.946 0.970 0.978

A.2.4 MSA Retrieval and Alignment

First, we use the embedded vector of ’CLS’ in ESM-1b (trained by the above approach) as the protein
representation. We calculate all protein sequences in the database. Then we use Faiss [21], the library
for quick embedding searching, to retrieve homologous sequences. Specifically, we calculate the
Euclidean distance between sequence embeddings and keep those under the threshold as homologous
to the query protein. One we obtain a set of homologous sequences, we use Famsa[11] to efficiently
align them and output an a3m format file.

A.3 HHblits setting

A.3.1 Search the BFD database HHblits setting

n_iter: int = 3, e_value: float = 0.001, maxseq: int = 1000000, realign_max: int = 100000, maxfilt:
int = 100000, min_prefilter_hits: int = 1000, all_seqs: bool = False, p: 20, z: int = 500.

A.3.2 Compare with the running time of ESM-MSA vs HHblits

n_iter: int = 1, e_value: float = 0.0001, maxseq: int = 1000, realign_max: int = 100000, maxfilt: int =
100000, min_prefilter_hits: int = 1000, all_seqs: bool = False, p: 20, z: int = 500.

Table 8: HHblits speed compared with ESM-MSA (retieval & alignment). The values means how
many MSAs are searched in 12h with 12-core CPU.

Model Number of MSAs

HHblits 1509
ESM-MSA 8800

A.4 Contact map Results on SCOPe

See Table 9 for details.

A.5 Antibiotic Resistance dataset detail

The Antibiotic Resistance dataset is derived from experimentally verified bacterial antibiotic resistance
proteins from the Comprehensive Antibiotic Resistance Database (CARD), and redundant sequences
with 100% identity are removed using the CD-HIT tool [25]. Finally, a total of 2602 protein sequences
from 19 antibiotic classes are constructed for functional classification and analysis.

A.6 GPU cluster

All our experiments are performed on the NVIDIA A40 with 48G GPU memory.

A.7 Remote Homology Detection (Evolutionary Understanding Task)

Here, we add the results of the remote homology detection task, which has exactly the same training
and testing set in TAPE. As shown in Table 10, we can make the same observations as in the
annotation prediction task. First, the performance of all three PLMs is substantially improved by
pre-training, which shows the representation ability of them; Second, ESM-1b performs better than
MSA-Transformer and Evoformer. Our results are consistent with those in TAPE. It is worth noting

15

that although the homology detection task measures a model’s ability to detect structural similarity, it
is essentially formulated as a protein-level annotation or classification task, like the MIB and ABR
tasks in this paper. By comparison, the typical structural prediction tasks, including the SS prediction,
contact prediction, and 3D structure prediction, are atom- or residue-level prediction, where residue
is often represented by the C↵ or C� atom.

Table 10: Results of the remote homology detection task. ‘scratch’ means random initialization for
model parameters.

Model Pretrained Scratch

ESM-1b 0.31 0.12
MSA-Transformer 0.22 0.13
Evoformer 0.23 0.11

16

	Introduction
	Related Work
	Preliminaries
	Tasks and datasets
	Methods

	Results
	Structure Prediction
	Supervised Function Prediction
	Zero-shot Mutation effects Prediction
	Effect of MSA
	Relationship between Evolution-aware & -free PLMs

	Conclusions and Limitations
	Appendix
	Methodology Details.
	ESM-MSA details
	Training set construction
	Dynamic negative sampling
	Objective Function
	MSA Retrieval and Alignment

	HHblits setting
	Search the BFD database HHblits setting
	Compare with the running time of ESM-MSA vs HHblits

	Contact map Results on SCOPe
	Antibiotic Resistance dataset detail
	GPU cluster
	Remote Homology Detection (Evolutionary Understanding Task)

