
A Limitations of Theorem 1531

While Theorem 1 provides an understanding of the tradeoff between adversarial and natural distribu-532

tional robustness, there are some limitations. Firstly, the results consider a setting where the core and533

spurious features are completely disentangled, i.e, they each represent different parts of the input. In534

practice, spurious features may be entangled with the core features (e.g., the color of an image may535

represent a spurious feature.) In addition, our results mainly consider the goal of adversarial training536

as we focus on the expected loss Lp,✏(✓), rather than its finite-sample variant. This is because even537

for an `2 adversary, characterizing the finite-sample behaviour of adversarial training is difficult and538

requires careful assumptions on the asymptotic behaviour of the parameters (e.g., see Theorem 3.3 in539

[26]). We leave exploring these directions to future work. Even so, we believe our theoretical results540

are of interest to the community since disjoint features already capture a wide variety of spurious541

correlations, e.g., background correlations, as well as examples where a spurious object is present in542

the image. The main goal of our theoretical analysis is to show the existence of explicit tradeoffs543

between adversarial and distributional robustness and build practical insights using those results.544

B Societal Impact545

Our work touches on two important notions of robustness for the safe and fair deployment of deep546

models in the wild. We hope our results lead to careful analysis of all modes of robustness, and the547

interplay between them, before deep models are used in sensitive applications. While our results548

create tension with some previous works [71, 75, 25], we stress that we do not wish to diminish their549

work; instead, we hope our work reveals the vast nuance associated with spurious correlations, which550

can help and hurt models in various ways. Lastly, we release all code to encourage future work.551

C Additional results for the `1 norm552

In this section, we further analyze the plateauing behaviour of the performance of the linear model553

observed in Figure 2 when using `1 adversarial training. To this end, we consider different values for554

the number of core features c and total features m and measure NFS for different values of adversarial555

budget ✏ as in Figure 2. The matrix ⌃ is constructed using Equation (4) as before, with modified556

number of rows and columns based on the values of c, p. Similarly, ✓opt is constructed as before, with557

the core coordinates set to 1 and the spurious coordinates set to 0. The value of ⌘ is fixed at 0.5. The558

results are shown in Figure 10.559

As shown in the Figure, when using m total features and c core features, NFS plateaus at m�c
m for560

large values of ✏. Intuitively, this is because of the structure of the optimization problem (2). Recall561

that when using the `1 norm, the value of q in (2) equals 1. As such, adversarial training tries to find562

a parameter ✓ that has a low `1 norm and is “close” (as measured by �✓) to ✓opt. The `1 penalty563

encourages values of ✓ that are uniform across the coordinates. Since there are m � c spurious564

features and m total features, this leads to models that have an NFS value of m�c
m .565

D Proof of Theorem 1566

Proof. We first claim that567

max
k�k✏

(Y � hX + �, ✓i)2 =
⇣
|hy, xi|+ ✏ · k✓kq

⌘2

To see why this holds, note that for all � satisfying k�kp  ✏,568

|Y � hX + �, ✓i|
(a)
 |Y � hX, ✓i|+ |h�, ✓i|
(b)
 |Y � hX, ✓i|+ ✏ · k✓kq,

where (a) follows from the triangle inequality and (b) follows from Hölder’s inequality. With a569

suitable choice of ✓, we can achieve equality for (b). As k✓kq = k�✓kq, at least one of {✓,�✓}570
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Figure 10: Analysis of NFS for the linear model when using the `1 norm in adversarial training. Each
figure measures the reliance of the model on spurious features (measured by NFS) while varying the
adversarial training budget ✏, using different number of total features m. The number of core features
is kept constant and set to 4 in Figure (a) and to 10 in Figure (b).

would further achieve equality for (a). As maximizing |.| is equivalent to maximizing (.)2, (3) is571

proved.572

Given (3), we can rewrite (1) as573

Lp,✏ = E
⇣

|Y � hX, ✓i|+ ✏ · k✓kq
⌘2

�

= E
h
(Y � hX, ✓i)2

i
+ ✏2 · k✓k2q + 2 · ✏ · E [|Y � hX, ✓i|]

(a)
= E

h�⌦
X, ✓ � ✓opt↵+W

�2i
+ ✏2 · k✓k2q + 2 · ✏ · E

⇥��⌦X, ✓ � ✓opt↵+W
��⇤ ,

Where for (a) we have used the fact that Y = hX, ✓i+W .574

Define v✓ as hX, ✓ � ✓opti+W . As X was assumed to be sampled from N(0,⌃), v✓ is distributed575

as N(0,�2
✓). It follows that576

Lp,✏ = E
h�⌦

X, ✓ � ✓opt↵+W
�2i

+ ✏2 · k✓k2q + 2 · ✏ · E
⇥��⌦X, ✓ � ✓opt↵+W

��⇤ ,

= E
⇥
v2✓
⇤
+ ✏2 · k✓k2q + 2 · ✏ · E [|v✓|]

(a)
= �2

✓ + ✏2 · k✓k2q + 2 · ✏ · �✓

= (c21 + c2) · �2
✓ + ✏2 · k✓k2q + 2 · ✏ · �✓

= c2 · �2
✓ + (c1�✓ + ✏ · k✓kq)

2

where for (a) we have used the fact that E
⇥��N(0,�2

��⇤ = c1 · �. This proves (2) as claimed.577

As for convexity, �✓ is convex in ✓ since it can be written as
���[⌃ 1

2 (✓ � ✓opt),�w]
���
2

where [., .]578

denotes the vector stacking operation. As c1�✓ + ✏ · k✓kq is always positive and x ! x2 is convex579

and increasing for x � 0, this implies that (c1�✓ + ✏ · k✓kq)2 is convex as well. Finally c2�2
✓ is580

convex as c2 > 0 and therefore (1) is convex in ✓.581

E Additional Details on Reverse Effect (Section 4.3)582

Our final empirical observation is that the presence of a spurious feature (in both training and test583

distributions) can lead to increased adversarial robustness. This more directly creates tension with584

claims that adversarial vulnerability is born out of spurious feature reliance. We refer to this as the585
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Figure 11: Color Shift, ⇢ = 19 : 1 Figure 12: Lighting Shift, ⇢ = 19 : 1

‘reverse effect’, in relation to our primary empirical and theoretical finding that adversarial training586

increases spurious feature reliance. We now elaborate on the experimental setup discussed in Section587

4.3, reproduce the results with a different spurious feature, and finally appeal to ImageNet-9 to588

demonstrate this effect using a more realistic spurious feature (i.e. backgrounds).589

E.1 Experimental Setup590

Overview. We inject spurious correlations to the CIFAR10 dataset. Based on the class label,591

we adjust half the images (i.e. with class label from 5 to 9) to shift in one direction with high592

probability. For example, a dog image is made greener with probability 0.95, corresponding to593

a majority-to-minority group ratio of ⇢ = 19 : 1. With probability 0.05, we shift in the other594

direction (e.g. make redder). We then standardly train a ResNet18 from scratch on the dataset595

with the spurious feature injected for the 10-way CIFAR classification task. Importantly, we596

evaluate robust accuracy with the spurious feature retained, and then compare adversarial robust-597

ness of models trained under data with different strengths of the injected spurious correlation.598

Figure 13: Reverse effect using spu-
rious feature of lighting. Main text
figure uses color as spurious feature.

Figure 9 and 13 show that for two distinct spurious features599

(color and lighting), robust accuracy is higher when the spuri-600

ous correlation is stronger. Notably, the gain is larger than the601

gain in standard accuracy. Intuitively, we see that relying on602

the predictive power of the spurious feature is helpful for stan-603

dard accuracy, and especially for acccuracy under adversarial604

attack. Despite being irrelevant to the true labeling function,605

the spurious feature can improve model performance, and606

indeed even lead to better adversarial robustness.607

Details. Color shift is achieved by increasing all pixel inten-608

sities along one channel by 0.25. Lighting shift is achieved609

by simply scaling an input by 1.25 to make brighter or 0.75610

to make darker. All images are clamped to remain in the611

[0, 1] pixel range after spurious feature injection. Models612

are trained for 20 epochs using an Adam optimizer with a613

learning rate of 0.001 and weight decay of 1e� 4.614

E.2 Leveraging ImageNet-9615

We now demonstrate the observed reverse effect on the higher resolution ImageNet-9 dataset, lever-616

aging the natural and ubiquitous spurious feature of backgrounds. We finetune pretrained models617

on MIXED-SAME and MIXED-RAND separately, and evaluate each model’s accuracy under attack618

on the same split that they were trained over. Further, we leverage the adversarially trained models619

from test suite in this experiment. This way, accuracy under attack is more informative, as the models620
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Figure 14: Background Gap (difference in accuracy on MIXED-SAME and MIXED-RAND) for
clean and adversarially attacked images. Across models, background gap is larger when considering
accuracy under attack, suggesting that the presence of a spurious correlation in training data makes
the model more adversarially robust over the same distribution.

are trained to expect attacks (i.e. we are not imposing any distribution shifts that would lead to621

unexpected model behavior). Along this vain, we attack each backbone with the same norm and ✏622

that it was pretrained over.623

Figure 14 shows the gain in accuracy for the models trained and evaluated on MIXED-SAME compared624

to those using MIXED-RAND. We see that the presence of background correlations increases both625

standard and robust accuracy for all models (i.e. gains are positive). Further, gains in accuracy626

under attack are larger than gains in standard accuracy in nearly all cases. Thus, it seems like the627

added predictive power of the spurious background feature has a significantly nontrivial impact628

on improving adversarial robustness, contradicting many existing arguments on the link between629

spurious correlations and adversarial vulnerability.630

F Adversarially Robust Model Test Suite (Section 3)631

F.1 Model Details632

We utilize the treasure trove of open-source adversarially trained models, contributed by [49],633

accessible at https://github.com/Microsoft/robust-models-transfer. For completeness,634

we now provide details on the models we use, though we refer readers to Appendix A.1 of the original635

text, where the information we share now is sourced.636

Training All models were trained on ImageNet in batches of 512 samples, using SGD optimizer with637

momentum of 0.9 and weight decay of 1e� 4, for a total of 90 epochs, with learning rate dropping638

by a factor of 10 every 30 epochs. The standard procedure of [38] was performed to adversarially639

train models, using 3 projected gradient descent steps with a step size 2
3✏ for the attack budget ✏.640

Selected Models We focus our empirical study on the ResNet architecture [20] because of641

its wide spread popularity. Specifically, we study ResNet18s and ResNet50s that are ad-642

versarially trained under the `2 norm, for ✏ 2 {0.25, 0.5, 1, 3, 5}, and `1 norm, for ✏ 2643

{0.5/255, 1/255, 2/255, 4/255, 8/255}, as well as standardly trained baselines.644

Table 1 shows the standard accuracies for these models. Note that we at times compare between the645

`2 and `1 adversarially trained models (e.g. figure 6). We acknowledge that direct comparisons are646

challenging because the threat model under which adversarial robustness is optimized for are different.647

However, we note that standard accuracies of the ith `2 AT model is roughly the same as that of the ith648

`1 AT model, suggesting that those models lie in similar points of the accuracy-robustness tradeoff.649

Additional Models. We extend our analysis to other architectures. We replicate all pretrained-model650

experiments on the Wide ResNet50 (2x) backbones, for which we have checkpoints for each of651

the five ✏ values for both `2 and `1 norms. We also inspect MobileNetv2 [51], DenseNet161 [24],652
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AT Norm ✏ ResNet18 ResNet50 Wide ResNet50 (2x)

No Adv Training 69.79 75.80 76.97

`2 0.25 67.43 74.14 76.21
`1 0.5/255 66.13 73.73 75.82
`2 0.5 65.49 73.16 75.11
`1 1/255 63.46 72.05 74.65
`2 1 62.32 70.43 73.41
`1 2/255 59.63 69.10 72.35
`2 3 53.12 62.83 66.90
`1 4/255 52.49 63.86 68.41
`2 5 45.59 56.13 60.94
`1 8/255 42.11 54.53 60.82

Table 1: Clean ImageNet accuracy for test suite of `2 and `1 adversarially trained ResNets over
varying ✏. Observe that the ith `2 AT model has similar clean accuracy to the ith `1 AT model.

ShuffleNet MobileNet VGG DenseNet ResNeXt

No AT 64.25 65.26 73.66 77.37 77.38
`2 AT, ✏ = 3 43.32 50.40 57.19 66.98 66.25

Table 2: Clean ImageNet accuracy for five additional architectures considered.

ResNeXt5050_32x4d [68], ShuffleNet [74], and VGG16_bn [56]. For each of these five architectures,653

we compare an `2 adversarially trained model with ✏ = 3 to a standardly trained baseline.654

F.2 Experimental Details655

ObjectNet and ImageNet-C [5, 22]. We report raw accuracies under noise, blur, and digital656

corruption types for ImageNet-C, as opposed to relative corruption error. For ObjectNet, we map657

ImageNet predictions to the set of 113 overlapping classes in ObjectNet. RIVAL10 (RFS) and658

Salient ImageNet-1M (RCS) [40, 59]. RFS computation requires finetuning a final linear layer659

over fixed features for the coarse-grained ten way RIVAL10 classification. RCS operates on models660

off the shelf, directly inspecting accuracies over ImageNet classes (and samples, with region-based661

noise corruption). ImageNet-9 and Waterbirds [67, 48]. ImageNet-9 accuracies are obtained662

by mapping off-the-shelf model predictions to the nine coarse labels deterministically. Waterbirds663

requires finetuning, which we do over fixed features. For RIVAL10 and Waterbirds finetuning, we664

use Adam with learning rate of 1e� 4 and weight decay of 1e� 5 for 20 and 15 epochs respectively.665

F.3 Results on Extended Model Test Suite666

We now corroborate all our empirical findings on new backbones, expanding our analysis to 21 new667

models (including 10 AT WideResNet50s over both `2 and `1 norms) over six architectures.668

Figure 15: ObjectNet, ImageNet-C, and
ImageNet accuracies for WideResNet50s.

WideResNets. We corroborate all our empirical findings669

on ResNet18s and ResNet50s on the WideResNet50 (2x)670

architecture. Figure 15 shows that accuracy drop in AT671

models is more severe on distribution shifts that break672

spurious correlations (ObjectNet), unlike the accuracy673

drop due to corruption of both core and spurious fea-674

tures (ImageNet-C), which can likely be explained by675

the reduced standard accuracy of AT models.676

Figure 16 shows reduced sensitivity to core and677

foreground regions for AT models. Again, the effect is678

more pronounced for `2 adversarially training and for679

larger ✏. Also, we again see that decrease in RCS is less680

consistent than the drop in RFS. We conjecture that681
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Figure 16: RFS and RCS for WideResNet50s. Sensitivity to core and foreground regions are
reduced for higher ✏, especially for `2 AT models and for RFS, computed over the RIVAL10 dataset,
where background correlations are stronger.

Figure 17: Background Gap (IN-9) and Waterbirds gap for WideResNet50s. AT models, especially
under `2 norm, see larger accuracy drops when spurious correlations are broken.

the diversity and fine-grain Salient ImageNet classification task reduces the strength of spurious682

correlations present in the data, thus diluting our observed effects of adversarial training on spurious683

feature reliance.684

Lastly, figure 17 shows the drop in accuracy due to breaking spurious background correlations is685

larger for AT models. Indeed, the absolute background gap (IN-9) for the WideResNet50 under686

`2 AT with ✏ = 5 is 50% larger than the gap for the standardly trained baseline. We note that the687

absolute gaps are smaller in some cases. We believe the lower standard accuracy of AT models may688

contribute to this, as there is less accuracy to drop from. Nonetheless, it is intriguing that in some689

cases, `1 adversarial training seems to reduce spurious feature reliance; while our theory explains690

how a spurious feature can be completely ignored under `1 training, it does not explain cases where691

spurious feature reliance is reduced compared to standard training. We believe this is an interesting692

direction for future work.693

Other backbones. We now show results for ten other models, half of which are `2 adversarially694

trained with ✏ = 3, while the others are standardly trained. Figure 18 summarizes our results,695

corroborating each of our empirical findings.696
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(a) Legend. We compare `2 adversarially trained models to standardly trained baselines for five new backbones.

(b) Lower RFS (RCS) entails Lower Foreground (Core Feature) Sensitivity

(c) Higher Gap entails Greater Background/Spurious Sensitivity

(d) Lower Ratio entails Lower Natural Distributional Robustness

Figure 18: Corroborating findings on additional backbones.
21


