
A Related Work

Since our work studies competitive equilibrium computation, online fair resource allocation and
stochastic optimization, while PACE employs the idea of pacing in auction mechanism design, we
further discuss related work in these areas.

Convex optimization for computing competitive equilibria. Convex optimization algorithm (es-
pecially first-order methods) and their theory have been used to design and analyze algorithms for
computing competitive equilibria, often through equilibrium-capturing convex programs Birnbaum
et al. (2011); Cole et al. (2017); Cheung et al. (2020); Gao and Kroer (2020); Gao et al. (2021). Ap-
plying a first-order method to such a convex program often leads to (recovers) interpretable market
dynamics that emulate real-world economic behaviors, such as the proportional response dynamics
Birnbaum et al. (2011); Zhang (2011); Cheung et al. (2018); Gao and Kroer (2020) and tâtonnement
(Cheung et al., 2020). The PACE algorithm of Gao et al. (2021) is no exception: it results from ap-
plying dual averaging to a specific convex program. Discrete variants of these convex programs have
also been used for fair indivisible allocation (Caragiannis et al., 2019), which yields some efficiency
and fairness guarantees, though the discreteness breaks the connection to competitive equilibria.

(Online) fair resource allocation. Azar et al. (2016) consider an online Fisher market with arbi-
trary item arrivals. They focus on a quality measure that is minimized at a competitive equilibrium
and give an online algorithm that achieves a competitive ratio logarithmic in the size of the market
and the ratio between the maximum and minimum (nonzero) buyer valuations over individual items.
This algorithm requires solving a nontrivial linear program per iteration and is not known to improve
with stochastic arrivals. Banerjee et al. (2022) considers the problem of online allocation of divisi-
ble items to maximize Nash social welfare. They show that, under arbitrary item arrivals but with
access to meaningful predictions of each buyer’s total utility given all items, an online algorithm of
the primal-dual type achieves a logarithmic competitive ratio. Gkatzelis et al. (2021) study the set-
ting where items arrive online and with two agents. They focus on satisfying the no-envy condition
while maximizing social welfare, and show that one do this approximately by allocating items pro-
portionally to valuations, assuming that valuations are normalized. Manshadi et al. (2021) studies
the problem of rationing a social good and propose simple, implementable algorithms that promote
fairness and efficiency. In their setting, it is the agents’ demands rather than the supply that are
sequentially realized and possibly correlated over time. Bateni et al. (2021) uses Gaussian processes
to model item arrivals and consider a budget-weighted proportional fairness metric. They propose a
reoptimization policy that consumes buyers’ budgets and clears the market gradually while ensuring
a competitive ratio in hindsight w.r.t. this metric. This policy periodically resolves the Eisenberg-
Gale (EG) convex program and does not require prior knowledge of future item arrivals. Our work
differs from the above literature as follows. First, we consider practically-motivated nonstationary
data input models for item arrivals that interpolate between fully adversarial and fully stochastic
(i.i.d.). Second, we show that the PACE algorithm, without any parameter tuning, adapts to different
data input models and achieves strong performance guarantees that depend mildly on the “nonsta-
tionarity” of these models. Given that PACE is scalable, interpretable and easy to implement this
paper further ensures its effectiveness upon more realistic, non-i.i.d. item arrival processes.

(Nonstationary) stochastic optimization. Many stochastic optimization algorithms have been
shown to attain nontrivial performance guarantees under under nonstationary data input (Duchi et al.,
2012; Balseiro et al., 2020; Besbes et al., 2015). Motivated by high-dimensional and distributed op-
timization problems, Duchi et al. (2012) analyzes stochastic mirror descent under ergodic data input.
Balseiro et al. (2020) analyzes a version of mirror descent for online resource allocation. They show
that it achieve strong regret bounds under different data input models without knowing the model in
advance. The ergodic and periodic data input models in this paper are motivated by those considered
in Duchi et al. (2012) and Balseiro et al. (2020). Different from these papers which focus on mirror
descent, this paper focuses on the dual averaging algorithm, a different stochastic optimization al-
gorithm particularly suitable for the equilibrium-capturing convex program we study. Furthermore,
we achieve stronger results than those past papers, by focusing on a setting where a composite term
has strong convexity.

Pacing in auction mechanism design. The PACE algorithm uses first-price auctions with pacing.
As noted in Gao and Kroer (2020), the idea of pacing has also been used widely in budget man-
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agement strategies for Internet advertising auctions, with strong revenue and incentive guarantees
(see, e.g., Conitzer et al. (2019, 2021); Balseiro and Gur (2019)). It is also used widely in practice,
as reported in Conitzer et al. (2021). As shown in Balseiro et al. (2020), pacing strategies ensure
individual bidders’ returns on their budgets and, if used by all buyers, lead to approximate Nash equi-
libria. Similar to the analysis in Gao et al. (2021), in this paper, we focus on competitive equilibrium
and fairness properties of PACE, rather than game-theoretic (incentive) properties.

B Review of Linear Fisher Market

In fair division the goal is to perform this allocation in a fair way, while simultaneously also guar-
anteeing some form of efficiency, typically Pareto efficiency. In the case of allocating m divisible
goods to n agents, the competitive equilibrium from equal incomes (CEEI) allocation guarantees
many fairness properties. In CEEI, every agent is endowed with a unit budget of faux currency, a
competitive equilibrium is computed, i.e., a set of item prices along with an allocation that clears
the market, and the resulting allocation is used as the fair allocation (Varian, 1974). This guarantees
several fairness desiderata such as envy-freeness (every person prefers their own bundle to that of any
other person), proportionality (every person prefers their own bundle over receiving their fair share
1/n of every item), and Pareto optimality (we cannot make any person better off without making at
least one other person worse off).

A linear Fisher market refers to the tuple F = (n,m,B, v). The market consists of n buyers and m
items. We assume each buyer has a budget of Bi. We use {1, . . . ,m} to represent the set of items,
each of unit supply. The matrix v = (v1, . . . , vn) ∈ (Rm

+ )n consists of valuations, with vji being
the valuation of item j from buyer i. For buyer i, an allocation of items, xi ∈ Rm

+ , gives a utility of
ui(xi) := 〈vi, xi〉 :=

∑m
j=1 v

j
i x

j
i . Note we use different fonts to distinguish notions that appear in

both the online allocation problem and the Fisher market.
Definition 1 (Demand). Given item prices p ∈ Rm

+ , the demand of buyer i is its set of utility-
maximizing allocations given the prices and budget:

Di(p) := argmax{〈vi, xi〉 : xi ≥ 0, 〈p, xi〉 ≤ Bi} . (17)

Definition 2 (Market Equilibrium). The market equilibrium of F = (n,m,B, v) is an allocation-
price pair (x∗, p∗) ∈ (Rm

+ )n × Rm
+ such that the following holds.

1. Supply feasibility:
∑n

i=1x
∗
i ≤ 1m.

2. Buyer optimality: x∗i ∈ Di(p∗) for all i.

3. Market clearance: 〈p∗, 1m −
∑n

i=1x
∗
i 〉 = 0.

Market equilibrium and fair allocation are related as follows. In CEEI, we construct a mechanism
for fair division by giving each agent the same budget of fake currency, i.e., Bi = Bj for all i, j,
computing what is called a market equilibrium under this new market, and using the corresponding
allocation as our fair allocation rule.

It is known that an allocation x∗ from the set of CEEI has many desirable properties. It is Pareto op-
timal (every market equilibrium is Pareto optimal by the first welfare theorem). It has no envy: since
each agent has the same budget in CEEI and every agent is buying something in their demand set, no
envy must be satisfied, since they can afford the bundle of any other agent. Finally, proportionality
is satisfied, since each agent can afford the bundle where they get 1/n of each good.

The ME is essentially a collection of optimization problems (Eq. (17)) coupled through the con-
straint

∑n
i=1xi ≤ 1m. A celebrated result is the Eisenberg-Gale convex program, which provides

an equivalent characterization of ME.

max
x1,...,xn

n∑

i=1

Bi log 〈vi, xi〉 s.t.
n∑

i=1

xji ≤ 1 ∀j ∈ [m] , xi ∈ Rm
+ ∀i ∈ [n] . (18)

That is, we maximize the sum of logarithmic utilities under the supply constraint. The solution to
the primal problem x∗ = (x∗1, . . . , x

∗
m) along with the vector of dual variables p∗ yields a market

equilibrium.
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The hindsight allocation Eq. (1) is just the EG program of the linear Fisher market FA = (n, t, B, v)
where entries of the valuation matrix v are defined by vji = vi(θj) for all i ∈ [n], j ∈ [t], and
B = (t/n)1n.

C PACE as Dual Averaging

In this section, we show how to cast PACE as dual averaging. To this end, we will introduce
infinite-dimensional Eisenberg-Gale-type convex programs for the allocation of a (possibly infi-
nite/continuous) set of items. Here, the item supplies correspond to the probability density dQ̄/ dµ
of the average item arrival distribution Q̄. They serve as intermediate “reference” convex programs
that facilitate the use of DA convergence results developed in the previous section to analyze PACE.
When the item space is continuous, the supply function, allocation rules, and the price function
in these convex programs are (measurable) functions over such item spaces, which can be infinite-
dimensional objects. When item arrivals are drawn from a (fixed) distribution with density s, they
correspond to the EG convex programs of the “underlying market” with item supplies s. Note that
when the item space Θ is finite, the infinite-dimensional analogues reduce to the classical finite-
dimensional EG convex programs. After introducing these concepts we will show that our results
on nonstationary DA allows us to derive comparable results on various PACE performance metrics.
The results of Gao et al. (2021) cast PACE as dual averaging for the EG convex program of the un-
derlying market, and show guarantees with respect to that program. Here, we will show our results
for that setting, as well as for the hindsight allocation problem.

Different from the presentation of DA in Xiao (2010), we do not need an additional regularizer.
This paper focuses on DA for strongly convex problems with an existing regularizer in the loss (and
hence no auxiliary regularizer is needed), since this is the setting used in the design and analysis of
the PACE algorithm; similar convergence results under our new input models can be derived for the
general form of DA given in Xiao (2010, Algorithm 1) with an auxiliary regularizer for non-strongly
convex problems.

C.1 The Dual of EG and the Infinite-Dimensional Analogue

We derive the dual program of (1). Introduce the dual variables βi ≥ 0 with i ∈ [n] for each
constraint of the first type and variables pτ ≥ 0 with τ ∈ [t] for constraints of the second type. The
Lagrangian L : Rn×t

+ × Rn
+ × Rn

+ × Rt
+ → R is given by

L(x, U,β, p) =
n∑

i=1

Bi logUi +
n∑

i=1

βi

(
〈vi(γ), xi〉 − ui

)
+

t∑

τ=1

pτ
(
1−

n∑

i=1

xτ
i

)

=
t∑

τ=1

pτ +
n∑

i=1

(
Bi logUi − βiui

)
+

n∑

i=1

〈
βivi(γ)− p, xi

〉
.

Maximizing out the variables (x, U) gives the dual program

min
p≥0,β≥0

{
t∑

τ=1

pτ −
n∑

i=1

Bi log βi +
n∑

i=1

(
Bi logBi −Bi

) ∣∣∣∣ p ≥ βivi(γ) ∀i ∈ [n]

}
.

Dividing by t (recalling Bi = t/n), ignoring constants and moving the constraint p ≥ βivi(γ) to
the loss, we obtain the following equivalent optimization problem:

min
β≥0

{
1

t

t∑

τ=1

max
i∈[n]

βivi(θ
τ )− 1

n

n∑

i=1

log βi

}
. (19)

Let βγ be the optimal solution. To recover the corresponding optimal pγ we define pγ,τ =
maxi β

γ
i vi(θ

τ ) for τ ∈ [t].

We recall the infinite-dimensional analogue of (1):

max
x∈L∞

+ (Θ),u≥0

{
1

n

n∑

i=1

log(ui)

∣∣∣∣ ui ≤
〈
vi, xi

〉
∀i ∈ [n],

n∑

i=1

xi ≤ s

}
, (20)
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where s = dQ̄/ dµ is the average item supply function, and
〈
vi, xi

〉
:=
∫
Θ vixi dµ. The infinite-

dimensional analogue of (2) is the following. For any δ0 > 0,

min
β≥0

{∫

Θ

(
max
i∈[n]

βivi(θ)
)
Q̄(dθ)− 1

n

n∑

i=1

log βi

∣∣∣∣
1

n(1 + δ0)
≤ βi ≤ 1 + δ0 ∀i ∈ [n]

}
, (21)

A rigorous mathematical treatment of the two infinite-dimensional programs can be found in Gao
and Kroer (2021) and (Gao et al., 2021, Section 2). Note the additional constraint in (4) on β does
not affect the optimal solution since 1/n ≤ β∗

i ≤ 1; see Lemma 1 in Gao and Kroer (2021).

The relationship between the finite and infinite versions of (2) is that we have replaced the uni-
form averaging in (2) with an integral w.r.t. the item average distribution Q̄ in (4). For nota-
tional simplicity, we suppress dependence on Q̄ and let (x∗, u∗,β∗) denote the optimal solutions
to the infinite-dimensional programs (3) and (4). Define the corresponding optimal p∗ in (4) by
p∗ := maxi∈[n] β

∗
i vi.

C.2 PACE as Dual Averaging

In this section we review how to cast PACE as dual averaging applied to the problem (4). This
derivation was originally given in Gao et al. (2021). Recall f(β, θ) = maxi βivi(θ), Ψ(β) =
− 1

n

∑n
i=1 log βi and then

F (β, θ) = f(β, θ) +Ψ(β) = max
i∈[n]

{
βivi(θ)

}
− 1

n

n∑

i=1

log βi .

Following (Gao and Kroer, 2021, §5), since f( · , θ) is a piecewise linear function, a subgradient is

G(β, θ) := viτ (θ)eiτ ∈ ∂βf(β, θ) ,

where iτ = min{argmaxi βivi(θ)} is the index of the winning agent (see, e.g., (Beck, 2017, Theo-
rem 3.50)).
Lemma 2 (PACE as Dual Averaging). The iterates {βτ}t+1

τ=1 generated by the PACE dynamics
(Algorithm 1) are exactly DA(G,Ψ, γ) (Algorithm 2).

Proof of Lemma 2. Interpret the DA updates using the following substitution: Θ ↔ Z, θτ ↔ zτ ,
βτ+1 ↔ wτ+1 and ḡτ,i ↔ ūτ

i . For initialization in DA, choose β1 to be the minimizer of Ψ over
the cube [(1 + δn)−1n−11n, (1 + δ0)1n] and set ḡ0 = ū0 = 0.

(1) Subgradient computation ⇔ choose the winning bidder (Line 4 of PACE).

(2) Average subgradient ⇔ update current averaged utilities (Line 5 of PACE). The i-th entry of
G(β, θ) is exactly the time-τ realized utility of agent i in PACE, that is, gτ,i = vi(θτ )1{i = iτ} =
uτ
i . Then the average gradient, ḡτ = τ−1

τ ḡτ−1 +
1
τ gτ , is the same as the time-averaged utilities:

ḡτ,i =
τ − 1

τ
ḡτ−1,i +

1

τ
vi(θ

τ )1{i = iτ} .

(3) Solve regularized problem ⇔ update pacing multiplier (Line 6 of PACE). The minimization
problem is separable in agent index i and exhibits a simple and explicit solution. Recall ḡτ,i = ūτ

i :

βτ+1
i = argmin

{
ḡτ,iβi −

1

n
log βi

∣∣∣
1

n(1 + δ0)
≤ βi ≤ 1 + δ0

}
⇒ βτ+1

i = Π[$,h]

(
1

nūτ
i

)
.

C.3 Performance Guarantees via Dual Averaging

Now that we have cast PACE as an instantiation of dual averaging and developed results for conver-
gence in nonstationary settings, the following theorems follow easily from the general convergence
results for DA. Recall the hindsight optimum βγ is defined in (2), and its infinite-dimensional coun-
terpart β∗ is defined in (4).
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Theorem 5 (Convergence of PACE, the Independent Case). Assume the item sequence γ ∼ Q and
Q ∈ CID(δ). Choose δ0 = 1 in PACE. It holds for t ≥ 1,

E
[
‖βt − β∗‖2

]
≤ (6 + log t)n2|v|2∞

t
+ 8n|v|∞ · δ = Õ(δ + 1/t) . (22)

Moreover, the rate Õ(δ + 1/t) applies to E[‖βγ − β∗‖2] and E[‖βt+1 − βγ‖2].

Proof. Set P = Q, Π = Q̄, σ = 1/n, and F̄ = |v|∞ in Theorem 4.

Here the convergence of βt to the hindsight counterpart βγ is of practical importance. This is
because βγ can always be computed after the fact, while its infinite-dimensional counterpart β∗ is
not necessarily obtainable.
Theorem 6 (Convergence of PACE, the Ergodic and the Periodic Cases). For the erogdic case, i.e.,
γ ∼ Q and Q ∈ CE(δ, ι), it holds for t ≥ 1,

E[‖βt+1 − β∗‖2] ≤ CE,1 + CE,2 · ι
t

+ CE,3 · δ = Õ

(
δ +

ι

t

)
.

where CE,1 = n2|v|2∞
(
6 + log t

)
, CE,2 = 4n

(
|v|2∞(1 + log t) + |v|∞

)
and CE,3 = 8n|v|∞.

For the periodic case, i.e., γ ∼ Q and Q ∈ CP(q), it holds for t ≥ 1

E[‖βt+1 − β∗‖2] ≤ CP,1 + CP,2 · q2

t
= Õ(q2/t) .

where CP,1 = CE,1 and CP,2 = 2n|v|2∞(1 + log t).

For both cases, similar convergence results can be stated for E[‖βγ − β∗‖2] and E[‖βt+1 − βγ‖2]
and are omitted here.

Proof. For the first inequality, set P = Q, Π = Q̄, σ = 1/n, and F̄ = |v|∞ in Theorem 8. For the
second inequality, set additionally δb = 0 and |P|∞ = q in Theorem 9.

C.4 From Dual EG Performance Bounds to Primal Performance Bounds

Convergence of βτ to β∗ implies the convergence of the average utilities and expenditure to their
infinite-dimensional counterparts. This follows almost directly from results developed by Gao et al.
(2021). In particular, they show:
Lemma 3 (PACE Long-Run Behavior, Gao et al. (2021)). For any distribution Q ∈ ∆(Θt), let
γ ∼ Q. It holds for t ≥ 1,

E
[
‖b̄t − (1/n)1n‖2

]
≤ 2E[‖βt+1 − β∗‖2] + 4|v|2∞

(
1

t

t∑

τ=1

E[‖βτ − β∗‖2]
)

,

and

E
[
‖ūt − u∗‖2

]
≤ Cu · E[‖βt+1 − β∗‖2] ,

where Cu = n2
(
|v|2∞/δ20 + (1 + δ0)

2
)

.

Finally, we relate results in Appendix C.3 to the main quantities of interest: regret and envy, defined
in (6) and (7), as well as convergence to the hindsight utilities. Similar results are given by Gao et al.
(2021), and our proof is almost identical to theirs, simply extended to the nonstationary case as well
as to the hindsight allocation problem.
Lemma 4 (Regret and Envy). For any distribution Q ∈ ∆(Θt), let γ ∼ Q. It holds for t ≥ 1,

E[‖ūt − uγ‖2] ≤ Cr,1 · E[‖βt+1 − β∗‖2] + n · Cr,2 ·
(
1

t

t∑

τ=1

E[‖βτ − β∗‖2]
)

,
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E
[
Regi,t(γ)

]
≤ t ·

√√√√Cr,1 · E[‖βt+1 − β∗‖2] + Cr,2 ·
(
1

t

t∑

τ=1

E[‖βτ − β∗‖2]
)

,

and

E
[
Envyi,t(γ)

]
≤ t ·

√√√√Ce,1 · E[‖βt+1 − β∗‖2] + Ce,2 ·
(
1

t

t∑

τ=1

E[‖βτ − β∗‖2]
)

,

where Cr,1 = 2Cu, Cr,2 = 2n2|v|2∞, Ce,1 = 2(1 + n2)Cu and Ce,2 = 4|v|2∞n2 + 2n3.

Now we have all the ingredients to prove the convergence of PACE.

Proof of Theorem 1, Theorem 2 and Theorem 3. Combine Lemma 3 with Theorem 5 and Theo-
rem 6 and we obtain the first set of inequalities in Theorems 1 to 3. Then combine Lemma 4
with Theorem 5 and Theorem 6, and we obtain the second set of inequalities.

D Proofs for Nonstationary Dual Averaging

The DA algorithm Algorithm 2 is obtained in Xiao (2010, §3.2) for the strongly convex case. We
simply set h = (1/σ)Ψ, β0 = σ and βt = 0 for t ≥ 1 in (Xiao, 2010, Algorithm 1).

Recall P τ is the distribution of zτ . For integers τ and τ ′ (τ ′ ≥ τ ), let P τ ′
(· | z1:τ ) denote the

distribution of zτ ′ if the process starts at z1:τ = {z1, . . . , zτ}.

D.1 Remark: Convergence to the Hindsight Optimum

Before developing the nonstationary convergence theory, we digress a bit and introduce a sim-
ple deduction through which we can easily show the convergence of DA iterates to the optimum
of the hindsight problem based on convergence to w∗

Π. Given data {zτ}tτ=1, define the sum
φγ(w) = (1/t) ·

∑t
τ=1F (w, zτ ) and its unique minimizer w∗

γ = argminφγ(w). We claim all
results developed for ‖wt+1 − w∗

Π‖2 will also hold for the hindsight suboptimality ‖wt+1 − w∗
γ‖2.

Note the following inequality:

Rt(w
∗
γ) =

t∑

τ=1

(
F (wτ , zτ )− F (w∗

γ , zτ )
)
=

t∑

τ=1

(
F (wτ , zτ )− φγ(w

∗
γ)
)
≥

t∑

τ=1

(
F (wτ , zτ )− φγ(w

∗
Π)
)
,

the last term being exactly Rt(w∗
Π). Choose w = w∗

γ in Lemma 1 and we obtain

E
[
‖wt+1 − w∗

γ‖22
]
≤ 1

σt

(
E[∆t]− E

[
Rt(w

∗
γ)
])

≤ 1

σt

(
E[∆t]− E

[
Rt(w

∗
Π)
])

.

It follows that all lower bounds for the regret E
[
Rt(w∗

Π)
]

can be turned into an upper bound for
the hindsight suboptimality measure ‖wt+1 − w∗

Π‖2. Convergence to the hindsight optimum is of
practical importance since the hindsight optimum w∗

γ can typically be computed, where this is not
always the case for the population optimum w∗

Π.

A simple consequence of the deduction above is the following. We note the inequality

‖w∗
γ − w∗

Π‖2 ≤ 2‖wt+1 − w∗
Π‖2 + 2‖wt+1 − w∗

γ‖2 .

Therefore convergence results for ‖wt+1 −w∗
Π‖ and ‖wt+1 −w∗

γ‖2 similarly hold for ‖w∗
γ −w∗

Π‖2.

D.2 Proof for Adversarial Corruption and Independent Data

Assume the data γ = {zτ}tτ=1 follows the distribution P with no further assumptions. We let
z1:0 = ∅ and further let P τ (· | z1:0) = P τ , the marginal distribution of zτ .
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Define the progressive deviation from Π

δt := sup
z1,...,zt

t∑

τ=1

‖P τ (· | z1:τ−1)−Π‖TV . (23)

If the data are independent, then it holds

δt =
t∑

τ=1

‖P τ −Π‖TV .

Note for the independent case, δt = t · δ where δ is in Eq. (16). If the data further has identical
distribution Π then δt = 0. If δt = O(log t) we call data has mild corruption.
Theorem 7 (Corrupted Data, Generalization of Theorem 4). It holds

E
[
‖wt+1 − w∗

Π‖22
]
= O

( log t
σ2t

+
δt
σt

)
, (24)

where O hides dependence on constants, G and F̄ . Recall σ is the strong convexity parameter of Ψ.
Remark 3. In either the i.i.d. case or the mild corruption case (δt = O(log t)), we recover the usual
O(log t/t) rate.

Proof of Theorem 7 In Lemma 1, the term ∆t is upper bounded in a deterministic manner. So it
remains to handle Rt. In the i.i.d. case, ERt(w∗

Π) is positive and thus can be dropped:

E[Rt(w
∗
Π)] = E

[ t∑

τ=1

(
F (wτ , zτ )− F (w∗

Π, zτ )
)]

=
t∑

τ=1

(
φΠ(wτ )− φΠ(w

∗
Π)
)
≥ 0 .

However, to handle corrupted data, we need to use
Lemma 5. The regret can be lower bounded by the corruption parameter δ:

E[Rt(w
∗
Π)] ≥ −4 · F̄ δt .

Plugging in the above lemma, we get

E[‖wt+1 − w‖2] ≤ 1

σt

(
E[∆t]− E[Rt(w

∗
Π)]
)
≤
(
6 + log t

)
G2

σ
+

8F̄

σ
δ = O

(G2 log t

σ2t
+

F̄ δt
σt

)
.

(25)

Thus, to complete the proof of Theorem 7 we only need to prove Lemma 5.

Proof of Lemma 5. Write

Rt(w
∗
Π) =

t∑

τ=1

(
F (wτ , zτ )− φΠ(wτ )

)
(I)

+
t∑

τ=1

(
φΠ(w

∗
Π)− F (w∗

Π, zτ )
)

(II)

+
t∑

τ=1

(
φΠ(wτ )− φΠ(w

∗
Π)
)
. (III)

By optimality of w∗
Π we have III ≥ 0.

Bounding I and II. Conditional on Fτ , the iterate wτ is deterministic and the distribution of zτ is
P τ (· | z1:τ−1).

Note

E[F (wτ , zτ )− φΠ(wτ )] = E[E[F (wτ , zτ )− φΠ(wτ )|Fτ−1]] .
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Let us investigate the inner expectation. Conditional on Fτ−1, the iterate wτ is deterministic, and
the distribution of zτ |Fτ−1 is P τ (· | z1:τ−1) by definition.

|E[F (wτ , zτ )− φΠ(wτ )|Fτ−1]| =
∣∣∣∣E
[ ∫

Z
F (wτ , z)P

τ (dz | z1:τ−1)−
∫

Z
F (wτ , z) dΠ(z)|Fτ−1

]∣∣∣∣

≤ E
[∣∣∣∣
∫

Z
F (wτ , z)P

τ (dz | z1:τ−1)−
∫

Z
F (wτ , z) dΠ(z)

∣∣∣∣|Fτ−1

]

≤ F̄

∫

Z
| dP τ (· | z1:τ−1)− dΠ(z)|

= 2F̄ · ‖P τ (· | z1:τ−1)−Π‖TV .

where we use boundedness of F , i.e., supw F (w, z) ≤ F̄ for Π-almost every z,

Next, sum over τ = 1, . . . , t and move | · | inside the sum and the outer expectation.

|E[I]| =
∣∣∣∣

t∑

τ=1

E[E[F (wτ , zτ )− φΠ(wτ )|Fτ−1]]

∣∣∣∣

≤
t∑

τ=1

E
[∣∣E[F (wτ , zτ )− φΠ(wτ )|Fτ−1]

∣∣
]

≤ 2F̄ ·
t∑

τ=1

E
[
‖P τ (· | z1:τ−1)−Π‖TV

]

≤ 2F̄ · sup
z1,...,zt

t∑

τ=1

‖P τ (· | z1:τ−1)−Π‖TV

= 2F̄ δt .

Next consider |E[II]|. The analysis goes through without the outer expectation.

Combining we get

ERt(w
∗
Π) = E[I + II + III] ≥ E[I + II] ≥ −

(
|E[I]|+ |E[II]|

)
≥ −4F̄ δt .

This completes the proof of Lemma 5.

D.3 Theorem Statements for Markov Case and Periodic Case

Results for other input types, CE(δ, ι) and CP(q), can be obtained by using more complicated regret
decompositions and conditioning arguments. We state the resulting convergence results here. The
proofs can be found in Appendix D.4 and Appendix D.5.
Theorem 8 (DA Convergence, Ergodic Case). For the input distribution P define the ι-step devia-
tion from Π for an integer 1 ≤ ι ≤ t− 1:

εt(ι) := sup
z1,...,zt

sup
τ=1,...,t−ι

‖P τ+ι(· | z1:τ )−Π‖TV .

Then, for all t ≥ 1 and any 1 ≤ ι ≤ t− 1,

E{zτ}t
τ=1∼P

[
‖wt+1 − w∗

Π‖22
]
≤
(
6 + log t

)
G2

σ2t
+

2
(
4F̄ εt(ι)t+ 2G2ι(log t+ 1) + 2ιF̄

)

σt
= Õ(εt(ι) + ι/t) .

Moreover, the rate Õ(εt(ι)+ι/t) applies to E
[
‖wt+1−w∗

γ‖22
]

and E
[
‖w∗

γ−w∗
Π‖22

]
by the deduction

in Appendix D.1.
Remark 4 (Comparison with EMD Duchi et al. (2012)). Now we specialize Theorem 8 to the setting
of Remark 1, and we briefly compare our result with the Ergodic Mirror Descent (EMD) results of
Duchi et al. (2012). EMD considers nonsmooth convex optimization problems of the form f∗ =
min

{
f(w) = EΠ[F (w; ξ)] |w ∈ W

}
for a closed convex set W . Differently from our setting, they
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do not assume strong convexity in f , and do not allow a composite term Ψ which is not linearized.
Assume the Markov chain that generates {zτ}tτ=1 are fast mixing with εt(ι) ≤ Mρι for some M > 0
and ρ ∈ [0, 1), then the EMD algorithm produces iterates that satisfy the following convergence
rate 3

E
[
f(wt+1)− f∗] = Õ

((
1 +

1

log(ρ−1)

)1/2

· 1√
t

)
.

As in Remark 1, for the same fast mixing Markov chain, we set ι = O
(

log t
log(ρ−1)

)
and εt(ι) = 1/t in

Theorem 8, we obtain the rate

E
[
‖wt+1 − w∗‖2

]
= Õ

((
1 +

1

log(ρ−1)

)
· 1
t

)
.

which is also the rate for E[f(wt+1)−f∗]. Both results characterize the dependence of convergence
rate on ρ, the mixing parameter of the Markov chain. However, our result exploits the strong convex-
ity of the optimization problem and achieves the faster rate 1/t, while also achieving convergence
in iterates rather than only in function values.
Theorem 9 (DA Convergence, Block-Independent Case). Fix an integer K ≥ 1. Let {1 = τ1 <
τ2 < . . . τK+1 = t} be an increasing subsequence of [t]. Using each two consecutive points,
form the interval Ik := [τk, τk+1 − 1]. Then P := {Ik}Kk=1 is a partition of [t]. Define by |Ik| :=
τk+1−τk ≥ 1 the length of the interval and |P|∞ := maxk |Ik| the maximum length of the intervals.
Associated with the input distribution P and the partition P define the block-wise deviation from Π
by

δb :=
1

t

K∑

k=1

|Ik| ·
∥∥∥∥Π− 1

|Ik|
∑

τ∈Ik

P τ

∥∥∥∥
TV

.

Assume {zτ}tτ=1 are block-wise independent according to the partition P . Then, for all t ≥ 1,

E{zτ}t
τ=1∼P

[
‖wt+1 − w∗

Π‖22
]
≤ (6 + log t)G2

σ2t
+

2
(
4F̄ · δbt+G2|P|2∞(log t+ 1)

)

σt
= Õ(δb + |P|2∞/t) . (26)

Moreover, the rate Õ(δb + |P|2∞/t) applies to E
[
‖wt+1 − w∗

γ‖22
]

and E
[
‖w∗

γ − w∗
Π‖22

]
by the

deduction in Appendix D.1.

Let us briefly we comment on the dependence on |P |∞. Suppose there are in total K blocks, each
of equal length |P|∞ = q, and blocks are i.i.d. We still allow arbitrary dependence within a block.
Moreover, we choose Π = P̄ in the definition of δb. This implies δb = 0 and then the rate in
Theorem 9 is q2/t.

Consider dual averaging with the knowledge of the block structure q. Then the rate 1/K = q/t can
be achieved by executing DA using one randomly chosen data point within a block, throwing away
the rest in that same block. Such selection produces K i.i.d. samples from P̄ . In comparison, the
rate in Eq. (26) is worse off by a factor of q due to not knowing the block-structure information.

D.4 Proofs for Markov Case

Now we consider data that are not necessarily independent across time. We restrict our attention to
ergodic processes, meaning data tend to be independent as they grow apart in time.

Define the ι-step deviation from stationarity

εt(ι) := sup
z1,...,zt

sup
τ=1,...,t−ι

‖P τ+ι(· | z1:τ )−Π‖TV .

3In Eq. (3.2) of Duchi et al. (2012), set κ1 = M and κ2 = 1/ log(ρ−1) and ignore the parameters
(G,D,κ1).

23



An equivalent quantity is the ε-mixing time Duchi et al. (2012)

ιmix(ε) := min
{
ι : 1 ≤ ι ≤ t− 1, sup

z1,...,zt
sup

τ=1,...,t−ι
‖P τ+ι(· | z1:τ )−Π‖TV ≤ ε

}
.

This means, no matter where and when we start the process, it takes only ι steps to get εt(ι)-close
to the stationary distribution Π. One could expect the deviation εt(ι) decreases as ι increases. This
makes sense because for large ι, the process has run long enough to reach stationarity.
Theorem 10 (Mixing Data, Restatement of Theorem 8). It holds for all t ≥ 1 and any 1 ≤ ι ≤ t−1,

E
[
‖wt+1 − w∗

Π‖22
]
= O

( log t
σ2t

+
ι log t

σt
+ εt(ι)/σ

)
, (27)

where O(·) hides dependence on constants, G and F̄ . Here there is a trade-off in ι in the last two
terms.

Proof of Theorem 10 We use the proof in Duchi et al. (2012); see Eq. (6.2) in the paper. Decompose
Rt(w∗

Π) as follows.

Rt(w
∗
Π) =

t−ι∑

τ=1

((
F (wτ , zτ+ι)− F (w∗

Π, zτ+ι)
)
−
(
φΠ(wτ )− φΠ(w

∗
Π)
))

(A)

+
t−ι∑

τ=1

(
F (wτ+ι, zτ+ι)− F (wτ , zτ+ι)

)
(B)

+
t−ι∑

τ=1

(
φΠ(wτ )− φΠ(w

∗
Π)
)

(C)

+
ι∑

τ=1

(
F (wτ , zτ )− F (w∗

Π, zτ )
)
. (D)

By optimality of w∗
Π we have C ≥ 0. By boundedness of F we get |D| ≤ 2ιF̄ . Remains to handle

A and B. We will show
" A ≤ εt(ι)t, B ≤ ι " .

Bounding A. The key is zτ+ι is almost independent of Fτ−1 if ι is moderately large. For each τ ,

|E[F (wτ , zτ+ι)− φΠ(wτ )]|
= |E[E[F (wτ , zτ+ι)− φΠ(wτ )|Fτ−1]]|

=

∣∣∣∣∣E
[
E
[∫

Z
F (wτ , z)P

τ+ι(dz | z1:τ−1)−
∫

Z
F (wτ , z)Π(dz)|Fτ−1

]]∣∣∣∣∣ (Key)

≤ E
[
E
[∣∣∣
∫

Z
F (wτ , z)P

τ+ι(dz | z1:τ−1)−
∫

Z
F (wτ , z)Π(dz)

∣∣∣|Fτ−1

]]

≤ 2F̄ · E
[
‖P τ+ι(· | z1:τ−1)−Π‖TV

]

≤ 2F̄ · sup
z1,...,zτ−1

‖P τ+ι(· | z1:τ−1)−Π‖TV ≤ 2F̄ εt(ι) .

Analysis for |E[F (w∗
Π, zτ+ι)− φΠ(w∗

Π)]| is almost identical. Next sum over τ = 1, . . . , t− ι.

|E[A]| ≤ 4F̄ εt(ι) · t .

Bounding B. The change in F by ι steps of updates, starting from wτ , is controlled by c · ιG · 1
τ

where 1/τ acting like a stepsize.
Lemma 6. Let ΠΨ,W(g) := argminw∈W{〈g, w〉+Ψ(w)}. If Ψ is σ-strongly convex, then

‖ΠΨ,W(g)−ΠΨ,W(g′)‖ ≤ (1/σ)‖g − g′‖∗ .
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Proof. See (Nesterov, 2003, Lemma 6.1.2).

Noting wτ+1 = ΠΨ,W(ḡτ ) and wτ = ΠΨ,W(ḡτ−1), Lemma 6 gives

‖wτ+1 − wτ‖ ≤ ‖ḡτ − ḡτ−1‖∗/σ = ‖ḡτ−1 − gτ‖∗/(τσ) ≤ 2G/(τσ) . (28)

It holds Π-a.s. that for each τ , the map w 1→ F (w, zτ+ι) is Lipschitz with parameter G.

|E[F (wτ+ι, zτ+ι)− F (wτ , zτ+ι)]| ≤ G · E
[
‖wτ+ι − wτ‖

]

≤ G ·
τ+ι−1∑

t′=τ

E
[
‖wt′+1 − wt′‖

]

≤ G ·
τ+ι−1∑

t′=τ

2G/(σt′)

≤ G ·
τ+ι−1∑

t′=τ

2G/(στ) = 2G2ι/τ .

Summing over τ = 1, . . . , t− ι, we get

|E[B]| ≤ 2G2ι(log t+ 1) .

Putting together,

E[Rt(w
∗
Π)] = E[A + B + C+D]

≥ E[A + B +D]

≥ −
(
|E[A]|+ |E[B]|+ |E[D]|

)

≥ −(4F̄ εt(ι)t+ 2G2ι(log t+ 1) + 2ιF̄ ) ,

and

E[‖wt+1 − w‖2] ≤ 1

σt

(
E[∆t]− E[Rt(w

∗
Π)]
)

≤
(
6 + log t

)
G2

σ2t
+

2
(
4F̄ εt(ι)t+ 2G2ι(log t+ 1) + 2ιF̄

)

σt
. (29)

We complete the proof of Theorem 10.

D.5 Proofs for Periodic Case

Assume {zτ}tτ=1 are block-wise independent according to the partition P . Given the partition P ,
define

δblockt :=
K∑

k=1

|Ik| ·

∥∥∥∥∥Π− 1

|Ik|
∑

τ∈Ik

P τ

∥∥∥∥∥
TV

.

Note we compute the deviation in a block-wise manner. Note δblockt = t · δb with δb defined in
Theorem 9.
Theorem 11 (Block-wise Independent Data, Restatement of Theorem 9). It holds

E
[
‖wt+1 − w∗

Π‖22
]
= O

(
log t

σ2t
+

|P|2∞ log t

σt
+

δblockt

σt

)
, (30)

where O(·) hides dependence on constants, G and F̄ .

Generally, compared with δt defined in Eq. (23), our new notion of deviation can be much smaller
for block-structured data. This is especially true when each block of data, as a whole, forms a good
estimate of Π, but each data point in the block deviates from Π by a constant amount. The periodic
case in Remark 7 examplifies this.
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Remark 5 (Extreme 1: Recover Independent Case). Setting |P|∞ = 1 and δblockt = δt in Eq. (23)
we recover the usual rate under independence assumption (Theorem 7).

Remark 6 (Extreme 2: Fail to Recover Arbitrary Distribution Case). If we allow arbitrary depen-
dence in the whole sequence γ = {zτ}tτ=1, then we can only set |P|∞ = t and the bound is useless.

Remark 7 (The Gain from Block Structure). Although Theorem 7 applies to block-structure data,
we obtain significant improvement in Theorem 11.

Consider the periodic case where each block is of length q and blocks are i.i.d. At the start of block
Ik, we draw a sample from Π, i.e., ztk ∼ Π, and then let rest of the zτ ’s in that block equal ztk . In
this case δblockt = 0 because the marginal of every zτ is exactly Π. Then the bound in Theorem 11
becomes

q2 log t

t
, (31)

which converges to zero at the rate q2/t. However, the bound in Theorem 7 fails to converge. To
see this let us estimate δt in Eq. (23). Consider some τ in the interval Ik. If τ 2= tk, then the
conditional distribution P τ (· | z1:τ−1) is a point mass on ztk . If τ = tk then P τ (· | z1:τ−1) = Π.
Let c = supz ‖δz −Π‖TV. The quantity c is positive unless Π is a point mass. Then

δt = sup
z1,...,zt

K∑

k=1

∑

τ∈Ik

‖P τ (· | z1:τ−1)−Π‖TV = sup
z1,...,zt

K∑

k=1

(q − 1)‖δztk −Π‖TV = K(q − 1)c ,

and then Theorem 7 becomes

log t

t
+ c → c .

Proof of Theorem 11

We decompose the regret by blocks.

Rt(w
∗
Π) =

K∑

k=1

∑

τ∈Ik

(
F (wτ , zτ )− φΠ(wτk)

)
+

t∑

τ=1

(
φΠ(w

∗
Π)− F (w∗

Π, zτ )
)

(32)

+
K∑

k=1

∑

τ∈Ik

(
φΠ(wτk)− φΠ(w

∗
Π)
)
. (33)

Rewrite the first sum by adding and then subtracting the term
∑K

k=1

∑
τ∈Ik

F (wτk , zτ ).

K∑

k=1

∑

τ∈Ik

(
F (wτ , zτ )− φΠ(wτk)

)

=
K∑

k=1

(
∑

τ∈Ik

(
F (wτ , zτ )− F (wτk , zτ )

)

:=Bk

)
(I)

+
K∑

k=1

(
∑

τ∈Ik

(
F (wτk , zτ )− φΠ(wτk)

)

:=Ak

)
. (II)
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Bounding Ak. Use a conditioning argument. The key is, conditional on Fτk−1, the iterate wτk is
deterministic and the distribution of zτ is P τ due to block-wise independence.

|E[Ak]| =

∣∣∣∣∣
∑

τ∈Ik

E[E[F (wτk , zτ )− φΠ(wτk)|Fτk−1]]

∣∣∣∣∣

≤ E
[∣∣∣∣
∑

τ∈Ik

E[F (wτk , zτ )− φΠ(wτk)|Fτk−1]

∣∣∣∣

]

= E
[∣∣∣∣
∑

τ∈Ik

∫

Z
F (wτk , z)P

τ (dz)−
∫

Z
F (wτk , z)Π(dz)

∣∣∣∣

]

≤ 2F̄ ·
∥∥∥∥
∑

τ∈Ik

(
P τ −Π

)∥∥∥∥
TV

.

Then sum over k = 1, . . . ,K, and we have

∣∣E[I]
∣∣ ≤

K∑

k=1

∣∣E[Ak]
∣∣ ≤ 2F̄ ·

K∑

k=1

∥∥∥∥
∑

τ∈Ik

(P τ −Π)

∥∥∥∥
TV

≤ 2F̄ δblockt .

Bounding Bk. Using Lemma 6 and Eq. (28), we have

|E[Bk]| ≤ G ·
∑

τ∈Ik

E
[
‖wτ − wτk‖

]

≤ G ·
∑

τ∈Ik

G(τ − τk)/τk

≤ G ·
∑

τ∈Ik

G(τk+1 − τk)/τk

= G2(τk+1 − τk)
2/τk ≤ G2|P|2∞/τk .

Then sum over k = 1, . . . ,K, and we have

∣∣E[II]
∣∣ ≤

K∑

k=1

∣∣E[Bk]
∣∣ = G2|P|2∞ ·

K∑

k=1

1

τk
≤ G2|P|2∞ ·

t∑

τ=1

1

τ
≤ G2|P|2∞(log t+ 1) .

It can be shown the second sum in the regret decomposition (Eq. (32)) is upper bounded by 2F̄ δblockt .
The third sum is ≥ 0. Using Lemma 1 we get

E[‖wt+1 − w‖2] ≤ 1

σt

(
E[∆t]− E[Rt(w

∗
Π)]
)
≤ (6 + log t)G2

σ2t
+

2
(
4F̄ δblockt +G2|P|2∞(log t+ 1)

)

σt
.

(34)

We complete the proof of Theorem 11.

E Proofs for PACE

E.1 Proof of Theorem 5 and Theorem 6

We show convergence of β under different input assumption. Recall βt is the pacing multiplier
generated by PACE, and β∗ is the solution to the optimization problem Eq. (4). The vector γ is the
sequence of items.
Theorem 12 (Restatement of Theorem 5 and Theorem 6). For the independent case, i.e., γ ∼ Q
and Q ∈ CID(δ), it holds for t ≥ 1

E[‖βt+1 − β∗‖2] ≤ (6 + log t)G2

σ2t
+

8F̄

σ
δ . (35)
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and for t ≥ 3,

1

t

t∑

τ=1

E[‖βτ − β∗‖2] ≤ G2

σ2

(
6(1 + log t) +

(log t)2

2

)
+ (8F̄ /σ) · δ . (36)

For the erogdic case, i.e., γ ∼ Q and Q ∈ CE(δ, ι), it holds for t ≥ 1,

E[‖βt+1 − β∗‖2] ≤
(
6 + log t

)
G2

σ2t
+

2
(
4F̄ δt+ 2G2ι(log t+ 1) + 2ιF̄

)

σt
= Õ

(
δ +

ι

t

)
. (37)

and for t ≥ 3,

1

t

t∑

τ=1

E[‖βτ − β∗‖2] = Õ

(
δ +

ι

t

)
. (38)

For the periodic case, i.e., γ ∼ Q and Q ∈ CP(q), it holds for t ≥ 1

E[‖βt+1 − β∗‖2] ≤ (6 + log t)G2

σ2t
+

2G2q2(log t+ 1)

σt
= Õ(q2/t) . (39)

and for t ≥ 3,

1

t

t∑

τ=1

E[‖βτ − β∗‖2] = Õ(q2/t) . (40)

Proof of Theorem 12. Set σ = 1/n and G = F̄ = |v|∞. Eq. (35) follows by Theorem 7 and
specifically Eq. (25). The next inequality Eq. (36) follows by (Xiao, 2010, Corollary 4): for t ≥ 3,

1

t

t∑

τ=1

(6 + log τ)G2

τσ2
≤ 1

t

(
6(1 + log t) +

(log t)2

2

)
G2

σ2
.

Eq. (37) follows by Theorem 10 and specifically Eq. (29). Following (Xiao, 2010, Corollary 4), we
have for t ≥ 3,
t∑

τ=1

E[‖βτ − β∗‖2]

≤ G2

σ2

(
6(1 + log t) +

(log t)2

2

)
+ 8F̄ · δt+ 4G2

σ

(
6(1 + log t) +

(log t)2

2

)
+

4F̄

σ
(1 + log t) · ι

= Õ(δt+ ι) ,

and thus Eq. (38) holds.

The inequality Eq. (39) follows from Theorem 11 and specifically Eq. (34). For the inequality
Eq. (40), apply the same strategy: for t ≥ 3,

t∑

τ=1

E[‖βτ − β∗‖2]

≤ G2

σ2

(
6(1 + log t) +

(log t)2

2

)
+

2G2

σ2

(
6(1 + log t) +

(log t)2

2

)
· q2 = Õ(q2) .

E.2 Proof of Lemma 3 and Lemma 4

Proof of Lemma 3

Lemma 3 follows from (Gao et al., 2021, Theorem 3 and 4).

Proof of Lemma 4
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Define the hindsight average equilibrium utility uγ
i := (1/t) · Uγ

i . Although results in Gao et al.
(2021) were stated for i.i.d. case, the proof in fact goes through for nonstationary input distributions.

Bounding E[‖ūt − uγ‖2]. For the first inequality we use the proof of (Gao et al., 2021, Theorem 6).
Follow that paper, we define rti = max{0, ūt

i − uγ
i }. In Theorem 6 the authors show

E[(rti)2] ≤ Cr,1 · E[‖βt+1 − β∗‖2] + Cr,2 ·
(
1

t

t∑

τ=1

E[‖βτ − β∗‖2]
)

.

In particular, the constant Cr,1 comes from the constant C in (Gao et al., 2021, Theorem 4) and Cr,2

comes from (Gao et al., 2021, Equation (11))

Bounding Regi,t. Note Regi,t = t · (uγ
i − ūt

i) ≤ t · rti . Then we use Cauchy-Schwarz.

E
[
Regi,t

]
≤ tE[rti ] ≤ t

√
E[(rti)2] .

Bounding Envyi,t. For the second inequality we use the proof of Theorem 6 in the same paper.
Following that paper, we define

ρti = (n/t) · max
k∈[n]

{
〈vi(γ), xk〉 − 〈vi(γ), xi〉

}
.

During the course of proving Theorem 6, the authors show

E[(ρti)2] ≤ n2

(
Ce,1 · E[‖βt+1 − β∗‖2] + Ce,2 ·

(1
t

t∑

τ=1

E[‖βτ − β∗‖2]
))

.

In particular, the constant Ce,1 comes from (Gao et al., 2021, Theorem 4, Equations (5) and (13))
and Ce,2 comes from (Gao et al., 2021, Equations (5), (13) and (15))

Then using Cauchy-Schwarz,

E
[
Envyi,t(γ)

]
= E

[
(t/n) · ρti

]
≤ (t/n)

√
E
[
(ρti)

2
]
.

This completes the proof of Lemma 4.

F Experiments

We conduct experiments on a market (a matrix of buyers’ valuations on items) generated from the
MovieLens dataset (Harper and Konstan, 2016) with n = 100 buyers and m = 300 items. The
process of turning the MovieLens dataset into the market instance is described in Kroer et al. (2021).
Here, we briefly describe the experiment settings. For more details on the experiment settings as
well as all code and data to replicate the results, please refer to the Supplementary Material.

We generate item arrivals from the following data input models:

• i.i.d.: Every item θt ∈ [m] is sampled independently from a fixed distribution s0 ∈ ∆m (an
m-dimensional probability vector).

• Mild corruption: θt ∼ st, where st ∈ ∆m is a distribution such that ‖st − s0‖1 = Θ(1/t)
for all t. Here, st is generated by randomly perturbing each coordinate of s0 followed by
normalization.

• Markov: (θt)t≥1 is sampled from an irreducible Markov chain starting from an initial
distribution s0. It is a special case of ergodic input. Here, the Markov chain is given by
a m ×m transition matrix (each row sums to 1), which we generated randomly (and row-
wise normalized). In this case, the “reference” item arrival distribution is the stationary
distribution of this Markov chain which is in general different from the initial distribution.

• Periodic: The period length is - = 100. Let (sk)k∈[$] be a set of distributions (probability
vectors). Here, each sk is sampled randomly and normalized. The item arrivals of each
period is generated by sampling from each sk followed by a random permutation over the
- sampled items.
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Figure 1: Performance of PACE for item arrivals under different data input models. All error
measures are averaged across 10 repeated experiments. The mean and standard errors of the error
measures are plotted, where the standard error bars are too small and hence invisible. Here, ūbaseline

i
are the buyers’ time-averaged utilities under a “proportional-share” baseline solution.

For each (fixed) data input model, we generate 10 sample paths of item arrivals and run PACE
for T = 200n = 20000 time steps on each sample path. Then, we measure the convergence
of the pacing multipliers and time-averaged cumulative utilities to their hindsight equilibrium val-
ues. More specifically, we record the following relative differences: maxi{|βt

i − βHS
i |/βHS

i } and
maxi{|ūt

i − uHS
i |/uHS

i }, where HS denote the hindsight equilibrium values of the “sample-path”
market determined by the realized item arrivals. Equivalently, uHS and βHS are optimal solutions
of the hindsight convex programs (1) and (2), respectively. We also measure the performance of a
proportional-share baseline solution that divides each arriving item among all buyers proportionally
w.r.t. their budgets: for an arrived item θt, each buyer i gets Bi amount of it and receives utility
Bivi(θt) (in this paper, the buyers’ budgets are Bi = 1/n for all i). We compute the means and
standard errors of the error measures across the 10 sample paths and plot them in Figure 1.

As can be seen, for all data input models, the pacing multipliers and buyers’ time-averaged utilities
converge to their respective hindsight values and quickly outperform the baseline proportional-share
solution. Similar convergence behavior can also be observed when the error metrics are w.r.t. to the
true equilibrium values β∗, u∗ instead of the hindsight values.

We further conduct the following experiment to demonstrate the effect of nonstationarity on pacing
multiplier convergence. More specifically, we generate 10 sample paths from each of the following
item arrival settings: i.i.d. distributions (θt ∼i.i.d. s), perturbed distributions (small δ), perturbed
distributions (large δ), where δ is the overall difference between the sequences of i.i.d. distributions
and perturbed distributions, as in (??). We then run PACE on each sample path to obtain βt

i and
ūt
i values. For each setting and each time step, we plot mean values and standard error bars of

the relative error metrics, where β∗
i and u∗

i are the equilibrium pacing multipliers (utility prices)
and utilities of the market with supplies being the distribution s. As can be seen, for perturbed
distribution settings, PACE is able to bring βt and ūt

i close to their equilibrium values, while the
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Figure 2: Convergence of pacing multipliers βt and cumulative utilities ūt
i under i.i.d. and perturbed

distributions

convergence degrade as the perturbation amount δ increases. Recall that, in terms of cumulative
utility, the proportional-share baseline solution gives a relative error of around 0.45.
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