
A Technical Lemmas

When applying the following self-normalized bound in the analysis of federated bandit algorithm with
event-trigger, a subtle difference from the analysis of standard bandit algorithm is that the sequence
of data points used to update each client is controlled by the data-dependent event-trigger, e.g. Eq (4),
which introduces dependencies on the future data, and thus breaks the standard argument. This
problem also exists in prior works of distributed linear bandit, but was not addressed rigorously (see
Lemma H.1. of [28]). Specifically, each client i observes the sequence of data points in a different
order, i.e., it first observes each newly collected local data points from the environment, and then
observes (in the form of their gradients) the batch of new data points that other clients have collected
at the end of the epoch. Then, if we consider a data point that is contained in the batch of new data
collected by other clients, the index of this data point (as observed by client i) has dependency all the
way to the end of this batch, i.e., its index is only determined after some client triggers the global
update.

Therefore, in order to avoid this dependency on future data points, when constructing the filtration, we
should avoid including the σ-algebra that ‘cuts a batch in half’, but instead only include the σ-algebra
generated by the sequence of data points up to the end of each batch, where we consider each
locally observed data point as a batch as well. Denote the sequence of time indices corresponding
to these data points as {tp}p∈[P ] for some P > 0. Then the constructed filtration {Ftp}p∈[P ] is
essentially a batched version of the standard {Ft}∞t=1. The self-normalized bound below still holds,
i.e., by changing the stopping time construction from ∪t≥1Bt(δ) to ∪t∈{tp}p∈[P ]

Bt(δ) in the proof of
Theorem 1 in [1], where Bt(δ) denotes the bad event that the bound does not hold. Therefore, instead
of holding uniformly over all t, the self-normalized bound now only holds for all t ∈ {tp}p∈[P ], i.e.,
the sequence of time steps when client i gets updated, which is also what we need.

Lemma A.1 (Vector-valued self-normalized bound (Theorem 1 of [1])). Let {Ft}∞t=1 be a filtration.
Let {ηt}∞t=1 be a real-valued stochastic process such that ηt is Ft+1-measurable, and ηt is condition-
ally zero mean R-sub-Gaussian for some R ≥ 0. Let {Xt}∞t=1 be a Rd-valued stochastic process
such that Xt is Ft-measurable. Assume that V is a d × d positive definite matrix. For any t > 0,
define

Vt = V +

t∑
τ=1

XτX
>
τ St =

t∑
τ=1

ητXτ

Then for any δ > 0, with probability at least 1− δ,

||St||V −1
t
≤ R

√
2 log

det(Vt)1/2

det(V )1/2δ
, ∀t ≥ 0

Lemma A.2 (Corollary 8 of [2]). Under the same assumptions as Lemma A.1, consider a sequence
of real-valued variables {Zt}∞t=1 such that Zt is Ft-measurable. Then for any δ > 0, with probability
at least 1− δ,

|
t∑

τ=1

ητZτ | ≤ R

√√√√√2(V +

t∑
τ=1

Z2
τ ) log


√
V +

∑t
τ=1 Z

2
τ

δ
√
V

,∀t ≥ 0

Lemma A.3. Under Assumption 1, Fi,t(θ) for i = 1, 2, . . . , N is smooth with constant kµ + λ
Nt
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Proof. By Assumption 1, µ(·) is Lipschitz continuous with constant kµ, i.e., |µ(x>θ1)−µ(x>θ2)| ≤
kµ|x>(θ1 − θ2)|. Then we can show that

||∇Fi,t(θ1)−∇Fi,t(θ2)||

= ||1
t

t∑
s=1

xs,i[µ(x>s,iθ1)− µ(x>s,iθ2)] +
λ

Nt
(θ1 − θ2)||

≤ 1

t

t∑
s=1

||xs,i[µ(x>s,iθ1)− µ(x>s,iθ2)]||+ λ

Nt
||θ1 − θ2||

≤ 1

t

t∑
s=1

|µ(x>s,iθ1)− µ(x>s,iθ2)|+ λ

Nt
||θ1 − θ2||

≤ kµ
t

t∑
s=1

|x>s,i(θ1 − θ2)|+ λ

Nt
||θ1 − θ2|| ≤ (kµ +

λ

Nt
)||θ1 − θ2||

Therefore,∇Fi,t(θ) is Lipschitz continuous with constant kµ+ λ
Nt , and∇Ft(θ) = 1

N

∑N
i=1∇Fi,t(θ)

is Lipschitz continuous with constant kµ + λ
Nt as well.

Lemma A.4 (Matrix Weighted Cauchy-Schwarz). If A ∈ Rd×d is a PSD matrix, then xTAy ≤√
xTAx · yTAy holds for any vectors x, y ∈ Rd.

Proof. Consider a quadratic function (x + ty)TA(x + ty) = xTAx + 2(xTAy)t + (yTAy)t2 for
some variable t ∈ R, where x, y ∈ Rd are arbitrary vectors. Since A is PSD, the value of this
quadratic function (x + ty)TA(x + ty) = xTAx + 2(xTAy)t + (yTAy)t2 ≥ 0,∀t, which means
there can be at most one root. This is equivalent to saying the discriminant of this quadratic function
4(xTAy)2 − 4xTAx · yTAy ≤ 0, which finishes the proof.

Lemma A.5 (Confidence Ellipsoid Centered at Global Model). Consider time step t ∈ [T ] when
a global update happens, such that the distributed optimization over N clients is performed to
get the globally updated model θt. Denote the sub-optimality of the final iteration as εt, such that
Ft(θt)− Ft(θ̂MLE

t ) ≤ εt; then with probability at least 1− δ, for all t ∈ [T ],

||θt − θ?||At ≤ αt

where αt = Nt
√

2kµ
λcµ

+ 2
Ntcµ

√
εt + Rmax

cµ

√
d log (1 +Ntcµ/(dλ)) + 2 log (1/δ) +

√
λ
cµ
S, and

At = λ
cµ
I +

∑N
i=1

∑t
s=1 xs,ix

>
s,i.

Proof. Recall that the unique minimizer of Eq.(2) is denoted as θ̂MLE
t , so by taking gradient w.r.t. θ

we have, gt(θ̂MLE
t ) =

∑N
i=1

∑t
s=1 xs,iys,i, where we define gt(θ) = λθ+

∑N
i=1

∑t
s=1 µ(x>s,iθ)xs,i.

First, we start with standard arguments [8, 20] to show that ‖θt − θ?‖At ≤ 1
cµ
‖gt(θt)− gt(θ?)‖A−1

t
.

Specifically, by Assumption 1 and the Fundamental Theorem of Calculus, we have

gt(θt)− gt(θ?) = Gt(θt − θ?)

where Gt =
∫ 1

0
∇gt(aθt + (1 − a)θ?)da. Again by Assumption 1, ∇gt(θ) = λI +∑t

s=1

∑N
i=1 xs,ix

>
s,iµ̇(x>s,iθ) is continuous, and ∇gt(θ) < λI + cµ

∑t
s=1

∑N
i=1 xs,ix

>
s,i � 0 for

θ ∈ Bd(S), so Gt � 0, i.e., Gt is invertible. Therefore, we have

θt − θ? = G−1
t [gt(θt)− gt(θ?)]

Note that Gt < λI + cµ
∑t
s=1

∑N
i=1 xs,ix

>
s,i = cµAt, so G−1

t 4 1
cµ
A−1
t . Hence,

‖θt − θ?‖At = ‖G−1
t [gt(θt)− gt(θ?)]‖At ≤ ‖

1

cµ
A−1
t [gt(θt)− gt(θ?)]‖At =

1

cµ
‖gt(θt)− gt(θ?)‖A−1

t

≤ 1

cµ
‖gt(θt)− gt(θ̂MLE

t )‖A−1
t

+
1

cµ
‖gt(θ̂MLE

t )− gt(θ?)‖A−1
t

(8)
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where the first term depends on the sub-optimality of the offline regression estimator θt to the unique
minimizer θ̂(MLE)

t , and the second term is standard for GLB [20].

Recall from Algorithm 3 that θt = arg minθ∈Bd(S)‖gt(θ̃t)− gt(θ)‖A−1
t

, where θ̃t denotes the AGD
estimator before projection. Therefore, for the first term, using triangle inequality and the definition
of gt(·), we have

||gt(θt)− gt(θ̂(MLE)
t )||A−1

t
≤ ||gt(θt)− gt(θ̃t)||A−1

t
+ ||gt(θ̃t)− gt(θ̂(MLE)

t )||A−1
t

≤ 2||gt(θ̃t)− gt(θ̂(MLE)
t )||A−1

t
= 2||λθt +

t∑
s=1

N∑
i=1

xs,iµ(x>s,iθt)−
t∑

s=1

N∑
i=1

xs,iys,i||A−1
t

= 2||
t∑

s=1

N∑
i=1

xs,i[−yi,s + µ(x>s,iθt)] + λθt||A−1
t

= 2||Nt∇Ft(θt)||A−1
t

where the last equality is due to the definition of Ft(θ) in Eq.(2). We can further bound it using the
property of Rayleigh quotient and the fact that At < λ

cµ
I , which gives us

||gt(θt)− gt(θ̂(MLE)
t )||A−1

t
≤ 2Nt||∇Ft(θt)||2√

λmin(At)
≤ 2Nt||∇Ft(θt)||2√

λ/cµ

Based on Lemma A.3, Ft(θ) is (kµ + λ
Nt )-smooth, which means

1

2kµ + 2λ/(Nt)
‖∇Ft(θt)‖2 ≤ Ft(θt)− Ft(θ̂MLE

t ) ≤ εt

where the second inequality is by definition of εt. Putting everything together, we have the following
bound for the first term

1

cµ
‖gt(θt)− gt(θ̂MLE

t )‖A−1
t
≤ 2Nt

√
2kµ
λcµ

+
2

Ntcµ

√
εt

For the second term, similarly, based on the definition of gt(·), we have
1

cµ
||gt(θ̂MLE

t )− gt(θ?)||A−1
t

=
1

cµ
||

t∑
s=1

N∑
i=1

xs,iys,i −
t∑

s=1

N∑
i=1

µ(x>s,iθ?)xs,i − λθ?||A−1
t

≤ 1

cµ
||

t∑
s=1

N∑
i=1

xs,iηs,i||A−1
t

+

√
λ

cµ
S

Then based on the self-normalized bound in Lemma A.1 (Theorem 1 of [1]), we have
||
∑t
s=1

∑N
i=1 xs,iηs,i||A−1

t
≤ Rmax

√
d log (1 +Ntcµ/dλ) + 2 log (1/δ),∀t, with probability at

least 1− δ.

Substituting the upper bounds for these two terms back into Eq.(8), we have, with probability at least
1− δ,

‖θt − θ?‖At ≤
1

cµ
‖gt(θt)− gt(θ̂(MLE)

t )‖A−1
t

+
1

cµ
‖gt(θ̂(MLE)

t )− gt(θ?)‖A−1
t

≤ 2Nt

√
2kµ
λcµ

+
2

Ntcµ

√
εt +

Rmax
cµ

√
d log (1 +Ntcµ/(dλ)) + 2 log (1/δ) +

√
λ

cµ
S

which finishes the proof.

B Proof of Lemma 4.1

Proof. Denote the two terms for loss difference as A1 =
∑tlast
s=1

∑N
i=1

[
l(x>s,iθtlast , ys,i) −

l(x>s,iθ?, ys,i)
]
, and A2 =

∑t
s=tlast+1

[
l(x>s,iθs−1,i, ys,i) − l(x>s,iθ?, ys,i)

]
. We can upper bound
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the term A1 by

A1 =

tlast∑
s=1

N∑
i=1

[
l(x>s,iθtlast , ys,i)− l(x>s,iθ?, ys,i)

]
− λ

2
‖θ?‖22 +

λ

2
‖θ?‖22

≤
tlast∑
s=1

N∑
i=1

l(x>s,iθtlast , ys,i)−
tlast∑
s=1

N∑
i=1

l(x>s,iθ̂
MLE
tlast

, ys,i)−
λ

2
‖θ̂MLE
tlast
‖22 +

λ

2
‖θ?‖22

≤
tlast∑
s=1

N∑
i=1

l(x>s,iθtlast , ys,i) +
λ

2
‖θtlast‖22 −

tlast∑
s=1

N∑
i=1

l(x>s,iθ̂
MLE
tlast

, ys,i)−
λ

2
‖θ̂MLE
tlast
‖22 +

λ

2
S2

≤ Ntlastεtlast +
λ

2
S2 := B1

where the first inequality is because θ̂MLE
tlast

minimizes Eq.(2), such that
∑tlast
s=1 l(x

>
s,iθ̂

MLE
tlast

, ys,i) +
λ
2 ‖θ̂

MLE
tlast
‖22 ≤

∑tlast
s=1 l(x

>
s,iθ, ys,i) + λ

2 ‖θ‖
2
2 for any θ ∈ Bd(S), and the last inequality is because

Ftlast(θtlast)− Ftlast(θ̂
MLE
tlast

) ≤ εtlast by definition.

Now we start with standard arguments [12, 29] in order to bound the term A2, which is essentially
the online regret of ONS, except that its initial model is the globally updated model θtlast . First, since
l(z, y) is cµ-strongly-convex w.r.t. z, we have

l(x>s,iθs−1,i, ys,i)−l(x>s,iθ?, ys,i) ≤ [µ(x>s,iθs−1,i)−ys,i]x>s,i(θs−1,i−θ?)−
cµ
2
||θs−1,i−θ?||2xs,ix>s,i

(9)
To further bound the RHS of Eq.(9), recall from the ONS local update rule in Algorithm 2 that, for
each client i ∈ [N ] at the end of each time step s ∈ [tlast + 1, t],

θ′s,i = θs−1,i −
1

cµ
A−1
s,i∇l(x

>
s,iθs−1,i, ys,i)

θs,i = arg min
θ∈Bd(S)

||θ′s,i − θ||2As,i

Then due to the property of generalized projection (Lemma 8 of [10]), we have

‖θs,i − θ?‖2As,i

≤ ‖θs−1,i − θ? −
1

cµ
A−1
s,i∇l(x

>
s,iθs−1,i, ys,i)‖2As,i

≤ ‖θs−1,i − θ?‖2As,i −
2

cµ
∇l(x>s,iθs−1,i, ys,i)

>(θs−1,i − θ?) +
1

c2µ
‖∇l(x>s,iθs−1,i, ys,i)‖2A−1

s,i

By rearranging terms, we have

∇l(x>s,iθs−1,i, ys,i)
>(θs−1,i − θ?)

≤ 1

2cµ
‖∇l(x>s,iθs−1,i, ys,i)‖2A−1

s,j
+
cµ
2

(
‖θs−1,i − θ?‖2As,i − ‖θs,i − θ?‖

2
As,i

)
=

1

2cµ
‖∇l(x>s,iθs−1,i, ys,i)‖2A−1

s,i
+
cµ
2
‖θs−1,i − θ?‖2As−1,i

+
cµ
2

(
‖θs−1,i − θ?‖2As,i − ‖θs−1,i − θ?‖2As−1,i

)
− cµ

2
‖θs,i − θ?‖2As,i

=
1

2cµ
‖∇l(x>s,iθs−1,i, ys,i)‖2A−1

s,i
+
cµ
2
‖θs−1,i − θ?‖2As−1,i

+
cµ
2
‖θs−1,i − θ?‖2xs,ix>s,i −

cµ
2
‖θs,i − θ?‖2As,i

Note that ∇l(x>s,iθs−1,i, ys,i) = xs,i[µ(x>s,iθs−1,i) − ys,i], so with the inequality above, we can
further bound the RHS of Eq.(9):

l(x>s,iθs−1,i, ys,i)− l(x>s,iθ?, ys,i) ≤ [µ(x>s,iθs−1,i)− ys,i]x>s,i(θs−1,i − θ?)−
cµ
2
||θs−1,i − θ?||2xs,ix>s,i

≤ 1

2cµ
‖∇l(x>s,iθs−1,i, ys,i)‖2A−1

s,i

+
cµ
2
‖θs−1,i − θ?‖2As−1,i

− cµ
2
‖θs,i − θ?‖2As,i
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Then summing over s ∈ [tlast + 1, t], we have

A2 ≤
1

2cµ

t∑
s=tlast+1

‖∇l(x>s,iθs−1,i, ys,i)‖2A−1
s,i

+
cµ
2
‖θtlast,i − θ?‖2Atlast,i

− cµ
2
‖θt,i − θ?‖2At,i

where Atlast,i = Atlast , θtlast,i = θtlast ,∀i ∈ [N ] due to the global update (line 15 in Algorithm 1).

We should note that the second term above itself essentially corresponds to a confidence ellipsoid
centered at the globally updated model θtlast , and its appearance in the upper bound for the loss
difference (online regret) of local updates is because the local update is initialized by θtlast . And based
on Lemma A.5, with probability at least 1− δ,

‖θtlast,i − θ?‖Atlast,i
≤ 2Ntlast

√
2kµ
λcµ

+
2

Ntlastcµ

√
εtlast

+
1

cµ
Rmax

√
d log (1 +Ntlastcµ/dλ) + 2 log (1/δ) +

√
λ

cµ
S

Therefore, with probability at least 1− δ,

A2 ≤
1

2cµ

t∑
s=tlast+1

‖∇l(x>s,iθs−1,i, ys,i)‖2A−1
s,i

+
cµ
2

[
2Ntlast

√
2kµ
λcµ

+
2

Ntlastcµ

√
εtlast

+
1

cµ
Rmax

√
d log (1 +Ntlastcµ/dλ) + 2 log (1/δ) +

√
λ

cµ
S
]2

:= B2

which finishes the proof for Lemma 4.1.

C Proof of Lemma 4.2 and Corollary 4.2.1

Proof of Lemma 4.2. Due to cµ-strongly convexity of l(z, y) w.r.t. z, we have l(x>s,iθ, ys,i) −
l(x>s,iθ?, ys,i) ≥

[
µ(x>s,iθ?)− ys,i

]
x>s,i(θ − θ?) +

cµ
2

[
x>s,i(θ − θ?)

]2
. Substituting this to the LHS

of Eq.(6) and Eq.(7), we have

B1 ≥
tlast∑
s=1

N∑
i=1

[
l(x>s,iθtlast , ys,i)− l(x>s,iθ?, ys,i)

]
≥

tlast∑
s=1

N∑
i=1

[
µ(x>s,iθ?)− ys

]
x>s,i(θtlast − θ?) +

cµ
2

tlast∑
s=1

N∑
i=1

[
x>s,i(θtlast − θ?)

]2
B2 ≥

t∑
s=tlast+1

[
l(x>s,iθs−1,i, ys,i)− l(x>s,iθ?, ys,i)

]
≥

t∑
s=tlast+1

[
µ(x>s,iθ?)− ys

]
x>s,i(θs−1,i − θ?) +

cµ
2

t∑
s=tlast+1

[
x>s,i(θs−1,i − θ?)

]2
By rearranging the terms, we have

tlast∑
s=1

N∑
i=1

[
x>s,i(θtlast − θ?)

]2 ≤ 2

cµ
B1 +

2

cµ

tlast∑
s=1

N∑
i=1

ηs,ix
>
s,i(θtlast − θ?)

t∑
s=tlast+1

[
x>s,i(θs−1,i − θ?)

]2 ≤ 2

cµ
B2 +

2

cµ

t∑
s=tlast+1

ηs,ix
>
s,i(θs−1,i − θ?)

where the LHS is quadratic in θ?. For the RHS, we will further upper bound the second term as
shown below.
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• Upper Bound for
∑t
s=tlast+1

[
x>s,i(θs−1,i − θ?)

]2
Note that x>s,i(θs−1,i − θ?) is Fs,i-

measurable, and ηs,i is Fs+1,i-measurable and conditionally Rmax-sub-Gaussian. By apply-
ing Lemma A.2 (Corollary 8 of [2]) w.r.t. client i’s filtration {Fs,i}∞s=tlast+1, where Fs,i =

σ
(
[xk,j , ηk,j ]k,j:k≤tlast∩j≤N , [xk,j , ηk,j ]k,j:tlast+1≤k≤s−1∩j=i,xs,i

)
, and taking union bound over all

i ∈ [N ], with probability at least 1− δ, for all t ∈ [T ], i ∈ [N ],
t∑

s=tlast+1

ηs,ix
>
s,i(θs−1,i − θ?) ≤

Rmax

√√√√√2
(
1 +

t∑
s=tlast+1

[
x>s,i(θs−1,i − θ?)

]2) · log(N
δ

√√√√1 +

t∑
s=tlast+1

[
x>s,i(θs−1,i − θ?)

]2)
Therefore,

1 +

t∑
s=tlast+1

[
x>s,i(θs−1,i − θ?)

]2 ≤ 1 +
2

cµ
B2

+
2Rmax

cµ

√√√√√2
(
1 +

t∑
s=tlast+1

[
x>s,i(θs−1,i − θ?)

]2) · log(N
δ

√√√√1 +
t∑

s=tlast+1

[
x>s,i(θs−1,i − θ?)

]2) (10)

Then by applying Lemma 2 of [12], i.e., if q2 ≤ a + fq
√

log( q
δ/N ) then q2 ≤

2a + f2 log(

√
4a+f4/(4δ2)

δ/N ) (for a, f ≥ 0, q ≥ 1). And by setting q =√
1 +

∑t
s=tlast+1

[
x>s,i(θs−1,i − θ?)

]2
, a = 1 + 2

cµ
B2, f = 2

√
2Rmax

cµ
, we have

t∑
s=tlast+1

[
x>s,i(θs−1,i − θ?)

]2 ≤ 1 +
4B2

cµ
+

8R2
max

c2µ
log

(
N

δ

√
4 +

8

cµ
B2 +

64R4
max

c4µ · 4δ2

)
,∀t, i (11)

with probability at least 1− δ.

• Upper Bound for
∑tlast
s=1

∑N
i=1

[
x>s,i(θtlast − θ?)

]2
Note that θtlast depends on all data samples in

{(xs,i, ys,i)}s∈[tlast] as a result of the offline regression method, and therefore x>s,i(θtlast − θ?) is no
longer Fs,i-measurable for s ∈ [1, tlast). Hence, we cannot use Lemma A.2 as before. Instead, we
have
tlast∑
s=1

N∑
i=1

ηs,ix
>
s,i(θtlast − θ?) =

( tlast∑
s=1

N∑
i=1

ηs,ixs,i
)>

(θtlast − θ?)

=
( tlast∑
s=1

N∑
i=1

ηs,ixs,i
)>

(I +

tlast∑
s=1

N∑
i=1

xs,ix
>
s,i)
−1(I +

tlast∑
s=1

N∑
i=1

xs,ix
>
s,i)(θtlast − θ?)

≤

√√√√( tlast∑
s=1

N∑
i=1

ηs,ixs,i
)>

(I +

tlast∑
s=1

N∑
i=1

xs,ix>s,i)
−1
( tlast∑
s=1

N∑
i=1

ηs,ixs,i
)
· (θtlast − θ?)>(I +

tlast∑
s=1

N∑
i=1

xs,ix>s,i)(θtlast − θ?)

=

√√√√‖ tlast∑
s=1

N∑
i=1

ηs,ixs,i‖2
(I+

∑tlast
s=1

∑N
i=1 xs,ix

>
s,i)
−1
· ‖θtlast − θ?‖2(I+∑tlast

s=1

∑N
i=1 xs,ix

>
s,i)

≤ Rmax

√√√√√2 log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix>s,i)
)
· ‖θtlast − θ?‖2(I+∑tlast

s=1

∑N
i=1 xs,ix

>
s,i)

,

with probability at least 1 − δ, where the first inequality is due to the matrix-weighted Cauchy-
Schwarz inequality in Lemma A.4, such that x>A−1Ay ≤

√
x>A−1x · y>A>A−1Ay =√

x>A−1x · y>Ay for symmetric PD matrix A, and the second inequality is obtained by ap-
plying the self-normalized bound in Lemma A.1 w.r.t. the filtration {Fs}s∈{tp}Bp=1

, where
Fs = σ

(
[xk,j , ηk,j ]k,j:k≤s−1∩j≤N , [xk,j , ηk,j ]k,j:k=s∩j≤N−1,xs,N

)
and {tp}Bp=1 denotes the se-

quence of time steps when global update happens, and B denotes the total number of global updates.
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By substituting it back, we have
tlast∑
s=1

N∑
i=1

[
x>s,i(θtlast − θ?)

]2

≤ 2

cµ
B1 +

2Rmax

cµ

√√√√√2 log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix>s,i)
)
· ‖θtlast − θ?‖2I+∑tlast

s=1

∑N
i=1 xs,ix

>
s,i

≤ 2

cµ
B1 +

2Rmax

cµ

√√√√√2 log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix>s,i)
)
·
( tlast∑
s=1

N∑
i=1

[
x>s,i(θtlast − θ?)

]2
+ ‖θtlast − θ?‖22

)
(12)

Then by applying the Proposition 9 of [2], i.e. if z2 ≤ a + bz then z ≤ b +
√
a (for a, b ≥ 0),

and setting z =
√∑tlast

s=1

∑N
i=1

[
x>s,i(θtlast − θ?)

]2
+ ‖θtlast − θ?‖22, a = ‖θtlast − θ?‖22 + 2

cµ
B1, b =

2Rmax

cµ

√
2 log

(
1
δ

√
det(I +

∑tlast
s=1

∑N
i=1 xs,ix

>
s,i)
)
,we have√√√√ tlast∑

s=1

N∑
i=1

[
x>s,i(θtlast − θ?)

]2
+ ‖θtlast − θ?‖22

≤2Rmax

cµ

√√√√√2 log
(1

δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix>s,i)
)

+
√
‖θtlast − θ?‖22 +B1

(13)

Taking square on both sides, and rearranging terms, we have
tlast∑
s=1

N∑
i=1

[
x>s,i(θtlast − θ?)

]2
≤8R2

max

c2µ
log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix>s,i)
)
+B1

+
4Rmax

cµ

√√√√√2 log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix>s,i)
)√
‖θtlast − θ?‖22 +B1

≤8R2
max

c2µ
log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix>s,i)
)
+B1

+
4Rmax

cµ

√√√√√2 log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix>s,i)
)
(‖θtlast − θ?‖2 +

√
B1)

≤8R2
max

c2µ
log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix>s,i)
)
+B1

+
4Rmax

cµ

√√√√√2 log
(1
δ

√√√√det(I +

tlast∑
s=1

N∑
i=1

xs,ix>s,i)
)
(‖θtlast‖2 + ‖θ?‖2 +

√
B1)

(14)

Now putting everything together, we have the following confidence region for θ?,

P
(
∀t, i,

tlast∑
s=1

N∑
i=1

[
x>s,i(θtlast − θ?)

]2
+

t∑
s=tlast+1

[
x>s,i(θs−1,i − θ?)

]2 ≤ βt,i) ≥ 1− 2δ (15)
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where βt,i =
8R2

max

c2µ
log
(

1
δ

√
det(I +

∑tlast
s=1

∑N
i=1 xs,ix

>
s,i)
)

+ B1 +

4Rmax

cµ

√
2 log

(
1
δ

√
det(I +

∑tlast
s=1

∑N
i=1 xs,ix

>
s,i)
)
(‖θtlast‖2 + ‖θ?‖2 +

√
B1) + 1 + 4B2

cµ
+

8R2
max

c2µ
log
(
N
δ

√
4 + 8

cµ
B2 +

64R4
max

c4µ·4δ2
)
.

Denote Xt,i =


x>1,1
. . .

x>tlast,N

x>i,tlast+1

. . .
x>i,t

 ∈ R(Ntlast+t−tlast)×d, and zt,i =


x>1,1θtlast

. . .
x>tlast,N

θtlast

x>i,tlast+1θtlast,i

. . .
x>i,tθt−1,i

 ∈ RNtlast+t−tlast . We can

rewrite the inequality above as

‖zt,i − Xt,iθ?‖22 +
λ

cµ
‖θ?‖22 ≤ βt,i +

λ

cµ
‖θ?‖22 ≤ βt,i +

λ

cµ
S2

⇔‖zt,i − Xt,iθ?‖22 +
λ

cµ
‖θ?‖22 − ‖zt,i − Xt,iθ̂t,i‖22 −

λ

cµ
‖θ̂t,i‖22 + ‖zt,i − Xt,iθ̂t,i‖22 +

λ

cµ
‖θ̂t,i‖22

≤ βt,i +
λ

cµ
S2

where θ̂t,i = A−1
t,i X>t,izt,i denotes the Ridge regression estimator based on the predicted rewards

given by the past sequence of model updates, and the regularization parameter is λ
cµ

. Note that by

expanding θ̂t,i, we can show θ̂>t,iAi,tθ̂t,i = z>i,tXi,tθ̂t,i, and θ̂>t,iAi,tθ? = z>i,tXi,tθ?. Therefore, we
have

‖θ̂t,i − θ?‖2At,i ≤ βt,i +
λ

cµ
S2 − (‖zt,i‖22 − θ̂>t,iX

>
t,izt,i)

which finishes the proof of Lemma 4.2.

Proof of Corollary 4.2.1. Under the condition that εtlast ≤ 1
N2t2last

,

B1 ≤
1

Ntlast
+
λ

2
S2 = O(1)

B2 ≤
1

2cµ

t∑
s=tlast+1

‖∇l(x>s,iθs−1,i, ys,i)‖2A−1
s,i

+
cµ
2

[
2

√
2kµ
λcµ

+
2

Ntlastcµ
+

1

cµ
Rmax

√
d log (1 +Ntlastcµ/dλ) + 2 log (1/δ) +

√
λ

cµ
S
]2

Note that∇l(x>s,iθs−1,i, ys,i) = xs,i[µ(x>s,iθs−1,i)− ys,i]. We can upper bound the squared predic-
tion error by [

µ(x>s,iθs−1,i)− ys,i
]2

=
[
µ(x>s,iθs−1,i)− µ(x>s,iθ?)− ηs,i

]2
≤ 2
[
µ(x>s,iθs−1,i)− µ(x>s,iθ?)

]2
+ 2η2

s,i

≤ 2k2
µ

[
x>s,i(θs−1,i − θ?)

]2
+ 2η2

s,i

≤ 8k2
µS

2 + 2η2
s,i

where the first inequality is due to AM-QM inequality, and the second inequality is due to the kµ-
Lipschitz continuity of µ(·) according to Assumption 1. Since |ηs,i| ≤ Rmax,

[
µ(x>s,iθs−1,i) −

ys,i
]2 ≤ k2

µS
2 + R2

max. In addition, due to Lemma 11 of [1], i.e.,
∑t
s=tlast+1‖xs,i‖2A−1

s,i

≤
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2 log(
det(At,i)
det(λI) ) Therefore,

1

2cµ

t∑
s=tlast+1

‖∇l(x>s,iθs−1,i, ys,i)‖2A−1
s,i

= O
(d logNT

cµ
[k2
µS

2 +R2
max]

)
so B2 = O

(
d logNT

cµ
[k2
µS

2 +R2
max]

)
. Hence,

βt,i = O(d
R2

max

c2µ
logNT + d

k2
µ

c2µ
logNT + d

R2
max

c2µ
logNT ) = O(

d logNT

c2µ
[k2
µ +R2

max])

which finishes the proof.

D Proof of Theorem 4.3

Proof. Since µ(·) is kµ-Lipschitz continuous, we have µ(x>t,?θ?)−µ(x>t,iθ?) ≤ kµ(x>t,?θ?−x>t,iθ?).
Then we have the following upper bound on the instantaneous regret,

rt,i
kµ
≤ x>t,?θ? − x>t,iθ? ≤ x>t,iθ̃t−1,i − x>t,iθ?

= x>t,i(θ̃t−1,i − θ̂t−1,i) + x>t,i(θ̂t−1,i − θ?)

≤ ‖xt,i‖A−1
t−1,i
‖θ̃t−1,i − θ̂t−1,i‖At−1,i + ‖xt,i‖A−1

t−1,i
‖θ̂t−1,i − θ?‖At−1,i

≤ 2αt−1,i · ‖xt,i‖A−1
t−1,i

which holds for all i ∈ [N ], t ∈ [T ], with probability at least 1−2δ. And θ̃t−1.i denotes the optimistic
estimate in the confidence ellipsoid that maximizes the UCB score when client i selects arm at time
step t.

Now consider an imaginary centralized agent that has direct access to all clients’ data, and we denote
its covariance matrix as Ãt,i = λ

cµ
I+
∑t−1
s=1

∑N
j=1 xs,jxs,j+

∑i
j=1 xt,jx

>
t,j , i.e., Ãt,i is immediately

updated after any client obtains a new data sample from the environment. Then we can obtain the
following upper bound for rt,i, which is dependent on the determinant ratio between the covariance
matrix of the imaginary centralized agent and that of client i, i.e., det(Ãt−1,i)/ det(At−1,i).

rt,i ≤ 2kµαt−1,i

√
x>t,iA

−1
t−1,ixt,i ≤ 2kµαt−1,i

√
x>t,iÃ

−1
t−1,ixt,i ·

det(Ãt−1,i)

det(At−1,i)

We refer to the time period in-between two consecutive global updates as an epoch, and denote the
total number of epochs as B ∈ R, i.e., the p-th epoch refers to the period from tp−1 + 1 to tp, for
p ∈ [B], where tp denotes the time step when the p-th global update happens. Then the p-th epoch is

called a ‘good’ epoch if the determinant ratio
det(Atp )

det(Atp−1
) ≤ 2, where Atp is the aggregated sufficient

statistics computed at the p-th global update. Otherwise, it is called a ‘bad’ epoch. In the following,
we bound the cumulative regret in ‘good’ and ‘bad’ epochs separately.

Suppose the p-th epoch is a good epoch, then for any client i ∈ [N ], and time step t ∈ [tp−1 + 1, tp],

we have det(Ãt−1,i)
det(At−1,i)

≤ det(Atp )

det(Atp−1
) ≤ 2, because At−1,i < Atp−1 and Ãt−1,i 4 Atp . Therefore, the

instantaneous regret incurred by any client i at any time step t of a good epoch can be bounded by

rt,i ≤ 2
√

2kµαt−1,i

√
x>t,iÃ

−1
t−1,ixt,i

with probability at least 1− 2δ. Therefore, using standard arguments for UCB-type algorithms, e.g.,
Theorem 2 in [20], the cumulative regret for all the ‘good epochs’ is

REGgood ≤ 2
√

2kµαt−1,i

T∑
t=1

N∑
i=1

‖xt,i‖Ã−1
t−1,i

= O

(
kµ(kµ +Rmax)

cµ
d
√
NT logNT

)
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which matches the regret upper bound of GLOC [12].

Now suppose the p-th epoch is bad. Then the cumulative regret incurred by all N clients during this
‘bad epoch’ can be upper bounded by:

tp∑
t=tp−1+1

N∑
i=1

rt,i

≤ O(
kµ(kµ +Rmax)

cµ

√
d log(NT ))

tp∑
t=tp−1+1

N∑
i=1

min(1, ||xt,i||A−1
t−1,i

)

≤ O(
kµ(kµ +Rmax)

cµ

√
d log(NT ))

N∑
i=1

√
(tp − tp−1) log

det(Atp−1,i)

det(Atp−1,i −∆Atp−1,i)

≤ O(
kµ(kµ +Rmax)

cµ
N
√
d log (NT )D)

where the last inequality is due to the event-trigger design in Algorithm 1. Following the same
argument as [28], there can be at most R = dd log (1 +

NTcµ
λd )e = O

(
d log(NT )

)
‘bad epochs’,

because det(AtB ) ≤ det(ÃT,N ) ≤ ( λcµ + NT
d )d. Therefore, the cumulative regret for all the ‘bad

epochs’ is

REGbad = O

(
kµ(kµ +Rmax)

cµ
d1.5 log1.5 (NT )ND0.5

)
Combining the regret upper bound for ‘good’ and ‘bad’ epochs, the cumulative regret

RT = O

(
kµ(kµ +Rmax)

cµ
(d
√
NT log(NT ) + d1.5 log1.5 (NT )ND0.5)

)
.

To obtain upper bound for the communication cost CT , we first upper bound the total number of
epochs B. Denote the length of an epoch, i.e., the number of time steps between two consecutive
global updates, as α > 0, so that there can be at most dTα e epochs with length longer than α.
For a particular epoch p with less than α time steps, we have tp − tp−1 < α. Moreover, due to

the event-trigger design in Algorithm 1, we have (tp − tp−1) log
det(Atp )

det(Atp−1
) > D, which means

log
det(Atp )

det(Atp−1
) >

D
α . Since

∑B
p=1 log

det(Atp )

det(Atp−1
) ≤ R, the number of epochs with less than α time

steps is at most dRαD e. Therefore, the total number of epochs.

B ≤ dT
α
e+ dRα

D
e

which is minimized it by choosing α =
√

DT
R , so B ≤

√
TR
D = O(d0.5 log0.5(NT )T 0.5D−0.5).

At the end of each epoch, FedGLB-UCB has a global update step that executes AGD among all N
clients. As mentioned in Section 4.1, the number of iterations required by AGD has upper bound

Jt ≤ 1 +

√
kµ
λ
Nt+ 1 log

(kµ + 2λ
Nt )‖θ

(1)
t − θ̂MLE

t ‖22
2εt

,

and under the condition that εt = 1
N2t2 ,∀t ∈ [T ], we have Jt = O

(√
NT log(NT )

)
,∀t ∈ [T ].

Moreover, each iteration of AGD involves communication with N clients, so the communication cost

CT = O(d0.5 log1.5(NT )TN1.5D−0.5)

In order to match the regret under centralized setting, we set the threshold D = T
Nd log(NT ) , which

gives us RT = O(
kµ(kµ+Rmax)

cµ
d
√
NT log(NT )), and CT = O(dN2

√
T log2(NT )).
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E Theoretical Analysis for Variants of FedGLB-UCB

In this section, we describe and analyze the variants of FedGLB-UCB listed in Table 1. The first
variant, FedGLB-UCB1, completely disables local update, and we can see that it requires a linear
communication cost in T to attain the O(d

√
NT log(NT )) regret. As we mentioned in Section 4.1,

this is because in the absence of local update, FedGLB-UCB1 requires more frequent global updates,
i.e.,
√
NT in total, to control the sub-optimality of the employed bandit model w.r.t the growing

training set. The second variant, denoted as FedGLB-UCB2, is exactly the same as FedGLB-UCB,
except for its fixed communication schedule. This leads to additional d

√
N global updates, as fixed

update schedule cannot adapt to the actual quality of collected data. The third variant, denoted as
FedGLB-UCB3, uses ONS for both local and global update, such that only one round of gradient
aggregation among N clients is performed for each global update, i.e., lazy ONS update over batched
data. It incurs the least communication cost among all variants, but its regret grows at a rate of
(NT )3/4 due to the inferior quality of its lazy ONS update.

E.1 FedGLB-UCB1: scheduled communication + no local update

Though many real-world applications are online problems in nature, i.e., the clients continuously
collect new data samples from the users, standard federated/distributed learning methods do not
provide a principled solution to adapt to the growing datasets. A common practice is to manually set
a fixed global update schedule in advance, i.e., periodically update and deploy the model.

To demonstrate the advantage of FedGLB-UCB over this straightforward solution, we present and
analyze the first variant FedGLB-UCB1, which completely disables local update, and performs global
update according to a fixed schedule S = {t1 := b TB c, t2 := 2b TB c, . . . , tB := Bb TB c}, where B is
the total number of global updates up to time step T . The description of FedGLB-UCB1 is presented
in Algorithm 4.

Algorithm 4 FedGLB-UCB1

1: Input: communication schedule S, regularization parameter λ > 0, δ ∈ (0, 1) and cµ.
2: Initialize ∀i ∈ [N ]: θ0,i = 0 ∈ Rd, A0,i = λ

cµ
I ∈ Rd×d,X0,i = 0 ∈ R0×d, y0,i = 0 ∈ R0,

tlast = 0
3: for t = 1, 2, ..., T do
4: for client i = 1, 2, ..., N do
5: Observe arm set At,i for client i
6: Select arm xt,i ∈ At,i according to Eq. (16) and observe reward yt,i

7: Update client i: Xt,i =

[
Xt−1,i

x>t,i

]
,yt,i =

[
yt−1,i

yt,i

]
8: if t /∈ S then
9: Clients: set θt,i = θt−1,i, At,i = At−1,i,∀i ∈ [N ]

10: else
11: Clients: send {X>t,iXt,i}i∈[N ] to server
12: Server compute At = λ

cµ
I +

∑N
i=1 X>t,iXt,i and send At to all clients.

13: Clients: set At,i = At, for i ∈ [N ]
14: Server update global model θt = AGD-Update(θtlast , Jt), and set tlast = t
15: Clients set local models θt,i = θt,∀i ∈ [N ]

In FedGLB-UCB1, each client stores a local model θt−1,i, and the corresponding covariance matrix
At−1,i. Note that {θt−1,i, At−1,i}i∈[N ] are only updated at time steps t ∈ S , and remain unchanged
for t /∈ S. At time t, client i selects the arm that maximizes the following UCB score:

xt,i = arg max
x∈At,i

x>θt−1,i + αt−1,i||x||A−1
t−1,i

(16)

where αt−1,i is given in Lemma A.5. The regret and communication cost of FedGLB-UCB1 is given
in the following theorem.
Theorem E.1 (Regret and Communication Cost Upper Bound of FedGLB-UCB1). Under the
condition that εt = 1

N2t2 , and the total number of global synchronizationsB =
√
NT , the cumulative
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regret RT has upper bound

RT = O

(
kµRmaxd

cµ

√
NT log(NT/δ)

)
with probability at least 1− δ. The cumulative communication cost has upper bound

CT = O(N2T log(NT ))

Proof. First, based on Lemma A.5 and under the condition that εt = 1
N2t2 , we have

‖θt − θ?‖At ≤ αt

holds ∀t, where αt =
√

2kµ
λcµ

+ 2
Ntcµ

+ Rmax
cµ

√
d log (1 +Ntcµ/(dλ)) + 2 log (1/δ) +

√
λ
cµ
S =

O(Rmaxcµ

√
d log(Nt)), which matches the order in [20].

Similar to the proof of Theorem 4.3, we decompose all B epochs into ‘good’ and ‘bad’ epochs
according to the log-determinant ratio: the p-th epoch, for p ∈ [B], is a ‘good’ epoch if the
determinant ratio

det(Atp )

det(Atp−1
) ≤ 2. Otherwise, it is a ‘bad’ epoch. In the following, we bound the

cumulative regret in ‘good’ and ‘bad’ epochs separately.

Suppose epoch p is a good epoch, then for any client i ∈ [N ], and time step t ∈ [tp−1 + 1, tp], we

have det(Ãt−1,i)
det(At−1,i)

≤ det(Atp )

det(Atp−1
) ≤ 2, because At−1,i = Atp−1

and Ãt−1,i 4 Atp . Therefore, the
instantaneous regret incurred by any client i at any time step t of a good epoch p can be bounded by

rt,i ≤ 2kµαtp−1

√
x>t,iAt−1,ixt,i ≤ 2kµαtp−1

√
x>t,iA

−1
t−1xt,i ·

det(Ãt−1,i)

det(At−1,i)

≤ 2
√

2kµαT

√
x>t,iA

−1
t−1xt,i

By standard arguments [1, 20], the cumulative regret incurred in all good epochs can be upper
bounded by O(

kµRmax

cµ
d
√
NT log(NT/δ)) with probability at least 1− δ.

By Assumption 1, µ(·) is Lipschitz continuous with constant kµ, i.e., |µ(x>θ1) − µ(x>θ2)| ≤
kµ|x>(θ1 − θ2)|, so the instantaneous regret rt,i is uniformly bounded ∀t ∈ [T ], i ∈ [N ] by 2kµS.
Now suppose epoch p is bad, then we can upper bound the cumulative regret in this bad epoch
by 2kµS

NT
B , where NT

B is the number of time steps in each epoch. Since there can be at most
O(d logNT ) bad epochs, the cumulative regret incurred in all bad epochs can be upper bounded by
O(NTB kµSd log(NT )). Combining both parts together, the cumulative regret upper bound is

RT = O

(
NT

B
kµSd log(NT ) +

kµRmaxd

cµ

√
NT log(NT )

)
To recover the regret under centralized setting, we set B =

√
NT , so

RT = O

(
kµRmax
cµ

d
√
NT log(NT )

)
Note that FedGLB-UCB1 has B =

√
NT global updates in total, and during each global update,

there are Jt rounds of communications, for t ∈ S . As mentioned earlier, for AGD to attain εt = 1
N2t2

sub-optimality, the required number of inner iterations

Jt ≤ 1 +

√
kµ + λ

Nt
λ
Nt

log
(kµ + λ

Nt + λ
Nt )‖θ

(0)
t − θ̂MLE

t ‖22
2εt

= O
(√

Nt log(Nt)
)
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Therefore, the communication cost over time horizon T is

CT = N ·
∑
t∈S

Jt

= N ·
[√√

NT log(
√
NT ) +

√
2
√
NT log(2

√
NT ) + · · ·+

√√
NT ·

√
NT log(

√
NT ·

√
NT )

]
≤ N5/4T 1/4 log(NT )

[√
1 +
√
2 + · · ·+

√√
NT

]
≤ N5/4T 1/4 log(NT ) · 3

2
(
√
NT +

1

2
)3/2

= O(N2T log(NT ))

which finishes the proof.

E.2 FedGLB-UCB2: scheduled communication

For the second variant FedGLB-UCB2, we enabled local update on top of FedGLB-UCB1. Therefore,
compared with the original algorithm FedGLB-UCB, the only difference is that FedGLB-UCB2

uses scheduled communication instead of event-triggered communication. Its description is given in
Algorithm 5.

Algorithm 5 FedGLB-UCB2

1: Input: communication schedule S, regularization parameter λ > 0, δ ∈ (0, 1) and cµ.
2: Initialize ∀i ∈ [N ]: A0,i = λ

cµ
I ∈ Rd×d, b0,i = 0 ∈ Rd, θ0,i = 0 ∈ Rd,∆A0,i = 0 ∈ Rd×d;

A0 = λ
cµ

I ∈ Rd×d, b0 = 0 ∈ Rd, θ0 = 0 ∈ Rd, tlast = 0

3: for t = 1, 2, ..., T do
4: for client i = 1, 2, ..., N do
5: Observe arm set At,i for client i
6: Select arm xt,i ∈ At,i by Eq.(5), and observe reward yt,i
7: Update client i: At,i = At−1,i + xt,ix

>
t,i, ∆At,i = ∆At−1,i + xt,ix

>
t,i

8: if t /∈ S then
9: Clients ∀i ∈ [N ]: θt,i = ONS-Update(θt−1,i, At,i,∇l(x>t,iθt−1,i, yt,i)), bt,i = bt−1,i +

xt,ix
>
t,iθt−1,i

10: else
11: Clients ∀i ∈ [N ]: send ∆At,i to server, and reset ∆At,i = 0
12: Server compute At = Atlast +

∑N
i=1 ∆At,i

13: Server perform global model update θt = AGD-Update(θtlast , Jt) (see Eq.(3) for choice of
Jt), bt = btlast +

∑N
i=1 ∆At,iθt, and set tlast = t

14: Clients ∀i ∈ [N ]: set θt,i = θt, At,i = At, bt,i = bt

The regret and communication cost of FedGLB-UCB2 is given in the following theorem.

Theorem E.2 (Regret and Communication Cost Upper Bound of FedGLB-UCB2). Under the
condition that εt = 1

N2t2 , and the total number of global synchronizations B = d2N log(NT ), the
cumulative regret RT has upper bound

RT = O

(
kµ(kµ +Rmax)

cµ
d
√
NT log(NT/δ)

√
log

T

d2N logNT

)
with probability at least 1− δ. The cumulative communication cost has upper bound

CT = O(d2N2.5
√
T log2(NT ))

Proof. Compared with the analysis for FedGLB-UCB, the main difference in the analysis for FedGLB-
UCB2 is how we bound the regret incurred in ‘bad epochs’. Using the same argument, the cumulative
regret for the ‘good epochs’ is REGgood = O(

kµ(kµ+Rmax)
cµ

d
√
NT logNT/δ).
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Now consider a particular bad epoch p ∈ [B]. Then the cumulative regret incurred by all N clients
during this ‘bad epoch’ can be upper bounded by:

tp∑
t=tp−1+1

N∑
i=1

rt,i

≤ O(
kµ(kµ +Rmax)

cµ

√
d log(NT/δ))

tp∑
t=tp−1+1

N∑
i=1

min(1, ||xt,i||A−1
t−1,i

)

≤ O(
kµ(kµ +Rmax)

cµ

√
d log(NT/δ))

N∑
i=1

√
(tp − tp−1) log

det(Atp−1,i)

det(Atp−1,i −∆Atp−1,i)

≤ O(
kµ(kµ +Rmax)

cµ
dN
√

log (NT/δ)

√
T

B
log(

T

B
))

where the last inequality is because all epochs has length T
B as defined by S. Again, since there can

be at most O(d logNT ) ‘bad epochs’, the cumulative regret for the ‘bad epochs’ is upper bounded by

REGbad = O(
kµ(kµ +Rmax)

cµ
d2 log1.5 (NT/δ)N

√
T

B
log(

T

B
)).

Combining the cumulative regret for both ‘good’ and ‘bad’ epochs, and setting B = d2N log(NT ),
we have

RT = O

(
kµ(kµ +Rmax)

cµ
d
√
NT log(NT/δ)

√
log(

T

d2N logNT
)

)

Now that FedGLB-UCB2 has B = d2N log(NT ) global updates in total, and during each global
update, there are Jt = O(

√
NT log(NT )) rounds of communications, for t ∈ S. Therefore, the

communication cost over time horizon T is

CT = N ·
∑
t∈S

Jt = O(N · d2N log(NT ) ·
√
NT log(NT ))

= O(d2N2.5
√
T log2(NT ))

which finishes the proof.

E.3 FedGLB-UCB3: scheduled communication + ONS for global update

The previous two variants both adopt iterative optimization method, i.e., AGD, for the global update,
which introduces a

√
NT log(NT ) factor in the communication cost. In this section, we try to avoid

this by studying the third variant FedGLB-UCB3 that adopts ONS for both local and global update,
such that only one step of ONS is performed (based on all new data samples N clients collected in
this epoch). It can be viewed as the ONS-GLM algorithm [12] with lazy batch update.

Recall that the update schedule is denoted as S = {t1 := b TB c, t2 := 2b TB c, . . . , tq :=

qb TB c, . . . , tB := Bb TB c}, where B denotes the total number of global updates up to T . Compared
with [12], the main difference in our construction is that the loss function in the online regression
problem may contain multiple data samples, i.e., for global update, or one single data sample, i.e.,
for local update. Then for a client i ∈ [N ] at time step t (suppose t is in the (q + 1)-th epoch, so
t ∈ [tq + 1, tq+1]), the sequence of loss functions observed by the online regression estimator till
time t is:
t1∑
s=1

N∑
i=1

l(x
>
s,iθ0, ys,i),

t2∑
s=t1+1

N∑
i=1

l(x
>
s,iθt1 , ys,i), . . . ,

tq∑
s=tq−1+1

N∑
i=1

l(x
>
s,iθtq−1

, ys,i)

︸ ︷︷ ︸
global updates at t1, t2, . . . , tq

, l(x
>
tq+1,iθtq , ytq+1,i), . . . , l(x

>
t,iθt−1,i, yt,i)︸ ︷︷ ︸

local updates at tq + 1, . . . , t

We can see that the first q terms correspond to the global ONS updates that are computed using the
whole batch of data collected by N clients in each epoch, and the remaining t− tq terms are local
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Algorithm 6 FedGLB-UCB3

1: Input: communication schedule S, regularization parameter λ > 0, δ ∈ (0, 1) and cµ
2: Initialize ∀i ∈ [N ]: θ0,i = 0 ∈ Rd, A0,i = λI ∈ Rd×d, V0,i = λI ∈ Rd×d, b0,i = 0 ∈ Rd;
θ0 = 0 ∈ Rd, A0 = λI ∈ Rd×d, V0 = λI ∈ Rd×d, b0 = 0 ∈ Rd, tlast = 0

3: for t = 1, 2, ..., T do
4: for client i = 1, 2, ..., N do
5: Observe arm set At,i for client i ∈ [N ]

6: Select arm xt,i = arg maxx∈At,i x
>θ̂t−1,i +αt−1,i‖x‖V −1

t−1,i
, where θ̂t−1,i = V −1

t−1,ibt−1,i

and αt−1,i is given in Lemma E.4; and then observe reward yt,i
7: Compute loss l(zt,i, yt,i), where zt,i = x>t,iθt−1,i

8: Update client i: At,i = At−1,i +∇l(zt,i, yt,i)∇l(zt,i, yt,i)>, Vt,i = Vt−1,i + xt,ix
>
t,i

9: if t /∈ S then
10: Clients ∀i ∈ [N ]: θt,i = ONS-Update(θt−1,i, At,i,∇l(zt,i, yt,i)), bt,i = bt−1,i + xt,izt,i
11: else
12: Clients ∀i ∈ [N ]: send gradient ∇Ft,i(θtlast) =

∑t
s=tlast+1∇l(x>s,iθtlast , ys,i) and ∆Vt,i =

Vt,i − Vtlast,i to server
13: Server At = Atlast + (

∑N
i=1∇Ft,i(θtlast))(

∑N
i=1∇Ft,i(θtlast))

>, Vt = Vtlast +
∑N
i=1 ∆Vt,i,

bt = btlast +
∑N
i=1 ∆Vt,iθtlast , θt = ONS-Update(θtlast , At,

∑N
i=1∇Ft,i(θtlast))

14: Clients ∀i ∈ [N ]: θt,i = θt, At,i = At, Vt = Vt, bt,i = bt
15: Set tlast = t

ONS updates that are computed using each new data sample collected by client i in the (q + 1)-th
epoch.

To facilitate further analysis, we introduce a new set of indices for the data samples, so that we
can unify the notations for the loss functions above. Imagine all the arm pulls are performed by an
imaginary centralized agent, such that, in each time step t ∈ [T ], it pulls an arm for clients 1, 2, . . . , N
one by one. Therefore, the sequence of data sample obtained by this imaginary agent can be denoted
as (x1, y1), (x2, y2), . . . , (xs, ys), . . . , (xNT , yNT ). Moreover, we denote np as the total number of
data samples collected by all N clients till the p-th ONS update (including both global and local ONS
update), and denote the updated model as θp, for p ∈ [P ]. Note that P denotes the total number of
updates up to time t (total number of terms in the sequence above), such that P = q + t− tq. Then
this sequence of loss functions can be rewritten as:

F1(θ0), F2(θ1), . . . , Fq(θq−1)︸ ︷︷ ︸
global updates

, Fq+1(θq), . . . , FP (θP−1)︸ ︷︷ ︸
local updates

where Fp(θp−1) =
∑np
s=np−1+1 l(x

>
s θp−1, ys), for p ∈ [P ].

• Online regret upper bound for lazily-updated ONS To construct the confidence ellipsoid based
on this sequence of global and local ONS updates, we first need to upper bound the online regret that
ONS incurs on this sequence of loss functions, which is given in Lemma E.3.

Lemma E.3 (Online regret upper bound). Under the condition that the learning rate of ONS is set
to γ = 1

2 min( 1

4S
√
k2µS

2+R2
max

,
cµ

(k2µS
2+R2

max) maxp∈[P ](np−np−1) ), then the cumulative online regret

over P steps

P∑
p=1

Fp(θp−1)− Fp(θ?) ≤ BP

where BP = 1
2γ

∑P
p=1 ||∇Fp(θp−1)||2

A−1
p

+ 2γλS2.

Proof of Lemma E.3. Recall from the proof of Corollary 4.2.1 that |µ(x>s θp−1) − ys| ≤√
k2
µS

2 +R2
max := G,∀s. First, we need to show that Fp(θp−1) =

∑np
s=np−1+1 l(x

>
s θp−1, ys)

is cµ
(np−np−1)G2 -exp-concave, or equivalently,∇2Fp(θp−1) < cµ

(np−np−1)G2∇Fp(θp−1)∇Fp(θp−1)>
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(Lemma 4.2 in [9]). Taking first and second order derivative of Fp(θp−1) w.r.t. θp−1, we have

∇Fp(θp−1) =

np∑
s=np−1+1

xs[−ys + µ(x>s θp−1)] = X>p [µ(Xpθp−1)− yp],

∇2Fp(θp−1) =

np∑
s=np−1+1

xsx
>
s µ̇(x>s θp−1)

where Xp = [xnp−1+1,xnp−1+2, . . . ,xnp ]> ∈ R(np−np−1)×d, and yp =

[ynp−1+1, ynp−1+2, . . . , ynp ]> ∈ Rnp−np−1 . Then due to Assumption 1, we have
∇2Fp(θp−1) < cµ

∑np
s=np−1+1 xsx

>
s = cµX

>
p Xp. For any vector u ∈ Rd, we can show

that,

u>∇Fp(θp−1)∇Fp(θp−1)>u

= u>X>p [µ(Xpθp−1)− yp][µ(Xpθp−1)− yp]
>Xpu

=
[
(Xpu)>[µ(Xpθp−1)− yp]

]2
≤ ‖Xpu‖22 · ‖µ(Xpθp−1)− yp‖22
≤ u>X>p Xpu · (np − np−1)G2

where the first inequality is due to Cauchy-Schwarz inequality, and the second inequality is because
‖µ(Xpθp−1)− yp‖22 =

∑np
s=np−1+1[−ys + µ(x>s θp−1)]2 ≤ (np − np−1)G2. Therefore, X>p Xp <

1
(np−np−1)G2∇Fp(θp−1)∇Fp(θp−1)>, which gives us

∇2Fp(θp−1) <
cµ

(np − np−1)G2
∇Fp(θp−1)∇Fp(θp−1)>

Then due to Lemma 4.3 of [9], under the condition that γp ≤ 1
2 min( 1

4GS ,
cµ

(np−np−1)G2 ), we have

Fp(θp−1)− Fp(θ?)

≤ ∇Fp(θp−1)>(θp−1 − θ?)−
γp
2

(θp−1 − θ?)>∇Fp(θp−1)∇Fp(θp−1)>(θp−1 − θ?) (17)

Then we start to upper bound the RHS of the inequality above. Recall that the ONS update rule is:

θ′p = θp−1 −
1

γ
A−1
p ∇Fp(θp−1)

θp = arg min
θ∈Θ

||θ′p − θ||2Ap

where Ap =
∑p
ρ=1∇Fρ(θρ−1)∇Fρ(θρ−1)>, and γ is set to minp∈[P ] γp =

1
2 min( 1

4GS ,
cµ

G2 maxp∈[P ](np−np−1) ). So we have

θ′p − θ? = θp−1 − θ? −
1

γ
A−1
p ∇Fp(θp−1)

Then due to the property of the generalized projection, and by substituting into the update rule, we
have

||θp − θ?||2Ap ≤ ||θ
′
p − θ?||2Ap ≤ ||θp−1 − θ?||2Ap −

2

γ
(θp−1 − θ?)>∇Fp(θp−1) +

1

γ2
||∇Fp(θp−1)||2A−1

p

By rearranging terms,

∇Fp(θp−1)>(θp−1 − θ?) ≤
1

2γ
||∇Fp(θp−1)||2

A−1
p

+
γ

2

(
||θp−1 − θ?||2Ap − ||θp − θ?||

2
Ap

)
After summing over P steps, we have

P∑
p=1

∇Fp(θp−1)
>(θp−1 − θ?) ≤

1

2γ

P∑
p=1

||∇Fp(θp−1)||2A−1
p

+
γ

2

P∑
p=1

(
||θp−1 − θ?||2Ap − ||θp − θ?||

2
Ap

)
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The second term can be simplified,

P∑
p=1

(
||θp−1 − θ?||2Ap − ||θp − θ?||

2
Ap

)
= ||θ0 − θ?||2A1

+

P∑
p=2

(
||θp−1 − θ?||2Ap − ||θp−1 − θ?||2Ap−1

)
− ||θP − θ?||2AP

≤ ||θ0 − θ?||2A1
+

P∑
p=2

(
||θp−1 − θ?||2Ap − ||θp−1 − θ?||2Ap−1

)
= ||θ0 − θ?||2A1

+

P∑
p=2

||θp−1 − θ?||2∇Fp(θp−1)∇Fp(θp−1)>

= ||θ0 − θ?||2A1
+

P∑
p=1

||θp−1 − θ?||2∇Fp(θp−1)∇Fp(θp−1)> − ||θ0 − θ?||2∇F1(θ0)∇F1(θ0)>

= 4λS2 +

P∑
p=1

||θp−1 − θ?||2∇Fp(θp−1)∇Fp(θp−1)>

which leads to
P∑
p=1

∇Fp(θp−1)>(θp−1 − θ?) ≤
1

2γ

P∑
p=1

||∇Fp(θp−1)||2
A−1
p

+ 2γλS2

+
γ

2

P∑
p=1

||θp−1 − θ?||2∇Fp(θp−1)∇Fp(θp−1)>

By rearranging terms, we have

P∑
p=1

[
∇Fp(θp−1)>(θp−1 − θ?)−

γ

2
||θp−1 − θ?||2∇Fp(θp−1)∇Fp(θp−1)>

]
≤ 1

2γ

P∑
p=1

||∇Fp(θp−1)||2
A−1
p

+ 2γλS2

Combining with Eq.(17), we obtain the following upper bound for the P -step online regret

P∑
p=1

Fp(θp−1)− Fp(θ?) ≤
1

2γ

P∑
p=1

||∇Fp(θp−1)||2
A−1
p

+ 2γλS2

where Ap =
∑p
ρ=1∇Fρ(θρ−1)∇Fρ(θρ−1)>.

Corollary E.3.1 (Order of BP ). Under the condition that γ =
1
2 min( 1

4S
√
k2µS

2+R2
max

,
cµ

(k2µS
2+R2

max) maxp∈[P ](np−np−1) ), the online regret upper bound

BP = O(
k2µ+R2

max

cµ
d log (nP ) maxp∈[P ](np − np−1)).

Proof of Corollary E.3.1. Recall that Ap =
∑p
ρ=1∇Fρ(θρ−1)∇Fρ(θρ−1)>. Therefore, we have

P∑
p=1

||∇Fp(θp−1)||2
A−1
p
≤ log

det(AP )

det(λI)
= log

det(λI +
∑P
p=1∇Fp(θp−1)∇Fp(θp−1)>)

det(λI)

≤ d log
(
1 +

1

dλ

P∑
p=1

‖∇Fp(θp−1)‖22
)
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where the first inequality is due to Lemma 11 of [1], and the second due to the determinant-
trace inequality (Lemma 10 of [1]), i.e., det(λI +

∑P
p=1∇Fp(θp−1)∇Fp(θp−1)>) ≤( tr(λI+∑P

p=1∇Fp(θp−1)∇Fp(θp−1)>)

d

)d
=
(dλ+

∑P
p=1‖∇Fp(θp−1)‖22

d

)d
. Also note that ∇Fp(θp−1) =∑np

s=np−1+1 xs
[
µ(x>s θp−1)− ys

]
, so we have

P∑
p=1

||∇Fp(θp−1)||22 =

P∑
p=1

||
np∑

s=np−1+1

xs
[
µ(x>s θp−1)− ys

]
||22

≤ G2
P∑
p=1

||
np∑

s=np−1+1

xs||22 ≤ G2
P∑
p=1

(np − np−1)2 ≤ G2n2
P

where the second inequality is due to Jensen’s inequality and the assumption that ‖xs‖ ≤ 1,∀s.
Substituting this back gives us

P∑
p=1

Fp(θp−1)− Fp(θ?) ≤
1

2γ
d log

(
1 +

1

dλ
G2n2

P

)
+ 2γλS2

=
(k2
µS

2 +R2
max) maxp∈[P ](np − np−1)

cµ
d log

(
1 +

1

dλ
(k2
µS

2 +R2
max)n2

P

)
+

cµ
(k2
µS

2 +R2
max) maxp∈[P ](np − np−1)

λS2

where the equality is because maxp∈[P ](np − np−1) dominates γ =
1
2 min( 1

4GS ,
cµ

G2 maxp∈[P ](np−np−1) ).

• Construct Confidence Ellipsoid for FedGLB-UCB3 With the online regret bound BP in Lemma
E.3, the steps to construct the confidence ellipsoid largely follows that of Theorem 1 in [12], with the
main difference in our batch update. We include the full proof here for the sake of completeness.
Lemma E.4 (Confidence Ellipsoid for FedGLB-UCB3). Under the condition that the learning rate
of ONS γ = 1

2 min( 1

4S
√
k2µS

2+R2
max

,
cµ

(k2µS
2+R2

max) maxp∈[P ](np−np−1) ), we have ∀t ∈ [T ], i ∈ [N ]

‖θ? − θ̂t,i‖2Vt,i ≤ λS
2 + 1 +

4

cµ
BP +

8R2
max

c2µ
log (

N

δ

√
4 +

8

cµ
BP +

64R2
max

c4µ · 4δ2
)}

− θ̂>t,ibt,i −
nP∑
s=1

z2
s := α2

t,i

with probability at least 1− δ.

Proof of Lemma E.4. Due to cµ-strongly convexity of l(z, y) w.r.t. z, we have l(x>s θp−1, ys) −
l(x>s θ?, ys) ≥

[
µ(x>s θ?)− ys

]
x>s (θp−1 − θ?) +

cµ
2

[
x>s (θp−1 − θ?)

]2
. Therefore,

Fp(θp−1)− Fp(θ?) =

np∑
s=np−1+1

l(x>s θp−1, ys)− l(x>s θ?, ys)

≥
np∑

s=np−1+1

[
µ(x>s θ?)− ys

]
x>s (θp−1 − θ?) +

cµ
2

np∑
s=np−1+1

[
x>s (θp−1 − θ?)

]2
= −

np∑
s=np−1+1

ηsx
>
s (θp−1 − θ?) +

cµ
2

np∑
s=np−1+1

[
x>s (θp−1 − θ?)

]2
where ηs is the R-sub-Gaussian noise in the reward ys. Summing over P steps we have

BP ≥
P∑
p=1

Fp(θp−1)− Fp(θ?) ≥
P∑
p=1

np∑
s=np−1+1

ηsx
>
s (θp−1 − θ?) +

cµ
2

P∑
p=1

np∑
s=np−1+1

[
x>s (θp−1 − θ?)

]2
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By rearranging terms, we have
P∑
p=1

np∑
s=np−1+1

[
x>s (θp−1 − θ?)

]2 ≤ 2

cµ

P∑
p=1

np∑
s=np−1+1

ηsx
>
s (θp−1 − θ?) +

2

cµ
BP

Then as x>s (θp−1 − θ?) for s ∈ [np−1 + 1, np] is Fs-measurable for lazily updated online estimator
θp−1, we can use Corollary 8 from [2], which leads to

P∑
p=1

np∑
s=np−1+1

ηsx
>
s (θp−1 − θ?) ≤

Rmax

√√√√√(2 + 2

P∑
p=1

np∑
s=np−1+1

(x>s (θp−1 − θ?))2
)
· log

(1
δ

√√√√1 +

P∑
p=1

np∑
s=np−1+1

(x>s (θp−1 − θ?))2
)

Then we have
P∑
p=1

np∑
s=np−1+1

[
x>s (θp−1 − θ?)

]2 ≤ 2

cµ
BP

+
2Rmax
cµ

√√√√√(2 + 2

P∑
p=1

np∑
s=np−1+1

(x>s (θp−1 − θ?))2
)
· log

(1
δ

√√√√1 +

P∑
p=1

np∑
s=np−1+1

(x>s (θp−1 − θ?))2
)

Then by applying Lemma 2 from [12], we have
P∑
p=1

np∑
s=np−1+1

[
x>s (θp−1 − θ?)

]2 ≤ 1 +
4

cµ
BP +

8R2
max

c2µ
log (

1

δ

√
4 +

8

cµ
BP +

64R2
max

c4µ · 4δ2
)

Therefore, we have the following confidence ellipsoid (regularized with parameter λ):

{θ :

P∑
p=1

np∑
s=np−1+1

[
x>s (θp−1−θ?)

]2
+λ‖θ‖22 ≤ λS2+1+

4

cµ
BP+

8R2
max

c2µ
log (

1

δ

√
4 +

8

cµ
BP +

64R2
max

c4µ · 4δ2
)}

And this can be rewritten as a ellipsoid centered at ridge regression estimator θ̂t,i = V −1
t,i bt,i,

where Vt,i = λI +
∑P
p=1

∑np
s=np−1+1 xsx

>
s and bt,i =

∑P
p=1

∑np
s=np−1+1 xszs (recall that ONS’s

prediction at time s is denoted as zs = x>s θp−1), i.e., ∀t ∈ [T ]

‖θ?− θ̂t,i‖2Vt,i ≤ λS
2 + 1 +

4

cµ
BP +

8R2
max

c2µ
log (

1

δ

√
4 +

8

cµ
BP +

64R2
max

c4µ · 4δ2
)}+ θ̂>t,ibt,i−

nP∑
s=1

z2
s

with probability at least 1−δ. Then taking union bound over allN clients, we have, ∀t ∈ [T ], i ∈ [N ]

‖θ? − θ̂t,i‖2Vt,i ≤ λS
2 + 1 +

4

cµ
BP +

8R2
max

c2µ
log (

N

δ

√
4 +

8

cµ
BP +

64R2
max

c4µ · 4δ2
)}+ θ̂>t,ibt,i −

nP∑
s=1

z2
s

with probability at least 1− δ.

• Regret and Communication Upper Bounds for FedGLB-UCB3

The regret and communication cost of FedGLB-UCB3 is given in the following theorem.
Theorem E.5 (Regret and Communication Cost Upper Bound of FedGLB-UCB3). Under the
condition that the learning rate of ONS γ = 1

2 min( 1

4S
√
k2µS

2+R2
max

,
cµ

(k2µS
2+R2

max)
√
NT

), and the

total number of global synchronizations B =
√
NT , the cumulative regret RT has upper bound

RT = O

(
kµ(kµ +Rmax)

cµ
dN3/4T 3/4 log(NT/δ)

)
with probability at least 1− δ. The cumulative communication cost has upper bound

CT = O(N1.5
√
T )
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Proof. Similar to the proof for the previous two variants of FedGLB-UCB, we divide the epochs
into ‘good’ and ‘bad’ ones according to the determinant ratio, and then bound their cumulative regret
separately.

Recall that the instantaneous regret rt,i incurred by client i ∈ [N ] at time step t ∈ [T ] has upper
bound

rt,i
kµ
≤ x>t,?θ? − x>t,iθ? ≤ x>t,iθ̃i,t − x>t,iθ?

= x>t,i(θ̃i,t − θ̂t,i) + x>t,i(θ̂t,i − θ?)

≤ ‖xt,i‖V −1
t,i
‖θ̃i,t − θ̂t,i‖Vt,i + ‖xt,i‖V −1

t,i
‖θ̂t,i − θ?‖Vt,i

≤ 2αt,i‖xt,i‖V −1
t,i

Note that due to the update schedule S, we have maxp∈[P ](np − np−1) = NT
B . Then based on

Corollary E.3.1, αt,i = O(
kµ+Rmax

cµ

√
d log(NT )

√
NT
B ), so we have, ∀t ∈ [T ], i ∈ [N ],

rt,i = O(
kµ(kµ +Rmax)

cµ

√
d log(NT )

√
NT

B
)‖xt,i‖A−1

t,i

with probability at least 1− δ.

Therefore, the cumulative regret for the ‘good epochs’ is REGgood =

O(
kµ(kµ+Rmax)

cµ
dNT√

B
log(NT )).

Using the same argument as in the proof for FedGLB-UCB1, the cumulative regret for each ‘bad
’ epoch is upper bounded by 2kµS

NT
B . Since there can be at most O(d logNT ) ‘bad epochs’, the

cumulative regret for all the ‘bad epochs’ is upper bounded by

REGbad = O(dNT log(NT ) · kµS
B

)

Combining the regret incurred in both ‘good’ and ‘bad’ epochs, we have

RT = O
(kµ(kµ +Rmax)

cµ
d
NT√
B

log(NT ) + dNT log(NT ) · kµS
B

)
To recover the regret in centralized setting, we can B = NT , which leads to RT =

O(
kµ(kµ+Rmax)

cµ
d
√
NT log(NT )). However, this incurs communication cost CT = N2T . Al-

ternatively, if we set B =
√
NT , we have RT = O(

kµ(kµ+Rmax)
cµ

dN3/4T 3/4 log(NT )), and

CT = O(N1.5
√
T ).

F Additional Explanation about Figure 2

In Section 5, we used the scatter plots to present the experiment results. Here we provide more
explanation about how to interpret these figures. As mentioned earlier, each dot in Figure 2 denotes
the cumulative communication cost (x-axis) and regret (y-axis) that an algorithm (FedGLB-UCB, its
variants, or DisLinUCB) with certain threshold value of D or B (labeled next to the dot) has obtained
at iteration T .

Here, Figure 3 shows how the cumulative regret/reward and communication cost of five algorithms
change over the course of federated bandit learning in our evaluations on synthetic dataset, (their final
results at iteration T are used to plot five dots in Figure 2(a)). By carefully examining the relationship
between their regret and communication cost, we can see that in Figure 3, FedGLB-UCB (D = 5.0),
FedGLB-UCB1 (B = 10.0), FedGLB-UCB2 (B = 10.0), and FedGLB-UCB3 (B = 5000.0) incur
similar total communication cost, but FedGLB-UCB (D = 5.0) attains much smaller regret than the
others. Meanwhile, FedGLB-UCB (D = 5000.0) attains almost the same regret as FedGLB-UCB2

(B = 10.0), but its communication cost is much lower.

Figure 3 also depicts how the communication was controlled in FedGLB-UCB under its event
triggered protocol (e.g., generally a decreasing frequency of communication comparing to the
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scheduled updated in its variants). This shows that FedGLB-UCB strikes the best regret/reward-
communication trade-off among the algorithm instances in comparison. However, this line chart can
only accommodate a limited range of trade-off settings for these algorithms, to attain a reasonable
visibility. In comparison, the scatter plots in Figure 2(a) provide a much more thorough view of
how well the algorithms balance regret/reward and communication cost, by covering a large range of
trade-off settings.

Figure 3: Experiment results showing regret and communication cost over time.
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