A Broader Impact Statement

This work proposes an RL exploration method for contextual MDPs, which is a very broad framework.
Many decision-making problems can be framed as contextual MDPs, such as autonomous driving
(contexts represent cars/roads), household robotics (contexts represent houses), healthcare applica-
tions (contexts represent patients) and online recommendation/ad optimization (contexts represent
customers). Like other RL exploration algorithms, our method facilitates learning a policy which
maximizes some reward function specified by a designer. Depending on the goals of the reward
function designer, executing the resulting policy could result in positive or negative consequences.

B Algorithm Details

Algorithm 2 Exploration via Episodic Elliptical Bonuses (E3B)

Initialize policy 7, feature encoder ¢ and inverse dynamics model f.
while not converged do

Sample context ¢ ~ pc and initial state sg ~ pg(-|c)

Initialize inverse covariance matrix: C; ' = 11

fort=0,....,7 do

az ~ 7(+|st) // Sample action
Si41,Te1 ~ P[5, ar) // Step through environment
byt = d(s141) Cf ' d(se41) // Compute bonus
u=C; ' p(si11)
C’tlll =C; - ﬁuuT /I Update inverse covariance matrix
Tegp1 = Teg1 + Bbiga
end for

Perform policy gradient update on 7 using rewards 71, ..., 7.
Update ¢ and g using {(s¢, az, 5:11)}1—q" to minimize the loss:

t = —log(p(a:|f(¢(st), p(s141))))

end while

The full algorithm details are shown above.

Additional intuition: The elliptical bonus is related to the Mahalanobis distance [44] which uses
a similar bilinear form. However, the Mahalanobis distance would normalize the matrix C;_; in
equation 4.1 by the number of observations ¢ — 1 in the episode, whereas the elliptical bonus does
not.The elliptical bonus thus tends to decrease with the number of observations, similarly to the
count-based bonus.

w

=N

by =

o

Figure 10: Illustration of the elliptical bonus in 2 dimensions.

17

C Experiment Details

C.1 MiniHack

C.1.1 Architecture Details

We follow the policy network architecture described in [58]. The policy network has four trunks:
1) a 5-layer convolutional trunk which maps the full symbol image (of size 79 x 21) to a hidden
representation, ii) a second 5-layer convolutional trunk which maps a 9 x 9 crop centered at the agent
to a hidden representation, iii) an MLP trunk which maps the stats vector to a hidden representation,
and iv) a 1-D convolutional trunk with interleaved max-pooling layers, followed by a fully-connected
network which maps the message to a hidden representation. The hidden representations are then
concatenated together, passed through a 2-layer fully-connected network followed by an LSTM [32]
layer. The output of the LSTM layer is then passed to linear layers which produce action probabilities
and a value function estimate.

The convolutional trunks i) and ii) have the following hyperparameters: 5 layers, filter size 3, symbol
embedding dimension 64, stride 1, filter number 16 at each layer except the last, which is 8, and
ELU non-linearities [16]. The MLP trunk iii) has 2 hidden layers of 64 hidden units each with
ReLU non-linearities. The trunk iv) for processing messages has 6 convolutional layers, each with
64 input and output feature maps. The first two have kernel size 7 and the rest have kernel size 3.
All have stride 1 and there are max-pooling layers (kernel size 3, stride 3) after the 1st, 2nd and 6th
convolutional layers. The last two layers are fully-connected and have 128 hidden units and ReLU
non-linearities.

For E3B, we used the same architecture as the policy encoder for the feature embedding ¢, except we
removed the last layers mapping the hidden representation to the actions and value estimate. The
inverse dynamics model is a single-layer fully-connected network with 256 hidden units, mapping
two concatenated ¢ outputs to a softmax distribution over actions.

C.1.2 RL Hyperparameters

For all algorithms we use IMPALA [23] as our base policy optimizer. Hyperparameters which are
common to all methods are shown in Table 2. All algorithms were trained for 50 million environment
steps. We did not anneal learning rates for any of the methods during training, since we found this
yielded similar or better performance and simplified the setup.

Hyperparameters specific to E3B, NovelD, RIDE and ICM are shown in Tables 3, 4, 5 and 6.
For both E3B and NovelD, we experimented with a rolling normalization of the intrinsic reward
similar to that proposed in the RND paper [13]. Specifically, we maintained a running standard
deviation o of the intrinsic rewards and divided the intrinsic rewards by o before feeding them to the
policy optimizer. We found that this led to improved aggregate performance across environments
for E3B and NovelD (the improvement for NovelD was relatively minor). We found that tuning
the intrinsic reward coefficient was important for best performance for all methods, as well as the
regularization coefficient of the C; matrix A\ for E3B. For RIDE, we used the default hyperparameters
from the RIDE implementation in the MiniHack paper [58] and otherwise tuned the intrinsic reward
coefficient. For ICM, we used the same hyperparameters for the forward and inverse models as for
RIDE and also tuned the intrinsic reward coefficient.

18

Table 2: Common IMPALA Hyperparameters for MiniHack

Learning Rate

0.0001

RMSProp smoothing constant 0.99

RMSProp momentum 0
RMSProp ¢ 1075
Unroll Length 80
Number of buffers 80
Number of learner threads 4
Number of actor threads 256
Max gradient norm 40
Entropy Cost 0.0005
Baseline Cost 0.5
Discounting Factor 0.99

Table 3: Hyperparameters for E3B

Hyperparameter Values considered Final Value
Running intrinsic reward normalization | {True, False} True
Ridge regularizer A {1.0,0.1,0.01} 0.1
Entropy Cost {0.0005, 0.005} 0.005

Intrinsic reward coefficient 3

{0.0001,0.001,0.01,0.1,1,10} | 1

Table 4: Hyperparameters for NovelD

Hyperparameter Values considered Final Value
Running intrinsic reward normalization | {True, False} True
Scaling factor « {0.1,0.5} 0.1
Entropy Cost {0.0005, 0.005} 0.005
Intrinsic reward coefficient 5 {0.001,0.01,0.1,1,10,100} | 1

Table 5: Hyperparameters for RIDE

Hyperparameter Values considered Final Value
Forward Model loss coefficient | 1.0 1.0

Inverse Model loss coefficient | 0.1 0.1
Entropy Cost {0.0005, 0.005} 0.0005
Intrinsic reward coefficient 3 {0.001,0.01,0.1,1,10,100} | 0.1

Table 6: Hyperparameters for ICM

Hyperparameter Values considered Final Value
Forward Model loss coefficient | 1.0 1.0

Inverse Model loss coefficient | 0.1 0.1
Entropy Cost {0.0005, 0.005} 0.0005
Intrinsic reward coefficient 3 {0.001,0.01,0.1,1,10,100} | 0.1

19

C.1.3 Environment Details

We used 16 MiniHack environments in total. These include the following 9 navigation-based tasks:

’MiniHack-MultiRoom-N4-Locked-v0’, ’MiniHack-MultiRoom-N6-Lava-v0’,
’MiniHack-MultiRoom-N6-Lava-OpenDoor-v0’, ’MiniHack-MultiRoom-N6-LavaMonsters-vO0’,
’MiniHack-MultiRoom-N10-OpenDoor-v0’, ’MiniHack-MultiRoom-N10-Lava-OpenDoor-v0’,
’MiniHack-LavaCrossingS19N13-v0’, ’MiniHack-LavaCrossingS19N17-v0’,
’MiniHack-Labyrinth-Big-v0’

as well as the following 7 skill-based tasks:

’MiniHack-Levitate-Potion-Restricted-v0’, ’MiniHack-Levitate-Boots-Restricted-v0’,
’MiniHack-Freeze-Horn-Restricted-v0’, ’MiniHack-Freeze-Wand-Restricted-v0?’,
’MiniHack-Freeze-Random-Restricted-v0’, ’MiniHack-LavaCross-Restricted-v0’,
’MiniHack-WoD-Hard-Restricted-v0’

The MultiRoom-N4-Locked and MultiRoom-N*-Lava, Labyrinth-Big, LavaCrossingS*Nx,
as well as all the skill-based tasks, are taken from the official MiniHack github repository (https:
//github.com/facebookresearch/minihack). We made some of these harder by increasing the
number of rooms.

We also include some new environments which we designed to better test the limits of the different
algorithms. Specifically, ’MiniHack-MultiRoom-N*0OpenDoor-v0’ are variants on the standard
MultiRoom tasks, the only difference being that the doors connecting the rooms are initialized to
be open rather than closed. This is because opening a door causes a message to appear "the door
opens". By initializing the door to be closed, the agent does not see any messages when passing
from one room to the next. As discussed in Appendix D, this seemingly trivial change can cause the
NovelD-message variant to fail completely, shedding light on its lack of robustness.

We found that the MiniHack-MultiRoom-N6-Extreme task was impossible to solve consistently
even for a human player due to the large quantities of monsters, so we did not include it. We instead
included a variant with less monsters and lava called MultiRoom-N6-LavaMonsters.

C.1.4 Action Space Restriction

In their default setup, the skill-based tasks have a large context-dependent action space of 78 actions.
Many of these actions are unrelated to the task at hand, but produce unique in-game messages when
executed which nevertheless do not affect the underlying state of the MDP. For example, trying to
pay a non-existent shopkeeper by executing the PAY action results in the message "There appears to
be no shopkeeper here to receive your payment.", and executing the FIGHT action in the absence of
adversaries results in the message "You attack thin air." We found that neither the baselines nor our
proposed method were able to solve the skill-based tasks with the full action space. For the NovelD
variants which use positions or symbolic images for the episodic counts, this is reasonable since the
tasks are not navigation-based (these methods did not work even with restricted action spaces). For
NovelD with the message-based bonus, we found that the agent ends up learning a policy where it
executes many different actions which produce different messages, but do not change the underlying
state of the game (such as the PAY and FIGHT actions described above). This makes sense from the
perspective of optimizing intrinsic reward, since each new message seen within the episode provides
additional intrinsic reward; however, this does not help explore the state space in a way that is helpful
for discovering the true environment reward. We observed similar behavior for E3B, and hypothesize
that the encoding learned through the inverse dynamics model keeps message information since this
is useful for predicting actions, even if they have no real effect (such as PAY and FIGHT). In this
case, the policy can then maximize intrinsic reward by executing these actions.

To avoid this unwanted behavior (which applies to all the methods we tested), we restricted the
action space to only the actions which were useful for the tasks at hand. These included actions
corresponding to direction movements, as well as different combinations of PICKUP, QUAFF, ZAP,
FIRE, and WEAR (full details can be found in our code release). We denote the versions of the tasks
with action space restriction with the "-Restricted-v0" suffix, as opposed to the original "-v0"
suffix. We believe that better understanding this failure mode and designing exploration bonuses
and/or representation learning methods which are robust to it is an important direction for future
work.

20

https://github.com/facebookresearch/minihack
https://github.com/facebookresearch/minihack

C.1.5 Compute Details

Each algorithm was trained using 40 Intel(R) Xeon(R) CPU cores (E5-2698 v4 @ 2.20GHz) and
one NVIDIA GP100 GPU. We used PyTorch [51] for all our experiments. Each run took between
approximately 10 and 30 hours to complete. The total runtime depended on two factors: the
computation time of the algorithm, and the behavior of the policy. In terms of algorithm computation
time, E3B was roughly 1.5 to 2 times slower than the other methods, due to the fact that in our
implementation an additional forward pass through the embedding network (used to compute the
elliptical bonus) was performed on CPU. It is possible that a different implementation where this step
would be done on GPU would be faster.

A second factor which influenced the total runtime was how quickly the agent learned to avoid dying.
For certain environments (for example, those which contain lava), the agent can die quickly which
causes the environment to be regenerated. For environments which call the MiniGrid library on
the backend, this can be a performance bottleneck since generating new MiniGrid environments
can be slow. We found that algorithms which cause the agent to die frequently were much slower
on the MiniHack-MultiRoom-N*Lava* and MiniHack-LavaCrossing* environments, both of
which are based on MiniGrid.

21

C.2 VizDoom

C.2.1 Architecture Details

For all VizDoom experiments, we used the same policy network architecture as in [56]: four 2D
convolutional layers with 32 input and 32 output channels, kernel size 3 x 3, stride 2 and padding 1,
interleaved with Exponential Linear Unit (ELU) non-linearities [16]. The output of the convolutional
layers feeds into a 2-layer LSTM [32] with 256 hidden units, followed by linear layers mapping the
hidden units to a distribution over actions and a scalar value estimate.

The architecture for E3B’s encoder is identical to that of the policy network, except that the LSTM is
replaced by a linear layer (there is thus no recurrence in the encoder network).

C.2.2 RL Hyperparameters

For our VizDoom experiments, we also used IMPALA as our base policy optimizer. For E3B we
used the same IMPALA hyperparameters as for MiniHack. The hyperparameters specific to E3B,
ICM and RIDE are given below. For both ICM and RIDE, we found that performance was quite
sensitive to the coefficients of the forward and inverse dynamics model losses. We ended up using
the hyperparameters from [56], which we found gave the best performance.

Table 7: Hyperparameters for E3B on VizDoom

Hyperparameter Values considered Final Value
Running intrinsic reward normalization | {False} False
Ridge regularizer \ {0.1,0.01} 0.1
Intrinsic reward coefficient 5 {3-10-7,107%,3-107¢,1075,3-1075,10"4} | 3-1076

Table 8: Hyperparameters for RIDE on VizDoom

Hyperparameter Values considered Final Value

Running intrinsic reward normalization | {False} False

Forward loss coefficient {0.5,1.0} 0.5

Inverse loss coefficient {0.1,0.8} 0.8

Intrinsic reward coefficient 8 {1072,3-1072,1073,3-1074,1074} | 31072
Table 9: Hyperparameters for ICM on VizDoom

Hyperparameter Values considered Final Value

Running intrinsic reward normalization | {False} False

Forward loss coefficient {0.2,1.0} 0.2

Inverse loss coefficient {0.1,0.8} 0.8

Entropy cost {0.0001, 0.005} 0.005

Intrinsic reward coefficient 3 {1072,3-1072,1073,3-10"%,1074} | 3-1073

22

C.3 Habitat
C.3.1 Environment Details

We used the HM3D [57] dataset, which consists of 1000 high-quality renderings of indoor scenes.
Observations consist of 4 modalities: an RGB and depth image (shown in Figure 11a), GPS coordi-
nates and the compass heading. The action space consists of 4 actions: A = {stop_episode,
move_forward (0.25m), turn_left (10°), turn_right (10°)}. The dataset scenes are
split into 800/100/100 train/validation/test splits. Since the test split is not publicly available,
we evaluate all models on the validation split. Each scene corresponds to a different context ¢ € C in
the CMDP framework.

To measure exploration coverage, we compute the area revealed by the agent’s line of site using the
function provided by the Habitat codebase 2, which uses a modified version of Bresenham’s line
cover algorithm. We define the exploration coverage to be:

revealed area
coverage = ——
total area

See Figure 11b) for an illustration. For the results in Figure 8, we evaluated exploration performance
for each algorithm by measuring its coverage on 100 episodes using scenes from the validation set
(which were not used for training).

revealed area unrevealed area

(b)

Figure 11: a) Visual observations in Habitat b) Exploration is measured as the proportion of the
environment revealed by the agent’s line of sight over the course of the episode.

C.3.2 Architecture Details

For all Habitat experiments we used the same policy network as in [71], which includes a ResNet50
visual encoder [31] and a 2-layer LSTM [32] policy. In addition to RGB and Depth images, the agent
also receives GPS coordinates and compass orientation, represented by 3 scalars total, which are
fed into the policy. See the official code release at https://github.com/facebookresearch/
habitat-lab/tree/main/habitat_baselines for full details.

For exploration algorithms which use inverse dynamics models (E3B and ICM), we set the architecture
of the encoder ¢ to be identical to that of the policy network, except that the last layer mapping
hidden units to actions is removed. The inverse dynamics model was a single layer MLP with 256
hidden units and ReL U non-linearities.

For exploration algorithms which use random network distillation (RND and NovelD), we set the
architecture of the random network to be identical to that of the policy network.

C.3.3 RL Hyperparameters

The DD-PPO hyperparameters which are common to all the algorithms are listed in Table 10. The
hyperparameters which are specific to each algorithm are listed in Table 11, 12, 4. For NovelD’s

“https://github.com/facebookresearch/habitat-lab/blob/main/habitat/utils/
visualizations/fog_of_war.py

23

https://github.com/facebookresearch/habitat-lab/tree/main/habitat_baselines
https://github.com/facebookresearch/habitat-lab/tree/main/habitat_baselines
https://github.com/facebookresearch/habitat-lab/blob/main/habitat/utils/visualizations/fog_of_war.py
https://github.com/facebookresearch/habitat-lab/blob/main/habitat/utils/visualizations/fog_of_war.py

count-based bonus, hashing the full image was too slow to be practical, so we subsampled images by
a factor of 1000 used that for the count-based bonus, along with the GPS coordinates and compass

direction.
Table 10: Common PPO/DD-PPO Hyperparameters for Habitat

Clipping 0.2

PPO epochs 2

Number of minibatches 2

Value loss coefficient 0.5

Entropy coefficient 0.00005

Learning rate 0.00025

€ 1075

Max gradient norm 0.2

Rollout steps 128

Use GAE True

¥ 0.99

T 0.95

Use linear clip decay False

Use linear LR decay False

Use normalized advantage False

Hidden size 512

DD-PPO Sync fraction 0.6

Table 11: Hyperparameters for E3B on Habitat

Hyperparameter Values considered Final Value
Ridge regularizer \ {0.1} 0.1
Intrinsic reward coefficient 3 {1.0,0.1,0.01,0.001,0.0001 | 0.1
Inverse Dynamics Model updates per PPO epoch | 3 3

Table 12: Hyperparameters for RND on Habitat

Hyperparameter

Values considered

Final Value

Intrinsic reward coefficient 3
Predictor Model updates per PPO epoch

{1.0,0.1,0.01,0.001,0.0001
3

0.1
3

Table 13: Hyperparameters for NovelD on Habitat

Hyperparameter Values considered Final Value

Intrinsic reward coefficient 5 {1.0,0.1,0.01,0.001,0.0001 | 0.1

Predictor Model updates per PPO epoch | 3 3

Scaling factor « 0.1 0.1

Table 14: Hyperparameters for ICM on Habitat

Hyperparameter Values considered Final Value
Intrinsic reward coefficient 3 {1.0,0.1,0.01,0.001,0.0001 | 0.1
Forward Dynamics Model loss coefficient | {1.0} 1.0

C.3.4 Compute Details

Each job was run for 225 million steps, which took approximately 3 days on 32 GPUs with 10 CPU

threads.

24

C.4 Codebases Used

Our codebase was built atop the following codebases:

* The official NovelD codebase: https://github.com/tianjunz/NovelD (Creative Com-
mons Attribution-NonCommercial 4.0 license) for NovelD, RND, RIDE and count-based
baselines (this codebase is build atop the official RIDE codebase below)

* The official MiniHack codebase: https://github.com/facebookresearch/minihack
for network architectures appropriate to MiniHack environments (Apache 2.0 license)

* The official RIDE codebase: https://github.com/facebookresearch/
impact-driven-exploration (Creative Commons Attribution-NonCommercial
4.0 license) for network architectures appropriate to VizDoom environments

* The official Habitat codebase: https://github.com/facebookresearch/
habitat-lab/tree/main/habitat_baselines for Habitat experiments

D Additional Results and Discussion

D.1 Additional MiniGrid Results

Here we provide results for RIDE, AGAC and NovelD on additional MiniGrid environments used in
prior work, with and without their count-based episodic terms. For all algorithms, we used the code
released by the authors with the default hyperparameters 3. Results in Figure 12 confirm the trend in
Figure 1: in all cases, removing the count-based episodic term results in a failure to learn or makes
learning much slower (such as for RIDE in MiniGrid-ObstructedMaze-2D1h-v0). We ran less
seeds for AGAC because the official release’s multithreading implementation was not compatible
with our cluster.

MiniGrid-KeyCorridorS4R3-v0

RIDE
08 RIDE 038 08

£ (no episodic counts)
3
=06 06 06
o AGAC NovelD
] AGAC NovelD
‘8 04 04 (no episodic counts) 04 (no episodic counts)
(%)
=%
So2 02 02

0.0 0.0 0.0

o 1 2 3 a4 5 0.0 0.5 1.0 15 2.0 25 0 1 2 3 4 5
steps 1e7 steps 1e7 steps 1e7

MiniGrid-ObstructedMaze-2Dlh-v0

AGAC

0.8 0.8 AGAC 0.8
c (no episodic counts)
=1
=06 06 06
o RIDE NovelD
Y] RIDE NovelD
'8 04 (no episodic counts) 04 o4 (no episodic counts)
a
=%
To2 J/ 0.2 0.2

0.0 0.0 0.0

o 1 2 3 a4 5 0.0 0.5 1.0 15 2.0 25 o 1 2 3 4
steps 1e7 steps 1e7 steps 1e7

Figure 12: Results for RIDE, AGAC and NovelD with and without the count-based episodic bonus,
over 5 random seeds (1 seed for AGAC). Shaded region indicates one standard deviation.

D.2 Effect of rank-1 updates

Here we compare the wall-clock time for computing the elliptical bonus using the rank-1 updates
and the naive method of maintaining and inverting the full covariance matrix. We performed these
experiments on the MiniHack-Freeze-Random-Restricted-v0 environment using the standard

3NovelD: https://github.com/tianjunz/NovelD, RIDE: https://github.com/
facebookresearch/impact-driven-exploration, AGAC: https://github.com/yfletberliac/
adversarially-guided-actor-critic

25

https://github.com/tianjunz/NovelD
https://github.com/facebookresearch/minihack
https://github.com/facebookresearch/impact-driven-exploration
https://github.com/facebookresearch/impact-driven-exploration
https://github.com/facebookresearch/habitat-lab/tree/main/habitat_baselines
https://github.com/facebookresearch/habitat-lab/tree/main/habitat_baselines
https://github.com/tianjunz/NovelD
https://github.com/facebookresearch/impact-driven-exploration
https://github.com/facebookresearch/impact-driven-exploration
https://github.com/yfletberliac/adversarially-guided-actor-critic
https://github.com/yfletberliac/adversarially-guided-actor-critic

hyperparameter setup, on a machine with 80 Intel(R) Xeon(R) CPU cores (E5-2698 v4 @ 2.20GHz)
and one NVIDIA GP100 GPU:

E3B using rank-1 update | 767 FPS
E3B using matrix inversion | 256 FPS

This shows that using the rank-1 update is essential for fast performance.

D.3 Negative results for RIDE with modified count-based bonuses

We ran some preliminary experiments investigating modifications to RIDE similar to those for
NovelD. Specifically, the modified RIDE reward bonus is:

v
Ne(¥(st+1))

where ¢ is the embedding learned with the inverse dynamics model and ¢ (s;11) extracts some
aspect of the state s;y;. We investigated a version where ¥(s;41) extracts the (x¢41,Yi+1)
position information from the state (this method we called RIDE-POSITION and is the same
version that was run in [58]) and a version where 1) extracts the message portion of the
state (this method we called RIDE-MESSAGE). Despite tuning the intrinsic reward coefficient
over the range {0.0001,0.001,0.01,0.1,1, 10} on two tasks (MiniHack-MultiRoom-N10-vO and
MiniHack-Freeze-Horn-Restricted-v0) over 3 random seeds, none of the seeds was able to
achieve positive reward for either of the tasks with either of the methods. Note that our results are
consistent with those reported in [58], which also found that RIDE-POSITION did not outperform
IMPALA on most tasks.

b(st) = l|p(st41) — B(se)ll2 -

D.4 Additional MiniHack Results and Discussion

Results for all methods on individual tasks are shown in Figure 13. The first 9 tasks are navigation-
based while the remaining 7 are skill-based.

First, as noted in the main text we see that when using the position bonus, NovelD succeeds in
most of the tasks which primarily require the agent to spatially explore the environment, such as the
Labyrinth-Big task or the different MultiRoom variants. On the other hand, this modality performs
poorly on tasks based on skill acquisition, such as Freeze, LavaCross and WoD tasks. These tasks
require the agent to pick up and use objects, and exploring the state space involves trying different
action combinations which do not affect the agent’s position. Therefore, an exploration bonus which
only encourages the agent to visit many different positions is not helpful.

The message bonus, on the other hand, succeeds on the skill acquisition tasks. On these tasks, the
correct sequence of actions indeed causes a sequence of novel messages to appear. For example,
let us consider the task Freeze-Wand. In this task, the agent is in a small room and must go to a
wand, pick it up, pick the ZAP action, choose the wand and then choose a direction to zap. When
conducting this sequence of actions, it encounters the following messages: "you see here a brass
wand" (after navigating to the wand location), "f - a brass wand" (after executing the PICKUP action),
"What do you want to zap? [f or 7*]" (after executing the ZAP action). Each time the agent visits a
state-action pair required to solve the task, it receives one of these messages which provides it with
a positive reward signal thanks to the message-based episodic bonus. This in turn reinforces the
behavior leading to that state-action pair and allows it to ultimately solve the task.

When using the message bonus, NovelD fails completely on most of the navigation-based tasks,
such as MultiRoom-N*-Lava-0OpenDoor, LavaCrossingS19N13 and LavaCrossingS19N17. For
these tasks, the agent must navigate its way through a series of rooms with lava walls or lava rivers
with only one crossing. The only message it receives is "it’s a wall" if it runs into walls, which does
not incentivize it to explore more locations which will eventually lead it to the goal. In contrast, the
position bonus easily solves these tasks.

The symbolic image bonus performs poorly on the skill-based tasks, but performs well on some
of the navigation-based ones. This is likely because for many of these tasks, the agent it the only

26

MiniHack-MultiRoom-N4-Locked-v0 MiniHack-MultiRoom-N6-Lava-v0 MiniHack-MultiRoom-N6-Lava-OpenDoor-v0 MiniHack-MultiRoom-N6-LavaMonsters-v0

1.0 —

10 10
075 o
0.50 08 o8
0.6
025 06
0.6
0.00 o4

£
F]
2
o
3
0.4
2 e | o
2 [S 02
% 0.25 % 02
~0.50 (02
0.0 0.0
-0.75 0.0
-0.2 ~02
o 1 2 3 a4 5 o 1 2 3 a 5 o 1 2 3 4 5 o 1 2 3 4 5
le7 le7 le7 le7
MiniHack-MultiRoom-N10-OpenDoor-v0 MiniHack-MultiRoom-N10-Lava-OpenDoor-v0 MiniHack-LavaCrossingS19N13-v0 MiniHack-LavaCrossingS19N17-v0
1.0 1.0 1.2 125
0.5 0.8 1.0 - — 1.00 ——
c / oe [08 S| s / /AL
S 00 7a4
@ ¥ /—/—/—/ 04 0.6 0.50
L
° 05 %/, 0.4 0.25
2 / 0.2
Qo -
% -1.0 ! 02 0.00 —
0.0
-15 (' 0.0 & L -0.25
-0.2
20 ~02 -0.50
4 1 2 3 4 5 4 1 2 3 4 5 4 1 2 3 4 5 4 1 2 3 4 5
le7 le7 le7 le7
MiniHack-Labyrinth-Big-v0 MiniHack-Levitate-Potion-Restricted-v0 MiniHack-Levitate-Boots-Restricted-v0 MiniHack-Freeze-Horn-Restricted-v0
1
fw 10
1.0
0 W — o
- | 0.5 05
c 1l
= 0.5
F] e
T -2 | oo ///y:\,_ﬂv / 00 1/
[} 0.0 //—
T - _ (2
8 3 05 f / 0.5 ;s/_
] | - p
!
S-a -10 -05 f
|
-1.0
-5 -15 -109 |
-6 “20 -15
o 1 2 3 a 5 o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5
le7 le7 le7 le7
MiniHack-Freeze-Wand-Restricted-v0 MiniHack-Freeze-Random-Restricted-v0 MiniHack-LavaCross-Restricted-v0 MiniHack-WoD-Hard-Restricted-v0
08
10 10
0.6
05 05 s
£ 04
‘Q’ 0.0 0.0 004 L,cl/fi
° r e 0.2
°
Q 05 -0.5 ﬁﬁ \
a ! -05 007 Em————— ——
5 r
-1.0 -1.0 -0.2
-1.0
-15 -15 —04
0 1 2 3 4 5 0 1 2 3 4 5 4 1 2 3 4 5 4 1 2 3 4 5
steps 1e7 steps le7 steps le7 steps le7
—— NovelD (position) —— NovelD (symbolic image) E3B ICM RND
NovelD (message) —— NovelD IMPALA —— RIDE

Figure 13: Mean results on individual tasks over 5 different seeds. Shaded region indicates one
standard deviaton.

moving entity, and hence the positional bonus and the image bonus will be similar. However, this
is not always true. For example, in the Labyrinth-Big task, the environment is initially mostly
hidden and gets revealed over time as the agent explores. This means that there is not a one-to-one
correspondence between symbolic images and agent positions, as would be the case if the entire
map was initially revealed. On this task, the position bonus succeeds but the symbolic bonus does
not. Another particularly revealing example is the fact that the symbolic bonus succeeds on the
MultiRoom-N6-Lava-OpenDoor environment, but fails on the MultiRoom-N6-Lava environment.
The only difference between these two tasks is that in the former, all doors are initially open, which is
marked by the - symbol. In the latter, they are initially closed (marked by the + symbol), and as they
are opened by the agent, the symbol switches to -. In the open door version, there is a one-to-one
correspondence between agent positions and symbolic images. On the closed door version, the
number of possible symbols is the number of positions times the number of possible combinations of
doors being open and closed—a much larger number. Once any door is opened, if the agent revisits a
position it visited when the door was closed, it will once again receive bonus. This encourages the
agent to revisit previously visited locations each time a door is opened, which does not align well
with the task. This explains the poor performance of the symbolic image bonus on the closed door

27

version of the task. This again illustrates how count-based episodic bonuses can be sensitive to slight
changes in the task’s construction.

When using the count-based bonus based on the full observation, which does not make any assump-
tions about which parts of it are useful for the task, NovelD fails on all the tasks except for two. A
close look at the stats vector (see Figure 4) reveals that it contains a time counter which increments
each timg: step: this effectively makes each observation unique, and hence the episodic bonus is
constant .

D.5 Sensitivity of)\ regularizer

Figure 14 shows E3B’s performance on MiniHack for different values of the covariance regularizer \.
There is no statistically significant difference between A = 0.1, which is the value we used in our
experiments, and A = 0.01 or A = 1.0. For A = 0.001, we observe a statistically significant drop in
performance for the IQM metric only. This shows that E3B is fairly robust to the value of \.

Median IQM Mean
21=0.001 I I |
2A=0.01 | | [
A=0.1 | [[
A=1.0 | | |
0.68 072 0.76 074 076 078 0.80 0.68 072 0.76

Episode Return

Figure 14: MiniHack performance for different values of A parameter. All MiniHack experiments in
the paper use the value A = 0.1 unless otherwise noted. Intervals are computed using 5 random seeds
using stratified bootstrapping.

“This is a simplification: there are some exceptions where the time counter is not incremented, such as if the
agent runs into a wall or is searching through its inventory. This counts as a time step for the RL environment
wrapper, but not for the underlying NetHack game engine. However these instances are relatively rare.

28

