
Appendices

A Proofs

A.1 Proof of Theorem 3.1

Proof. The integral form of Taylor’s theorem gives

θ(kη + η)− θ(kη) =ηθ̇(kη) + η2
∫ 1

0

dsθ̈(η(k + s))(1− s)

=− ηg(θ(kη))− η2ξ(θ(kη)) + η2
∫ 1

0

dsθ̈(η(k + s))(1− s) . (18)

Remember the definition of the discrete gradient descent:
θk+1 − θk = −ηg(θk) . (19)

Subtracting Equation (19) from Equation (18), we have

ek+1 − ek = −η(g(θ(kη))− g(θk))− η2ξ(θ(kη)) + η2
∫ 1

0

dsθ̈(η(k + s))(1− s) (20)

= −η(g(θ(kη))− g(θ(kη)− ek))− η2ξ(θ(kη)) + η2
∫ 1

0

dsθ̈(η(k + s))(1− s) .

(21)

A.2 Proof of Theorem 3.2

Proof. The proof is by induction. For k = 0, e0 = O(ηγ) by assumption. If ek = O(ηγ) for k ≥ 1,
Theorem 3.1 gives
ek+1 = ek − η(g(θ(kη))− g(θ(kη)− ek)) +Λ(θ(kη)) = O(ηγ) +O(ηγ+1) +O(ηγ) = O(ηγ) .

(22)

η(g(θ(kη))−g(θ(kη)−ek)) = O(ηγ+1) follows from Taylor’s expansion of g(θ(kη)−ek) around
θ(kη) and from assumption ek = O(ηγ):

−η(g(θ(kη))− g(θ(kη)− ek)) = η(ek · ∇g(θ(kη)) +O(||ek||2)) = O(ηγ+1) . (23)

A.3 Proof of Theorem 3.3

Proof. The proof of Theorem 3.3 consists of the following three Lemmas, all of which are proved in
the following sections.

Lemma A.1. ∫ 1

0

dsθ̈(η(k + s))(1− s) =

∞∑
n=0

ηn

(n+ 2)!

dn+2

dtn+2
θ(kη) (24)

Lemma A.2. For n ≥ 1,

dn

dtn
θ(t) = (−1)n

∞∑
k1,··· ,kn=0

ηk1+···knDk1
· · · Dkn−1

Ξkn
, (25)

where Dk1
· · · Dkn−1

:= 1 for n = 1.

Lemma A.3.∫ 1

0

dsθ̈(η(k + s))(1− s) =

∞∑
j=0

j+2∑
i=2

∑
k1+···+ki=j−i+2

(−1)i

i!
ηjDk1 · · ·Dki−1Ξki (26)

Theorem 3.3 follows by comparing both sides of Equation (6) order-by-order with using Equation
(26) and the expansion of ξ (7).

15

A.3.1 Proof of Lemma A.1

Proof. ∫ 1

0

dsθ̈(η(k + s))(1− s)

=
1

η2

∫ kη+η

kη

dsθ̈(s)(kη + η − s) (27)

=
1

η2

∫ η

0

ds′[θ̈(kη)(η − s′) +
...
θ (kη)(η − s′)s′ +

1

2!

....
θ (kη)(η − s′)s′

2
+ · · ·] (28)

=

∞∑
n=0

ηn

(n+ 2)!

dn+2

dtn+2
θ(kη) (29)

From Line (27) to (28), we used s′ := s − kη and the Taylor expansion of θ̈(kη + s′) around kη.
From Line (28) to (29), we used

∫ η

0
ds′(η − s′)s′

n
= ηn+2

(n+1)(n+2) for n ≥ 0.

A.3.2 Proof of Lemma A.2

Proof. Note that given θ̇(t) = −g(θ(t))− ηξ(θ(t)), we have

d

dt

(
dn−1

dtn−1
θ(t)

)
= −D

(
dn−1

dtn−1
θ(t)

)
(n ≥ 1) , (30)

where d0θ/dt0 := θ. Therefore,

dn

dtn
θ(t) = (−1)n−1Dn−1(−g − ηξ) = (−1)nDn−1Ξ (n ≥ 1) . (31)

Thus, by definition of D, Dα, and Ξα (Theorem 3.3 in Section 3.3), we have

dn

dtn
θ(t) =(−1)n(

∞∑
k1=0

ηk1Dk1
) · · · (

∞∑
kn−1=0

ηkn−1Dkn−1
)Ξ (32)

=(−1)n
∞∑

k1,··· ,kn=0

ηk1+···knDk1
· · · Dkn−1

Ξkn
. (33)

A.3.3 Proof of Lemma A.3

Proof. From Lemma A.1 and A.2, we have∫ 1

0

dsθ̈(η(k + s))(1− s)

=

∞∑
n=0

ηn

(n+ 2)!

dn+2

dtn+2
θ(kη) (34)

=

∞∑
n=0

ηn

(n+ 2)!
(−1)n+2

∞∑
k1,··· ,kn+2=0

ηk1+···+kn+2Dk1 · · · Dkn+1Ξkn+2 (35)

=

∞∑
n=0

∞∑
k1,··· ,kn+2=0

(−1)n

(n+ 2)!
ηn+k1+···+kn+2Dk1 · · · Dkn+1Ξkn+2 (36)

=

∞∑
j=0

j+2∑
i=2

∑
k1+···+ki=j−i+2

(−1)i−2

i!
ηjDk1

· · · Dki−1
Ξki

. (37)

On the last line, we replaced n+ 2 and n+ k1 + · · ·+ kn+2 with i and j, respectively.

16

A.4 Proof of Corollary 4.1

Proof. By assumption, we use

ξ(θ) = η2
γ−1∑
α=0

ηαξ̃α . (38)

From Theorem 3.3, we have

Λ(θ) = η2
∫ 1

0

dsθ̈(η(k + s))(1− s)− η2ξ(θ(kη)) (39)

= η2
∞∑

α=0

ηαξ̃α − η2
γ−1∑
α=0

ηαξ̃α (40)

= η2
∞∑

α=γ

ηαξ̃α (41)

= ηγ+2ξ̃γ +O(ηγ+3) . (42)

Therefore, Theorem 3.2 gives

ek+1 =ek +Λ(θ(kη)) +O(ηγ+3) (43)

=ek + ηγ+2ξ̃γ +O(ηγ+3) +O(ηγ+3) (44)

=ek + ηγ+2ξ̃γ +O(ηγ+3) . (45)

A.5 Proof of Corollary 4.2

Proof. From Equation (12), we have

ek = e0 +

k−1∑
s=0

η2

2
(H(θ(sη) + λI)g(θ(sη)) +O(η3) . (46)

Because e0 = O(η3) by assumption, we have

ek =

k−1∑
s=0

η2

2
(H(θ(sη) + λI)g(θ(sη)) +O(η3) (47)

∴ ||ek|| ≤
η2

2

k−1∑
s=0

||(H(θ(sη) + λI)g(θ(sη))||+O(η3) (48)

≤ η2k

2
max

0≤s≤k−1
{||(H(θ(sη) + λI)g(θ(sη))||}+O(η3) . (49)

Let t > 0 be a given arbitrary number. Then, for k ∈ {1, 2, ..., ⌊ t
η ⌋},

||ek|| ≤
η2k

2
max
0≤t′≤t

{||(H(θ(t′) + λI)g(θ(t′))||}+O(η3) . (50)

Therefore, if η <
√
ϵ/k

√
2/max0≤t′≤t{||(H(θ(t′) + λI)g(θ(t′))||}, then

||ek|| < ϵ+O(ϵ3/2) . (51)

17

A.6 Proof of Corollary A.1

Corollary A.1 (Learning rate bound when ξ = ξ̃0). Let ξ = ξ̃0 and assume that e0 = O(η4). Let ϵ
and t be arbitrary positive numbers. If the step size satisfies

η < 3

√
ϵ

k
3

√√√√ 12

max
0≤t′≤t

{||4(H(θ(t′)) + λI)2g(θ(t′)) + g(θ(t′))⊤∇H(θ(t′))g(t′)||}
, (52)

for some k ∈ {1, 2, ..., ⌊ t
η ⌋}, then the discretization error can be arbitrarily small:

||ek|| < ϵ+O(ϵ
4
3) . (53)

Proof. From Equation (10) and Corollary 4.1 and by assumption, we have

ek = e0 + η3
k−1∑
s=0

{1
2
(ξ̃0(θ(sη) · ∇))g(θ(sη)) +

1

6
(g(θ(sη)) · ∇)ξ̃0(θ(sη))}+O(η4) . (54)

Because e0 = O(η4) by assumption, we have

ek = η3
k−1∑
s=0

{1
2
(ξ̃0(θ(sη) · ∇))g(θ(sη)) +

1

6
(g(θ(sη)) · ∇)ξ̃0(θ(sη))}+O(η4) (55)

= η3
k−1∑
s=0

{1
3
(H(θ(sη)) + λI)2g(θ(sη)) +

1

12
g⊤(θ(sη))∇H(θ(sη))g(θ(sη))}+O(η4) .

(56)

Therefore,

||ek|| ≤ η3
k−1∑
s=0

||1
3
(H(θ(sη)) + λI)2g(θ(sη)) +

1

12
g⊤(θ(sη))∇H(θ(sη))g(θ(sη))||+O(η4)

(57)

≤ η3k

12
max

0≤s≤k−1
{||4(H(θ(sη)) + λI)2g(θ(sη)) + g⊤(θ(sη))∇H(θ(sη))g(θ(sη))||}

+O(η4) . (58)

Let t > 0 be a given arbitrary number. Then, for k ∈ {1, 2, ..., ⌊ t
η ⌋},

||ek|| ≤
η3k

12
max
0≤t′≤t

{||4(H(θ(t′)) + λI)2g(θ(t′)) + g⊤(θ(t′))∇H(θ(t′))g(θ(t′))||}+O(η4) .

(59)

Therefore, if

η < 3

√
ϵ

k
3

√√√√ 12

max
0≤t′≤t

{||4(H(θ(t′)) + λI)2g(θ(t′)) + g(θ(t′))⊤∇H(θ(t′))g(t′)||}
, (60)

then ||ek|| < ϵ+O(ϵ4/3).

A.7 Proof of Theorem 5.1

We use the following Lemmas.
Lemma A.4. For scale-invariant layers A, the following equations hold:

θA · ∇f(θ) = θA · ∇Af(θ) = 0 (61)
HA(θ)θA +∇Af(θ) = 0 (62)

∇Ac∇⊤
Af(θ)θA = 0 , (63)

where HA(θ) := (1A ⊙∇)(1A ⊙∇)⊤f(θ).

18

Proof. Differentiating both sides of f(αA ⊙ θ) = f(θ) with respect to α, we have

θA · ∇f(θ) = θA · ∇Af(αA ⊙ θ) = 0 , (64)

where ∇Af(αA ⊙ θ) means (∇Af(θ))|θ=αA⊙θ. For α = 1, we have

θA · ∇f(θ) = θA · ∇Af(θ) = 0 . (65)

Applying ∇, we have

(θA · ∇A)∇f(θ) +∇Af(θ) = 0 (66)
⇐⇒(θA · ∇A)(∇A +∇Ac)f(θ) +∇Af(θ) = 0 (67)

⇐⇒HA(θ)θA +∇Ac∇⊤
Af(θ)θA +∇Af(θ) = 0 . (68)

Multiplying by 1Ac⊙, we have

∇Ac∇⊤
Af(θ)θA = 0 . (69)

Therefore,

HA(θ)θA +∇Af(θ) = 0 . (70)

Lemma A.5. For scale-invariant layers A, the following equations hold:

∇Af(θ) =
1

rA
∇Af(θ̂A + θAc) , (71)

where ∇Af(θ̂A + θAc) := (∇Af(θ))|θ=θ̂A+θAc
.

Proof. Note that f(θ) = f(αA ⊙ θ) = f(αθA + θAc). Differentiating both sides with respect to θ,
we have

∇f(θ) (72)
=∇(f(αA ⊙ θ)) (73)
=(∇A +∇Ac)(f(αA ⊙ θ)) (74)
=α∇Af(αA ⊙ θ) +∇Acf(αA ⊙ θ) . (75)

For α = 1/rA, we have

∇f(θ) =
1

rA
∇Af(θ̂A + θAc) +∇Acf(θ̂A + θAc) . (76)

Therefore,

∇Af(θ) = 1A ⊙∇f(θ) =1A ⊙ (
1

rA
∇Af(θ̂A + θAc) +∇Acf(θ̂A + θAc)) (77)

=
1

rA
∇Af(θ̂A + θAc) . (78)

Lemma A.6. For scale-invariant layers A, the following equations hold for all α > 0:

H(θ) = α2HA(αA ⊙ θ) + α(∇Ac∇⊤
Af(αA ⊙ θ) +∇A∇⊤

Acf(αA ⊙ θ)) +HAc(αA ⊙ θ) (79)

H(θ)θA = α2HA(αA ⊙ θ)θA (80)
H(θ)θA = HA(θ)θA , (81)

where HA(αA ⊙ θ) := ((1A ⊙∇)(1A ⊙∇)⊤f(θ))|θ=αA⊙θ.

19

Proof. Because ∇f(θ) = α∇Af(αθA) +∇Acf(θAc) (Equation 75),

H(θ) = ∇∇⊤f(θ) (82)

= ∇(α∇⊤
Af(αA ⊙ θ) +∇⊤

Acf(αA ⊙ θ)) (83)

= (∇A +∇Ac)(α∇⊤
Af(αA ⊙ θ) +∇⊤

Acf(αA ⊙ θ)) (84)

= α2HA(αA ⊙ θ) + α(∇Ac∇⊤
Af(αA ⊙ θ) +∇A∇⊤

Acf(αA ⊙ θ)) +HAc(αA ⊙ θ) . (85)

Therefore,

H(θ)θA = α2HA(αA ⊙ θ)θA + α∇Ac∇⊤
Af(αA ⊙ θ)θA (86)

= α2HA(αA ⊙ θ)θA . (87)

For α = 1, we have

H(θ)θA = HA(θ)θA . (88)

We now prove Theorem 5.1.

Proof. We use Lemmas A.4, A.5, and A.6.

˙r2A(t) =2θA(t) · θ̇A(t) (89)
=2θA(t) · (−∇Af(θ(t))− λθA(t)− ηξ(θ(t))) (90)

=− 2λr2A(t)− 2ηθA(t) · ξ(θ(t)) . (91)

For ξ = 0,

˙r2A(t) =− 2λr2A(t) . (92)

For ξ = ξ̃0,

˙r2A(t) =− 2λr2A(t)− 2ηθA(t) · ξ̃0(θ(t)) (93)

=− 2λr2A(t)− η(λ2r2A(t)− ||∇Af(θ(t))||2) (94)

=− 2λ(1 +
ηλ

2
)r2A(t) +

η

r2A(t)
||∇Af(θ̂A(t))||2 . (95)

We used

θA · ξ̃0A =
1

2
θA · (H(θ) + λI)(∇f(θ) + λθ) (96)

=
1

2
θA · (H(θ)∇f(θ) + λH(θ)θ + λ∇f(θ) + λ2θ) (97)

=
1

2
(θ⊤AHA(θ)∇Af(θ) + λθ⊤AHA(θ)θA + λ2r2A) (98)

=
1

2
(−||∇Af(θ)||2 + λ2r2A) . (99)

Using ẋ(t) = −ax+ y(t) ⇔ x(t) = x(0)e−at +
∫ t

0
dτe−a(t−τ)y(τ), we can show the remaining

equations.

A.8 Proof of Corollary 5.1

Proof. When ξ = 0, rA
t→∞−−−→ 0 is obvious from the EoM for rA (Theorem 5.1). When ξ = ξ̃0,

EoM is given by

ṙ2A(t) = −2λ(1 +
ηλ

2
)r2A(t) +

η

r2(t)
||∇Af(θ̂A(t) + θAc(t))||2 . (100)

20

At equilibrium, ṙA = 0 and ||∇Af(θ̂A + θAc)|| = c∗ by assumption; thus, we have

0 = −2λ(1 +
ηλ

2
)r2A∗ +

η

r2A∗
c2∗ (101)

⇐⇒r2A∗ =

√
η

2λ+ ηλ2
c∗ . (102)

A.9 Proof of Theorem C.1

Proof. We use Lemmas A.4, A.5, and A.6:

˙̂
θA =

d

dt

θA
rA

(103)

= − ṙA
r2A
θA +

1

rA
θ̇A (104)

=
θA
r2A

(λrA + ηθ̂A · ξ(θ)) + 1

rA
(−∇Af(θ)− λθA − ηξA(θ)) (105)

=
η

rA
θ̂A(θ̂A · ξA(θ))−

1

rA
∇Af(θ)−

η

rA
ξA(θ) (106)

= − 1

r2A
∇Af(θ̂A + θAc) +

η

rA
((θ̂A · ξA(θ))θ̂A − ξA(θ)) , (107)

where ξA := 1A ⊙ ξ. We used ṙA = −λrA − ηθ̂A · ξ(θ) (Theorem 5.1). Note that η
rA

((θ̂A ·
ξA(θ))θ̂A − ξA(θ)) has no θ̂A component; i.e., it is orthogonal to θ̂A. When ξ = 0, Equation (107)

is equivalent to ˙̂
θA = − 1

r2A
∇Af(θ̂A). When ξ = ξ̃0, note that from Equation (99),

θA · ξ̃0A =
1

2
(−||∇Af(θ)||2 + λ2r2A) . (108)

Therefore,

(θ̂A · ξ̃0A)θ̂A = −1

2

1

r3A
||∇Af(θ̂A + θAc)||2θ̂A +

λ2

2
θA . (109)

Also,

ξ̃0A =
1

2
1A ⊙ (H(θ)∇f(θ) + λH(θ)θ + λ∇f(θ) + λ2θ) (110)

=
1

2
(1A ⊙H(θ)∇f(θ) + λ1A ⊙H(θ)(θA + θAc) + λ∇Af(θ) + λ2θA) (111)

=
1

2
(1A ⊙H(θ)∇f(θ) + λHA(θ)θA + λ∇A∇⊤

Acf(θ)θAc + λ∇Af(θ) + λ2θA) (112)

=
1

2
(1A ⊙H(θ)∇f(θ) + λ∇A∇⊤

Acf(θ)θAc + λ2θA) . (113)

21

Therefore,

(θ̂A · ξ̃0A(θ))θ̂A − ξ̃0A (114)

=− 1

2

1

r3A
||∇Af(θ̂A + θAc)||2θ̂A +

λ2

2
θA − 1

2
(1A ⊙H(θ)∇f(θ) + λ∇A∇⊤

Acf(θ)θAc + λ2θA)

(115)

=− 1

2

1

r3A
||∇Af(θ̂A + θAc)||2θ̂A − 1

2
∇A∇⊤f(θ)∇f(θ)− λ

2
∇A∇⊤

Acf(θ)θAc (116)

=− 1

2

1

r3A
||∇Af(θ̂A + θAc)||2θ̂A − 1

2
HA(θ)∇Af(θ)−

1

2
∇A∇⊤

Acf(θ)∇Acf(θ)

− 1

2
∇A∇⊤

Acf(θ)λθAc (117)

=− 1

2

1

r3A
||∇Af(θ̂A + θAc)||2θ̂A − 1

2

1

rA
HA∇Af(θ̂A + θAc)

− 1

2

1

rA
∇A∇⊤

Acf(θ̂A + θAc)(∇Acf(θ) + λθAc) . (118)

Hence,
˙̂
θA =− 1

r2A
∇Af(θ̂A + θAc)− η

2r2A
(HA(θ)∇Af(θ̂A + θAc)

+∇A∇⊤
Acf(θ̂A + θAc)(∇Acf(θ)λθAc) +

1

r2A
||∇Af(θ̂A + θAc)||2θ̂A) (119)

=− 1

r2A
(I +

η

2
HA(θ)

+
η

2
(∇Acf(θ) + λθAc) · ∇Ac +

η

2

1

r2A
θ̂A∇⊤

Af(θ̂A + θAc))∇Af(θ̂A + θAc) (120)

=− 1

r2A
(I +

η

2
HA(θ) +

η

2
(∇Acf(θ) + λθAc) · ∇Ac

+
η

2
θ̂A∇⊤

Af(θ))∇Af(θ̂A + θAc) . (121)

A.10 Proof of Corollary 5.2

Proof. We use Lemmas A.4 and A.5. The angular update is defined as

cos∆(t) =
θA(t)

rA(t)
· θA(t+ η)

rA(t+ η)
. (122)

We evaluate the higher order terms in θA(t+ η) and rA(t+ η). First,

θA(t+ η) =θA(t) + ηθ̇A(t) +
η2

2
θ̈A(t) +O(η3)

=θA(t)− η∇f(θA(t))− ηλθA(t)− η2ξA(θ(t)) +
η2

2
θ̈A(t) +O(η3) . (123)

The second derivative θ̈(t) is given by

θ̈A =
d

dt
θ̇A (124)

=
d

dt
(−∇Af(θ)− λθA) +O(η) (125)

= −(θ̇ · ∇)∇Af(θ)− λθ̇A +O(η) (126)

= ∇A∇⊤f(θ)(∇f(θ) + λθ) + λ(∇Af(θ) + λθA) +O(η) (127)

= 1A ⊙H(θ)∇f(θ) + λHA(θ)θA + λ∇A∇⊤
Af(θ)θAc + λ∇Af(θ) + λ2θA +O(η) (128)

= 1A ⊙H(θ)∇f(θ) + λ∇A∇⊤
Acf(θ)θAc + λ2θA +O(η) . (129)

22

Therefore,

θA(t+ η) = θA(t)− η∇Af(θ(t))− ηλθA(t)− η2ξA(θ(t))

+
η2

2
(1A ⊙H(θ(t))∇f(θ(t)) + λ∇A∇⊤

Acf(θ(t))θAc(t) + λ2θA(t)) +O(η3) .

(130)

Next,

rA(t+ η) = rA(t) + ṙA(t)η +
η2

2
r̈A(t) +O(η3) . (131)

Because ṙA = −λrA − ηθ̂A · ξ (use Equation (91) and ṙ2A = 2rAṙA),

rA(t+ η) = rA(t)− ηλrA(t)− η2θ̂A(t) · ξA(θ(t)) +
η2

2
r̈A(t) +O(η3) . (132)

In addition, because r̈A = −λṙA +O(η) = λ2rA +O(η),

rA(t+ η) = rA(t)− ηλrA(t)− η2θ̂A(t) · ξ(θ(t)) +
η2

2
λ2rA(t) +O(η3) . (133)

Therefore,

cos∆(t) =
θA(t)

rA(t)
· θA(t+ η)

rA(t+ η)
(134)

=
θA(t)

rA(t)
·
(
θA(t)− η∇Af(θ(t))− ηλθA(t)− η2ξA(θ(t))

+
η2

2
(1A ⊙H(θ(t))∇f(θ(t)) + λ∇A∇⊤

Acf(θ(t))θAc(t) + λ2θA(t))
)
/
(
rA(t)− ηλrA(t)

− η2θ̂A(t) · ξ(θ(t)) +
η2

2
λ2rA(t)

)
+O(η3) . (135)

Substituting ξA = ξ̃0A, and using

ξ̃0A =
1

2
(1A ⊙H(θ)∇f(θ) + λ∇A∇⊤

Acf(θ)θAc + λ2θA) (Equation 113) (136)

θA · ξ̃0A =
1

2
(−||∇Af(θ)||2 + λ2r2A) (Equation 108) , (137)

we have

cos∆(t) =
θA(t)

rA(t)
· θA(t)− η∇Af(θ(t))− ηλθA(t)

rA(t)− ηλrA(t)− η2

2rA(t) (−||∇Af(θ)||2 + λ2r2A(t)) +
η2

2 λ2rA(t)
+O(η3)

(138)

=
(1− ηλ)r2A(t)

(1− ηλ)r2A(t) +
η2

2r2A(t)
||∇Af(θ̂A + θAc)||2

+O(η3) . (139)

At equilibrium, we have r2A
t→∞−−−→ r2A∗ =

√
η

2λ+ηλ2 c∗ and ||∇Af(θ̂A(t) + θAc(t))|| t→∞−−−→ c∗

because of Corollary 5.1. Thus,

cos∆∗ =
(1− ηλ)r2A∗

(1− ηλ)r2A∗ +
η2

2r2A∗
c2∗

+O(η3) (140)

=
1− ηλ

1− η2λ2/2
+O(η3) , (141)

and we have shown the first statement of the theorem.

23

The second statement follows from Equation (141). By definition of cosine and tangent, we have

tan∆∗ =

√
(1− η2λ2/2)2 − (1− ηλ)2

1− ηλ
+O(η3) =

√
2ηλ− 2η2λ2 + η4λ4/4

1− η
+O(η3) .

(142)

Therefore, using Taylor’s series of the tangent function, we have

∆∗ = tan∆∗ −
1

3
∆3

∗ −
2

15
∆5

∗ − ... =
√
2ηλ+O((ηλ)3/2) . (143)

This concludes the proof.

A.11 Proof of Theorem 5.2

We use the following Lemma:
Lemma A.7. For translation-invariant layers A, the following equations hold:

θA⊥ · θA∥ = 0 (144)

1A · ∇f(θ) = 1A · ∇Af(θ) = 0 (145)
P∇f(θ) = P∇Af(θ) = 0 (146)
θA⊥ · ∇f(θ) = θA⊥ · ∇Af(θ) = 0 (147)
H(θ)1A = 0 (148)
PH(θ) = 0 (149)
H(θ)θA⊥ = 0 (150)
∇f(θ) = ∇f(θA∥ + θAc) (151)

H(θ) = H(θA∥ + θAc) . (152)

Proof. Note that P⊤ = P , P 2 = P , and thus, P⊤(I − P) = P (I − P) = P − P = 0. Therefore,

θA⊥ · θA∥ = θ⊤AP
⊤(I − P)θA = 0 . (153)

Next, differentiating f(θ) = f(θ + α1A) with respect to α, we have

1A · ∇f(θ + α1A) = 0 . (154)

For α = 0, we have

1A · ∇f(θ) = 1A · ∇Af(θ) = 0 . (155)

Therefore,

P∇f(θ) = P∇Af(θ) = (1A · ∇f(θ))
1

dA
1A = 0 (156)

and

θA⊥ · ∇f(θ) =
1A · θA

dA
1A · ∇f(θ) =

1A · θA
dA

1A · ∇Af(θ) = 0 . (157)

Next, differentiating Equation 155 with respect to θ, we have

H(θ)1A = 0 . (158)

Therefore,

PH(θ) =
1A

dA
1⊤
AH(θ) = 0 (159)

and

H(θ)θA⊥ =
1A · θA

dA
H(θ)1A = 0 . (160)

24

Next, differentiating f(θ) = f(θ + α1A) with respect to θ, we have

∇f(θ) = ∇f(θ + α1A) (161)

and

H(θ) = H(θ + α1A) . (162)

For α = −1A·θA
dA

, we have

∇f(θ) = ∇f(θ − PθA) = ∇f(θA + θAc − PθA) = ∇f(θA∥ + θAc) (163)

and

H(θ) = H(θA∥ + θAc) . (164)

We begin the proof of Theorem 5.2.

Proof. We use Lemma A.7.

θ̇A⊥ = P θ̇A = P (−∇Af(θ)− λθA − ηξA) = −λθA⊥ − ηPξA . (165)

When θ = 0, EoM is

θ̇A⊥(t) = −λθA(t) . (166)

When ξ = ξ̃0A, note that

ξ̃0 =
1

2
(H(θ)∇f(θ) + λ∇f(θ) + λH(θ)θ + λ2θ) (167)

and

ξ̃0 · 1A = ξ̃0A · 1A =
λ2

2
1A · θA . (168)

Thus,

P ξ̃0 =
λ2

2
θA⊥ . (169)

Therefore,

θ̇A⊥ = −λθA⊥ − ηP ξ̃0A = −λθA⊥ − η
λ2

2
θA⊥ = −(λ+

ηλ2

2
)θA⊥ . (170)

Using v̇(t) = −av(t) ⇔ v(t) = v(0)e−at, we can show the remaining equations.

A.12 Proof of Theorem D.1

Proof. We use Lemma A.7. First, note that

θ̇A∥ = θ̇A − θ̇A⊥ . (171)

Because

θ̇A = −∇Af(θ)− λθA − ηξA (172)

and

θ̇A⊥ = −λθA⊥ − ηPξA , (173)

we have

θ̇A∥ = θ̇A − θ̇A⊥ = −∇Af(θ)− λθA∥ − η(I − P)ξA (174)

= −∇Af(θA∥ + θAc)− λθA∥ − η(I − P)ξA . (175)

25

Note that θ̇A∥ is orthogonal to θA∥ because θA⊥ · θ̇A∥ = −θA⊥ ·∇Af(θ)−λθA⊥ ·θA∥−ηθ⊤A⊥(I−
P)ξ̃0A = 0− 0− 0 = 0 (we used θ⊤A⊥(I − P) = θ⊤AP

⊤(I − P) = θ⊤A(P − P) = 0).

When ξ = 0, we have

θ̇A∥ = −∇Af(θ)− λθA∥ = −∇Af(θA∥ + θAc)− λθA∥ . (176)

When ξ = ξ̃0, we have

θ̇A∥ = −∇Af(θ)− λθA∥

− η(
1

2
(1AH(θ)∇f(θ) + λ∇Af(θ) + λ1A ⊙H(θ)θ + λ2θA)−

λ2

2
θA⊥) (177)

= −∇Af(θ)− λθA∥ − η(
1

2
1A ⊙H(θ)∇f(θ) +

λ

2
∇Af(θ) +

λ

2
1A ⊙H(θ)θ + λλ22θA∥)

(178)

= −λθA∥ −
ηλ2

2
θA∥ −∇Af(θ)−

ηλ

2
∇Af(θ)−

η

2
1A ⊙H(θ)∇f(θ)− ηλ

2
1A ⊙H(θ)θ

(179)

= −(1 +
ηλ

2
)(∇Af(θ) + λθA∥)

− η

2
HA(θ)∇Af(θ)−

η

2
∇A∇⊤

Acf(θ)∇Acf(θ)− ηλ

2
HA(θ)θA − ηλ

2
∇A∇⊤

Acf(θ)θAc

(180)

= −(I +
ηλ

2
I +

η

2
HA(θA∥ + θAc))(∇Af(θA∥ + θAc) + λθA∥)

− η

2
∇A∇⊤

Acf(θA∥ + θAc)(∇Acf(θA∥ + θAc) + λθAc) (181)

= −λ(I +
ηλ

2
I +

η

2
HA(θA∥ + θAc))θA∥ − (I +

ηλ

2
I +

η

2
HA(θA∥ + θAc)

+
η

2
I((∇Acf(θA∥ + θAc) + λθAc) · ∇Ac))∇Af(θA∥ + θAc) . (182)

A.13 Proof of Theorem B.1

Proof. First, note that
∇f(θ) ·G(θ, α) = 0 , (183)

which can be shown by differentiating f(θ) = f(G(θ, α)) with respect to α. Thus, assuming
θ · ((∇f(θ) · ∇)G(θ, α)) and using θ̇(t) = −∇f(θ(t))− λθ(t)− ηξ(θ(t)), we have

d

dt
(θ(t) ·G(θ(t), α)) (184)

=θ̇ ·G(θ, α) + θ · (θ̇ · ∇G(θ, α)) (185)
=−∇f(θ) ·G(θ, α)− λθ ·G(θ, α)− ηξ(θ) ·G(θ, α) + θ · (−(∇f(θ) · ∇)− λ(θ · ∇)

− ηξ(θ) · ∇)G(θ, α) (186)
=− λ(θ ·G(θ, α) + θ · ((θ · ∇)G(θ, α)))− ηξ(θ) ·G(θ, α)− θ · ((ηξ(θ) · ∇)G(θ, α)) .

(187)

Using v̇(t) = −av(t) + ut ⇔ v(t) = v(0)e−at +
∫ t

0
dτe−a(t−τ)u(τ), we have

θ(t) ·G(θ(t), α) (188)
= θ(0) ·G(θ(0), α) (189)

− λ

∫ t

0

dτe−λ(t−τ)θ(τ) · ((θ(τ) · ∇)G(θ(τ), α)) (190)

− η

∫ t

0

dτe−λ(t−τ)(ξ(θ(τ)) ·G(θ(τ), α) + θ(τ) · ((ξ(θ(τ)) · ∇)G(θ(τ), α))) . (191)

26

27

B Learning Dynamics Induced by Symmetry Breaking: Neural Mechanics

To show the benefits of the counter term, we apply it to broken conservation laws [31]. In [31],
the authors build relationships between the symmetries of weights and conserved quantities (i.e.,
Noether’s theorem [57, 58] for DNNs), and they also investigate the dynamics of DNNs under
symmetry breaking. We address three shortcomings of their analysis: 1) it includes a counter term
only up to order one, 2) a discretization error analysis is missing, and 3) their experiment makes too
optimistic an assumption on gradients.

First, we generalize broken conservation laws (Equations (18–20) in [31]) by adding all orders of the
counter term. LetG(θ, α) := ∂αψ(θ, α), which is called the generator of symmetry transformation
ψ.
Theorem B.1 (Generalized broken conservation law). Let f be symmetric under transformation ψ.
Assume thatG satisfies θ(t) · {(∇f(θ(t)) · ∇)G(θ(t), α)} = 0. Then,

d

dt
(θ(t) ·G(θ(t), α)) =

− λθ(t) ·G(θ(t), α)− λθ(t) · {(θ(t) · ∇)G(θ(t), α)} − η(ξ(θ(t)) · ∇) · (ξ(θ(t)) ·G(θ(t), α)) .
(192)

Note that the assumption holds for translation, scale, and rescale transformation [31]. Furthermore,
Equation (192) can be formally solved:

θ(t) ·G(θ(t), α) = θ(0) ·G(θ(0), α)e−λt

− λ

∫ t

0

e−λ(t−τ)θ(τ) · {(θ(τ) · ∇)G(θ(τ), α)}dτ

− η

∫ t

0

e−λ(t−τ)(ξ(θ(τ)) · ∇)(ξ(θ(τ)) ·G(θ(τ), α))dτ . (193)

The proof is given in Appendix A.13. Now, Equation (193) includes all orders of the counter term
ξ =

∑∞
α=0 ξ̃α. We can reproduce [31] by setting ξ = ξ̃0. In addition, we already know the

discretization error (Corollary 4.1), which is lacking in [31]. We also provide empirical results on
Equation (193) in the following sections.

B.1 Scale-invariant Layers

For scale transformation,G(θ, α) = αAθ, and thus, the left hand side of Equation (193) becomes
||θA||2. Therefore, Equation 193 describes the temporal evolution of the weight norm of scale-
invariant layers. Figure 7 shows the temporal evolution of ||θA||2 for the network explained in
Section 6. Figure 8 shows the gap of ||θA||2 between GD and its theoretical predictions (GF and
EoM) (Equation 193). We see that the counter term reduces the gap. There is an improvement in
the experimental settings compared with [31]. As described in [31], they substitute the gradients
computed in GD for the gradients used for GF’s simulation instead of using small learning rates to
simulate continuous trajectories of GF. This approximation reduces computational costs, but it causes
an additional gap between the surrogate gradients and the true gradients of GF along the continuous
trajectories. Therefore, we avoid this approximation; we use a small learning rate (η = 10−5) to
simulate GF and EoM, as explained in Section 6.

28

Figure 7: Dynamics of squared weight norm of scale-invariant layer. LR and WD mean learning
rate and weight decay, respectively. See Section 6 for experimental settings.

+

Figure 8: Discrepancy between actual dynamics of GD and its theoretical prediction (GF and
EoM) of squared weight norm of scale-invariant layer. We see that our counter term reduces the
gap between the actual dynamics of GD and its theoretical prediction. See Section 6 for experimental
settings.

29

B.2 Translation-invariant Layers

We also provide an empirical result for translation-invariant layers. For translation transformation,
G(θ, α) = α1A and thus the left hand side of Equation (193) becomes 1A · θA (sum of weights).
Therefore, Equation (193) describes the temporal evolution of the sum of weights of translation-
invariant layers. Figure 9 shows the temporal evolution of 1A · θA for the network described in
Section 6. Figure 10 shows the gap of 1A · θA between GD and its theoretical predictions (GF and
EoM) (Equation 193). We see that the counter term reduces the gap.

Figure 9: Sum of weights of translation-invariant layer. LR and WD mean learning rate and weight
decay, respectively. See Section 6 for experimental settings.

+

Figure 10: Discrepancy between actual dynamics of GD and its theoretical prediction (GF and
EoM) of sum of weights of translation-invariant layer. We see that our counter term reduces the
gap. See Section 6 for experimental settings.

30

C Equation of Motion for θ̂A

For completeness, we construct the EoM for θ̂A for scale-invariant layers A. See Section 5.1 for the
EoM for rA.

Theorem C.1 (EoM for θ̂A). EoM (1) gives ˙̂
θA(t) = − 1

r2A(t)
∇Af(θ̂A(t)) +

η
rA(t) ((θ̂A(t) ·

ξ(θ(t))) θ̂A(t)− ξ(θ(t))). Specifically, this is equivalent to:

˙̂
θA(t) = − 1

r2A(t)
∇Af(θ̂A(t)) (194)

for ξ = 0 (GF) and

˙̂
θA = − 1

r2A

(
I +

η

2
HA(θ) +

η

2
I((∇Acf(θ) + λθAc) · ∇Ac) +

η

2
θ̂A∇⊤

Af(θ)
)
∇Af(θ̂A + θAc)

(195)

for ξ = ξ̃0 (EoM), where HA(θ̂A) := (1A ⊙∇)(1A ⊙∇)⊤f(θ)|θ=θ̂A
.

The proof is given in Appendix A.9.

Effective learning rate. This result highlights the differences between GD and GF on scale-
invariant layers. The factor 1

r2A
(Equation (194)), which is η

r2A
at discretization, is called the effective

learning rate [29, 42, 30, 43, 44, 33, 45, 34, 46, 47]. The dynamics of θ̂A is induced by ∇Af(θ̂A +
θAc) with the effective learning rate η

r2A
, not η. We find that the counter term corrects the effective

learning rate to a matrix operator form (Equation (195)). Let us see the meaning of each correction
in order. First, I (identity matrix) corresponds to the original effective learning rate. Second, η

2HA

directs the gradient ∇Af(θ̂A + θAc) toward the maximum eigenvector of HA, i.e., a flat direction.
Therefore, GD tends to go through flatter regions than GF. Third, η

2 I((∇Acf(θ) + λθAc) · ∇Ac)
involves ∇Acf into the learning dynamics of A; therefore, A is explicitly affected by Ac in GD,
unlike in GF. This point is often missing in the literature on scale-invariant networks because it
is often assumed that the whole network is scale-invariant. Fourth, η

2 θ̂A∇
⊤
Af(θ) cancels the θ̂A

component of the right hand side of Equation (195), which may not seem obvious but can be seen

from the proof of Theorem C.1 (see Appendix A.9), and thus, ˙̂θA is orthogonal to θ̂A, which should

be satisfied anyway because ||θ̂A||2 ≡ 1 =⇒ 2
˙̂
θA · θ̂A = 0.

31

D Equation of Motion for θA∥

For completeness, we provide the EoM for θA∥. The proof is given in Appendix A.12.
Theorem D.1 (EoM for θA∥). EoM (1) gives

θ̇A∥(t) = −λθA∥(t)−∇f(θA∥(t))− η(I − P)ξ(θ(t)) . (196)

Specifically, this is equivalent to:

θ̇A∥(t) = −λθA∥(t)−∇f(θA∥(t) + θAc) (197)

for ξ = 0 (GF) and

θ̇A∥(t) = −λ(I +
ηλ

2
I +

η

2
HA(θA∥ + θAc))θA∥

−
(
I +

ηλ

2
I +

η

2
HA(θA∥ + θAc) +

η

2
I((∇Acf(θA∥ + θAc) + λθAc) · ∇Ac)

)
∇Af(θA∥ + θAc)

(198)

for ξ = ξ̃0 (EoM).

This result highlights the differences between the dynamics of GD and GF. The two factors ηλ
2 I in

Equation (198) mean that the existence of weight decay increases the learning rate (increases the
velocity θ̇A∥). The factor η

2H means that, as mentioned in Appendix C, GD tends to go along sharper
paths than GF. Note that velocity θ̇A∥ is orthogonal to θA⊥ because ∇f , θA∥, and H(∇f + λθA∥)
are orthogonal to θA⊥. H(∇f + λθA∥) ⊥ θA⊥ follows because Hv ⊥ θA⊥ for arbitrary non-zero
vector v ∈ Rd (∵ H1A = HθA⊥ = 0) (see Lemma A.7). η

2 I((∇Acf(θA∥ + θAc) + λθAc) · ∇Ac)
involves ∇Acf into the learning dynamics of A. We see that the dynamics of θA∥ is also independent
of that of θA⊥, and thus, they are completely separable. A summary of Theorems 5.2 and D.1 is
given in Figure 5.

32

E Details of Experiment

We provide detailed experimental settings (see also Section 6). Our computational infrastructure is a
DGX-1 server. The fundamental libraries used in the experiment are TensorFlow 2.3 [59], Numpy
1.18 [60], and Python 3.6.8 [61]. The random seeds used for TensorFlow and Numpy are both 7. The
input image is first divided by 127.5 and subtracted by 1. The maximum total number of iterations is 5
million steps for GF and EoM. The total runtime is approximately a month. We use least square fitting
(np.polyfit) to calculate the decay rates in Table 1. More information and detailed experimental
results can be found in our code.

In Figures 2 and 12, the theoretical prediction of discretization error is defined as ||ek|| =
η2

2 ||
∑k−1

s=0 (H(θ(sη)) + λI)g(θ(sη))|| (Equation (12)). To reduce computational costs, we ap-
proximate the r.h.s.: (H(θ(t)) + λI)g(θ(t)) ∼ g(θ(t)+ϵg(θ(t)))−g(θ(t)−ϵg(θ(t)))

2ϵ , where ϵ is set to

10−7. The green curve in Figure 2 is defined as ek = ẽ100 +
η2

2

∑k−1
s=100(H(θ(sη)) + λI)g(θ(sη))

(compare this with Equation (12)), where ẽ100 is the actual discretization error at the 100th step that
is obtained from GD. Therefore, the green curve represents the theoretical prediction of discretization
error after the 100th step, given ẽ100.

33

F Supplementary Experiment

F.1 Relative Discretization Error

We provide the relative discretization error, which is defined as ||ek||/||θk|| (k ∈ Z≥0). See Figure
11. We can see that a large learning rate (η = 10−1) leads to a large discretization error (Figure 11
(a) and (c)). We also see that the counter term reduces the discretization error as expected (Figure 11
(b) and (d)).

(a) Weight decay = 10−2. (b) Weight decay = 10−2. Magnified.

(c) Weight decay = 10−3. (d) Weight decay = 10−3. Magnified.

Figure 11: Relative discretization error. In (a) and (c), the LR1e-1 curves overlap each other, and
the LR1e-2 and LR1e-3 curves collapse in the lower region of the figure. The LR1e-2 and LR1e-3
are magnified and shown in (c) and (d). See Section 6 and Appendix E for experimental settings.

34

F.2 Theoretical Prediction Vs. Experimental Result of Discretization Error

We compare the theoretical prediction of discretization error between GF and GD (Equation (12))
with the actual discretization error obtained in the experiment. The green curve is defined as
ek = ẽ100 + η2

2

∑k−1
s=100(H(θ(sη)) + λI)g(θ(sη)) + O(η3) (compare this with Equation (12)),

where ẽ100 is the actual discretization error at the 100th step. Therefore, the green curve represents
the theoretical prediction of discretization error after the 100th step given ẽ100.

𝒆100

(a) Learning rate = 10−1.

𝒆100

(b) Learning rate = 10−2.

𝒆100

(c) Learning rate = 10−3.

Figure 12: Theoretical prediction (Equation (12)) vs. experimental result of discretization error
between GF and GD. The weight decay is 10−2. See Section 6 and Appendix E for experimental
settings.

35

G Supplementary Discussion

Supplementary related work (Section 2). To show the benefits of EoM, we focus on scale-
invariant layers [29, 42, 30, 43, 44, 33, 45, 34, 46, 47] and translation-invariant layers [31, 32] in
Section 5. To carry over the stability of a continuous optimization algorithm to a discretized system,
the authors of [19] add a feedback term to the optimization, and after that, they apply a discretization
method to it. The authors’ primary motivation is to keep the orthogonality of the weight parameters
of DNNs, which is different from ours.

Convergence of ξ (Section 3.3). Note that the expansion of ξ in terms of η is not necessarily
convergent, as is also pointed out in [35]. Thus, we have to truncate the expansion at a suitable order.
The discretization error at the truncation is given in Theorem 4.1.

Beyond leading order of discretization error (Theorem 3.2 and Section 4.1). In this work, we
analyze the leading order of discretization error. However, higher-order terms cannot always be
negligible. We discuss in Section 4.1 that the higher-order terms are important at the beginning of
training.

Existence of Ac (Section 5). In our theoretical analysis of scale- and translation-invariant lay-
ers, the network contains both invariant (A) and non-invariant layers (Ac), while previous works
assume the whole network is invariant for simplicity [29, 42, 30, 43, 44, 33, 45, 34, 46, 47]. We
avoid this assumption and show that such mixed networks require appropriate modifications to
analyses of invariant networks. For example, ∇f(θ) = 1

||θ||∇f(θ̂) for invariant networks, while

∇Af(θ) =
1

||θA||∇Af(θ̂A + θAc) for mixed networks (Lemma A.5), not 1
||θA||∇Af(θ̂A). Such a

naive replacement is not allowed.

Higher-order corrections to decay rate of rA (Section 5.1). We can compute more corrections to
the decay rate of rA (A is a scale-invariant layer), using more counter terms. For example, a long
algebra gives decay rate ηλ(1 + ηλ

2 + η2λ2

3) for ξ = ξ̃0 + ηξ̃1. The proof is similar to Appendix A.7.

On equilibrium assumptions in Corollaries 5.1 and 5.2 (Section 5.1). We make assumptions in
Corollaries 5.1 and 5.2; there exist two constants rA∗ ≥ 0 and c∗ ≥ 0 such that rA(t)

t→∞−−−→ rA∗ and
||∇Af(θ̂A(t)+θAc(t))|| t→∞−−−→ c∗. These assumptions are similar to those given in previous studies
[29, 34]. However, whether the assumptions are valid in the actual learning dynamics of DNNs is of
independent interest. In fact, the equilibrium assumption (rA∗(t) and ||∇Af(θ̂A(t)+θAc(t))|| t→∞−−−→
constant) could not be satisfied even at one million steps of GD, and potentially because of it, rA∗
and ∆∗ have a large discrepancy between the empirical results and theoretical predictions. Deeper
analyses on this point are needed. Under what conditions are the equilibrium assumptions valid? Can
we relax the equilibrium assumptions and obtain realistic limiting dynamics of scale-invariant layers?
This is exciting future work.

In contrast to our empirical result mentioned above, in [34], their experiments dramatically match
their theoretical prediction. This is potentially because of differences in experimental settings; in
[34], SGD is used (ours is GD) and variance is induced, ResNet-50 [62, 63] is used (ours is a
fully-connected network with three layers), ImageNet [64, 65] and MSCOCO [66] are used (ours is
MNIST [50]), and large learning rates (∼ 10−1) and small weight decays (∼ 10−4) are used (ours
are given in Appendix E).

Extension of EoM to general settings (Section 7). While we focus on GD and GF for simplicity,
our counter-term-based approach and discretization error analysis can be extended to more general
settings, such as SGD, acceleration methods (e.g., momentum SGD), and adaptive optimizers (e.g.,
Adam [53]). First, to extend our analysis to SGD, discretization error analysis of the Euler-Maruyama
method, e.g., [67], can be used. SDE’s error analysis [23, 24] is also relevant. Second, we can
extend our counter-term-based approach and discretization error analysis to acceleration methods
by modifying the analysis for different differential equations from GF and different discretization
schemes from the Euler method, as is discussed in [7, 14, 12]. Third, [56] is the first work that

36

provides a continuous approximation of Adam. However, its counter term and discretization error are
open questions.

37

