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The appendix is organized into 4 sections as follows:

1. Appendix A derives the Volterra equation and proves the main concentration for the dynamics
of SGD+M (Theorem 1).

2. We show in Appendix B that the error terms associated with concentration of measure on
the high-dimensional orthogonal group disappear in the large-n limit.

3. Appendix C derives main results including Proposition 3 and speed up of convergence rate
of SGD+M (Proposition 5) in the large batch regime, as well as the lower bound convergence
rate in the small batch regime (Proposition 6). We also provide a proof of Proposition 7 in
this section.

4. Appendix D contains details on the numerical simulations.

Potential societal impacts. The results presented in this paper concern the analysis of existing
methods on a simple least squares problems. The results are theoretical and we do not anticipate any
direct ethical and societal issues. We believe the results will be used by machine learning practitioners
and we encourage them to use it to build a more just, prosperous world.

Notation. In this paper, we adhere whenever possible to the following notation. We denote vectors
in lowercase boldface (x) and matrices in upper boldface (A). The entries of a vector (or matrix)
are denoted by subscripts. Unless otherwise specified, the norm k · k2 is taken to be the standard
Euclidean norm if it is applied to a vector and the operator 2-norm if it is applied to a matrix. For
a matrix A and a vector b, we denote constants depending on A and b, C(A, b), as those bounded
by an absolute constant multiplied by kAk and kbk. We say an event B holds with overwhelming

probability (w.o.p.) if, for every fixed D > 0, Pr(B) � 1� CDd
�D for some CD independent of d.

Lastly, for n 2 N, [n] denotes the set of natural numbers up to n, i.e., [n] def
= {1, 2, · · · , n}.

A Derivation of the dynamics of SGD+M

In this section, we establish the fundamental of the proof of Theorem 1. Let us state the theorem in
full detail first.
Theorem 3 (Theorem 1, detailed version). Suppose Assumptions 1.1 and 1.2 hold with the learning

rate � <
1+�
⇣�2

max
and the batch size satisfies �/n = ⇣ for some ⇣ > 0. Let the constant T 2 N. Then

there exists C > 0 such that for any c > 0, there exists D > 0 satisfying

Pr


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|f(xt)�  (t)| > n

�C

�
 Dn

�c
, (28)

for sufficiently large n 2 N. xt are the iterates of SGD+M and the function  is the solution to the

Volterra equation
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where for k = 0, 1,
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Here ⌦j ,�2,j ,�3,j ,2,j ,3,j , j 2 [n] are defined as

⌦j = 1� �⇣�
2
j
+�, 2,j =

�2,j⌦j

�2,j +�
, 3,j =

�3,j⌦j

�3,j +�
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j
+
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(⌦2

j
� 4�)

2
, �3,j =

�2�+ ⌦2
j
�

q
⌦2

j
(⌦2

j
� 4�)

2
.

A.1 Change of basis

Consider the singular value decomposition of A = U⌃V
T , where U and V are orthogonal matrices,

i.e. V V
T = V

T
V = I and ⌃ is the n⇥d singular value matrix with diagonal entries diag(�j), j =

1, . . . , n (in the case n > d, we extend the set of singular values so that �d+1 = · · · = �n = 0). We
define the spectral weight vector ⌫k

def
= V

T (xk � ex), which therefore evolves like

⌫k+1 = ⌫k � �⌃T
U

T
Pk(U⌃⌫k � ⌘) +�(⌫k � ⌫k�1). (30)

Moreover, we can define
wk := ⌃⌫k �U

T
⌘, (31)

so that
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2
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T
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2
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w
2
t,j
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Then (30) can be translated as

wk+1 = wk � �⌃⌃T
U

T
PkUwk +�(wk �wk�1). (33)

From this point, we focus on the evolution of w rather than the iterates x.

A.2 Evolution of f

Now we would like to demonstrate the recurrence relation of wk and eventually that of f(t), which
will lead to a Volterra equation and error terms in a large scale. First, for j 2 [n] and t 2 N, (33)
implies that

wt+1,j = wt,j � ��
2
j

X

l

wt,l(
X

i2Bt

UijUil) +�(wt,j � wt�1,j), (34)

where Bt = B denotes a randomly chosen mini-batch at the t-th iteration, whose size is given by
�  n. We interchangeably use the notation of Bt and B, because it is independently chosen at each
iteration. By taking squares on both sides, we have
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Now let us denote the following error caused by mini-batching, i.e.,

E
(l,j)
B
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=
X

i2B

UilUij �
�

n
�l,j . (35)

where �l,j is the Kronecker-delta symbol, meaning

For l, j 2 [n], �l,j = 1 if l = j, and 0 otherwise.
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Then the iteration on w
2
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When it comes to 1�, we can decompose it into its expectation over the mini-batch B and the error
generated by it. By applying the technique from [27, Lemma 8], we have
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Note that E(j)
beta

(t) is generated by the error between �(� � 1)/(n(n� 1)) and ⇣2 = �
2
/n

2, whereas
E
(j)
KL

(t) is generated by the replacement of U
2
ij

by 1/n; In Appendix B, we establish that this
error can be bounded by the Key Lemma (this is where the acronym “KL” comes from). Let
E
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where
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(t)
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where ⌦j
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Let us rewrite (38) as
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The eigendecomposition of Mj is given by Mj = Xj⇤jX
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• 2
i,j

= �i,j and i,j =
p
�i,j when ⌦j � 0,
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Simple algebra shows 1 � �j � 3,j = (⌦j � �) � (⌦j � 2,j) = � � 2,j , and similarly,
1� �j � 2,j = �� 3,j . Hence, we conclude that
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Also, the error term E(t) is defined as

E(t)
def
= EIC(t) + Ebeta(t) + EKL(t) + EM (t), (42)
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where
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A few comments on the naming of errors: IC in EIC(t) stands for initial condition. This error is
generated from the initial bias on w

2
0,j . On the other hand, M in EM (t) stands for Martingale; the

error is an accumulation of martingales over each time iteration. We deal with these errors in detail
in following sections. And note that Theorem 3 can be proved once we control the error E(t) with

overwhelming probability.

B Estimates based on concentration of measure on the high–dimensional

orthogonal group

In this section, we give a high-level overview of the errors and how to bound them with overwhelming
probability. Recall that we have the following error pieces:

E(t)
def
= EIC(t) + Ebeta(t) + EKL(t) + EM (t). (43)

In order to bound the errors, we follow the methods that are used in [27]: we would like to make an a

priori estimate that shows the function values remain bounded. Thus, we define the stopping time,
for any fixed ✓ > 0 and large enough n 2 N, by

#
def
= inf

�
t � 0 : kwtk(= kU⌃⌫t � ⌘k) > n

✓
 
.

We then need to show:
Lemma 1. For any ✓ > 0, and for any T > 0, # > T with overwhelming probability.

Proof. From (33), we have

wk+1 =
�
(1 +�)In � �⌃⌃T

U
T
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�
wk ��wk�1,

where In denotes an identity matrix of dimension n⇥ n. Therefore, by taking norm on both sides
and applying triangle inequality, we have
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�
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�
kwkk+�kwk�1k.

Let C := 1+2�+�k⌃k
2
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l
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2
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k
n
✏
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n
✏
,

and this finishes the proof once we check the initial conditions, i.e., kw0k, kw1k are small enough
with overwhelming probability. Observe, for any ✏ > 0 and sufficiently large n,
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w.o.p. by assumption 1.1. Similarly, w1 is generated by the following formula

w1 =
�
In � �⌃⌃T

U
T
PkU

�
w0,

and applying norm on both sides gives

kw1k  (1 + ��
2
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2
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✏
 Cn

✏
.

We will need the result in what follows. Also, as an input, we work with the stopped process defined
for any t � 0 by w

#

t

def
= wt^#. Moreover, we condition on ⌃ going forward.

B.1 Control of the errors from the Initial Conditions

In this section, we focus on controlling the errors generated by the initial conditions:
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The next Proposition shows that the error EIC(t) can be bounded w.o.p.
Proposition 8. For any T > 0 and for any ✏ > 0, with overwhelming probability,

max
0tT

|EIC(t)|  n
✏�1/2

.

Proof. The proof is similar to that of [27, Lemma 10]. We rely on Chebyshev’s inequality and the
law of total probability to control the error. Fix t 2 [T ] and let
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and
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so that EIC(t) = W (t) � E[W (t)]. From [27, Lemma 10], we know that the vector ⌫2
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the Dirichlet distribution (recall ⌫k = V
T (xk � ex)), and in particular, E(⌫40,j)  O(n�2) leads to
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where the Cauchy-Schwarz inequality was used in the second last line. Therefore, for ✏ > 0,
Chebyshev inequality gives
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Now applying the law of total probability (over t = 1, · · · , T ) to this gives the claim.

B.2 Control of the beta errors

In this section, we control the errors generated by the difference of �(��1)
n(n�1) and ⇣2 = (�

n
)2. For
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First of all, note that

�
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n
·
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n(n� 1)
=
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n� 1
= O(n�1).

Then we can show the following:
Proposition 9. For any T > 0 and for any ✏ > 0, with overwhelming probability,

max
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Then C
(j)(t, k), j 2 [n] are uniformly bounded by our assumptions, and we have
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Now Lemma 1 (boundedness on the norm of wt) and Lemma 3 (uniform boundedness on the
coordinates of Uwt) gives

Ebeta(t ^ #)  C�
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t
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�
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for some C > 0, which shows our claim.

B.3 Control of the Key lemma errors

In this section, we show that EKL(t) can be bounded with overwhelming probability. The following
Key Lemma from [27, Lemma 14] will be useful in the following:
Lemma 2 (Key Lemma). For any T > 0 and for any ✏ > 0, for some {C
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Given this lemma, combined with the Key Lemma, we can bound the error EKL(t) with overwhelming
probability.
Proposition 10. For any T > 0 and for any ✏ > 0, with overwhelming probability,
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.

Proof. By definition, we have
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Thus for a sufficiently small ✏̃ > 0 and some C > 0, and by applying Lemma 2 and Lemma 1,
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B.4 Control of the Martingale error

In this section, we bound the error caused by Martingale terms. Recall that
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Then it is easy to see that controlling these two terms will lead to the control of the entire Martingale
error. Control of EB,2(t), which can be defined similarly to EB,1(t), can be done with exactly the
same as that of EB,1(t). As for the second term of EM (t) which includes E(j)

2 (t), our analysis will
show that the coefficients won’t play an important rule in the control of the error; so that term can be
controlled for the same reason as EB,1(t).

We organize the proof as follows. First, we introduce a proposition from [5] that gives an overwhelm-
ing probability concentration for sampling with replacement. Also, we claim that {Uwt}, t 2 [T ^#]
is uniformly distributed with overwhelming probability over different coordinates. This lemma will
lead to bounding the “first-order” error EB,1(t) (similarly for EB,2(t)). As for bounding the “second-
order” error EB2(t), we will use the Hanson-Wright inequality for sampling without replacement
[1].

B.4.1 Control of EB,1(t)

The Martinagle error originates from randomly sampling a mini-batch at every iteration. We begin by
presenting the following Bernstein-type concentration result for sampling without replacement so
that we see that randomness does not deviate too much from the “expectation”.
Proposition 11 (Proposition 1.4, [5]). Let X = (x1, · · · , xn) be a finite population of n points and

X1, · · · , X� be a random sample drawn without replacement from X . Let
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Now we can show that Uwt is more or less uniformly distributed over coordinates.
Lemma 3. maxk |(Uw

#

t
)k| = O(n↵�1/2) with overwhelming probability for some 1/4 > ↵ > ✏.

Proof. We show a more general result, which is
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where ⌃m = diag(�2
1 , · · · ,�
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Now observe,
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When i 6= k, by referring to [27, Lemma 25],
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where the concentration with overwhelming probability is attained for t = n
�3/2+↵

0(t)
,↵

0(t) >

↵(t) > ✓ + ✏, and therefore
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�X
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X
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!
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.

So applying this to (45) gives
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for some C
(k,m)

> 0. Now taking maximum on k and m gives

MB
(t+1)



⇣
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k,m

C
(k,m)

⌘
O(n�1/2+↵

0(t)) = O(n�1/2+↵(t+1)) w.o.p.,

for some ↵(t+ 1) > ↵
0(t). Now once we show that the initial value MB

(0) is small enough, by the
induction hypothesis, we prove the theorem. Note that as n ! 1, we can always make the increment
↵(t+ 1)� ↵(t), t 2 [T ^ #� 1] small enough so that ↵(T ^ #) < 1/4.

Now it suffices to check the initial condition, i.e., MB
(0) is small enough:

Claim. MB
(0) = maxk maxm |B

(0)
k,m

| = O(n↵(0)�1/2) w.o.p., ↵(0) > ✓ + ✏.

First note that w0,j = �j⌫0,j � (UT
⌘)j ,⌫t = V

T (xt � x̃). Therefore
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�
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Ukj(
X

l2[n]

Ulj⌘l)

| {z }
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= 2�

.

We first show that Bk,m = B
(0)
k,m

for a fixed k and m attains the desired error order. As for 1�, we

show that fm(Uk)
def
= 1� is a Lipschitz function on S

n�1: observe, for Uk,U
0
k
2 S

n�1,
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k
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vuut
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⌫
2
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0
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k2,

for some C > 0. Therefore, the concentration result for Lipschitz function ([34, Ex 5.1.12]) gives
Pr{|fm(Uk)� Efm(Uk)| � t}  2 exp(�cnt

2),

and the overwhelming probability concentration is attained for t = n
�1/2+✏, ✏ > 0.

As for 2�, observe that

2� =
nX

j=1

gj(t)(a
T
U)j(b

T
U)j ,

where gj(t) = 1 for 1  j  m and 0 otherwise, a = ek, and b = ⌘. Given ⌘ fixed, we have
E⌘[ 2�|⌘] = m

n
⌘k. Therefore, by [27, Lemma 25], 2� = m

n
⌘k +O(n✏�1/2) w.o.p. As maxk |⌘k| 

n
✏�1/2 w.o.p. (f(x) = maxi |xi|, x 2 S

n�1 is a Lipschitz function on S
n�1 with Lipschitz constant

1), we conclude that 2� = O(n✏�1/2) w.o.p. Therefore B
(0)
k,m

= O(n↵(0)�1/2) w.o.p. for arbitrarily
small enough ✏+ ✓ < ↵(0) < 1/4 and taking maximum over k and m shows our claim.

Above lemma leads to the control of EB,1(t). Note that control of EB,2(t) can be done very similarly
to EB,1(t).
Proposition 12 (Error bound for EB,1(t)).

max
0tT^#

|EB,1(t)| = O(n↵
0�1/2) w.o.p.,

where 1/2 > ↵
0
> ↵, with ↵ from Lemma 3.

Proof. Our strategy is to apply Proposition 11 as well as Lemma 3. Recall that
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where C
(j)(t, k)
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= 1
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j�4�

(�� · �
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In order to determine its order, note that
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where ⌃C

def
= diag{C(j)(t, k)}j2[n]. By applying Lemma 3, we have with overwhelming probability
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Now Proposition 11 gives
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where, by using Cauchy-Schwarz’s inequality and applying Lemma 3 again,
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So by applying the same argument used in Proposition 11, and applying the union bound, we have

P (|EB,1(t)| � ✏̃)  T · P
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,

for c = 1/t and any 1/2 > ↵
0(t) > ↵(t) + ✓. Note that ✓ can be taken as small as possible. Now

taking maximum over t, 0  t  T ^ #, t 2 N, gives the claim, with ↵0 def
= ↵

0(T ^ #).

B.4.2 Control of E
(j)
B2 (t)

This section deals with controlling the error E(j)
B2 (t). Recall that
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where ⌃C

def
= diag{C(j)(t, k)}j2[n]. Let Xk

def
= Pk(Uwk) and D

def
= U⌃CU

T . Note that, for a
fixed time t and k, and conditioned on U , D is a fixed symmetric matrix and Xk has a randomness
only depending on Pk. Therefore, our error EB2(t) can be expressed as

EB2(t) =
tX

k=0

�
X

T

k
DXk � E[XT

k
DXk|Fk]

�
. (46)

As we did in the previous section, in view of union bounds, it suffices to impose bounds on each
summand of (46) at k = 0, · · · , t. In order to have the Hanson-Wright type concentration for our
expression, we introduce the concept of Convex concentration property.
Definition 1 (Convex concentration property, [1]). Let X be a random vector in Rn

. We will say that

X has the convex concentration property with constant K if for every 1�Lipschitz convex function

' : Rn
! R. we have E['(X)] < 1 and for every t > 0,

Pr(|'(X)� E'(X)| � t)  2 exp(�t
2
/K

2).

Remark 2. By a simple scaling, the previous remark can extend to x1, · · · , xn 2 [a, b], in which

case K in the definition above will be replaced by K(b� a).

What is interesting for us is that vectors obtained via sampling without replacement follow the convex
concentration property ([1, Remark 2.3]). More precisely, if x1, · · · , xn 2 [0, 1] and for m  n the
random vector X = (X1, · · · , Xm) is obtained by sampling without replacement m numbers from
the set {x1, · · · , xn}, then X satisfies the convex concentration property with an absolute constant
K. In this sense, the following lemma ([1, Theorem 2.5]) will be useful to us.
Lemma 4 (Hanson-Wright concentration for sampling without replacement). Let X be a mean zero

random vector in Rn
. If X has the convex concentration property with constant K, then for any

n⇥ n matrix A and every t > 0,

P(|XT
AX � EXT

AX| � t)  2 exp

✓
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C
min

✓
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2K4kAk2
HS

,
t

K2kAk

◆◆
,

for some universal constant C.

Remark 3. The assumption that X is centered is introduced just to simplify the statement of the

theorem. Note that if X has the convex concentration property with constant K, then so does

X̃ = X � EX . Moreover, observe,

X
T
AX = (X̃+EX)TA(X̃+EX) = X̃

T
AX+X̃

T
A(EX)+(EX)TAX+(EX)TA(EX),

and this implies

P (|XT
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◆
.

Finally, we can bound the error EB2(t) using Lemma 4.
Proposition 13. For any ✏ > 0, we have

max
0tT^#

|EB2(t)| = O(n�1/2+2↵̃) w.o.p.,

where 1/4 > ↵̃ > ↵, with ↵ from Lemma 3.

Proof. Recall that

EB2(t) =
tX

k=0

�
X

T

k
DXk � E[XT

k
DXk|Fk]

�
,

and we apply Lemma 4 to each summand of EB2(t ^ #). More precisely,
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• K is replaced by K ·Mk, where Mk

def
= maxl2[n] |(Uw

#

k
)l| = O(n↵(k)�1/2), by Lemma

3.

• Observe that
kDk

2
HS

 k⌃Ck
2
HS

= O(n),

and
kDk = k⌃Ck = O(1).

• EXk = (µ1, · · · , µn) where µl =
�

n
(Uw

#

k
)l, l 2 [n], so that kDEXk2  kDk2kEXk2 

O(n✓).

Therefore, by using Lemma 4, we have

P (|XT

k
DXk � EXT

k
DXk| � ✏̃|Fk)

 2 exp

✓
�

1

C
min

✓
✏̃
2

2 · 9M4
k
K4kDk2

HS

,
✏̃

3M2
k
K2kDk

◆◆

+ 2 · 2 exp

✓
�

✏̃
2

M
2
k
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and for ✏̃ = n
2↵̃(k)�1/2

, 1/4 > ↵̃(k) > ↵(k), we obtain the desired concentration result. Now taking
union bound over k = 0, · · · , T ^ # gives the desired result, with ↵̃ def

= ↵̃(T ^ #).

B.5 Proof of Theorem 3

Proof of Theorem 3. We have observed that Proposition 8, Proposition 9, Proposition 10, Proposition
12 and Proposition 13 imply that there exists C > 0 such that for any c > 0, there exists D > 0 such
that

Pr

"
sup

0tT^#,t2N
|E(t)| > n

�C

#
< Dn

�c
.

Now combining this result with Lemma 1 proves the Theorem.

C Proof of Main Results

In this section, we prove various statements from Section 3. First, we analyze assumptions on the
learning rate � so that the kernel K is convergent (Proposition 2). Second, we define the Malthusian
exponent and show under which conditions the convergence rate of our algorithm is determined by
�2,max (Proposition 3). Third, We find an optimal set of learning rate and momentum parameter so
that the SGD+M outperforms SGD in the large batch regime (Proposition 5). Lastly, we show the
lower bound of the convergence rate of SGD+M in the small batch regime (Proposition 6).

C.1 Learning rate assumption and kernel bound

First, we show that the kernel K is always a nonnegative function, regardless of whether the
eigenvalues {�2,j ,�3,j}, j 2 [n] are real or complex values.
Lemma 5 (Positivity of the kernel). The kernel function satisfies K(t) � 0 for any t � 0.

Proof. Fix j 2 [n] and let

H2,j(t)
def
=

2�4
j

⌦2
j
� 4�

⇣
�� ·�t +
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2
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t

3,j

⌘

be the j-th summand of H2(t). We address two cases. In the first case, assume ⌦2
j
� 4� � 0.

Then �2,j and �3,j are positive real numbers and one can easily verify that �2,j � � � �3,j and
�2,j�3,j = �2. By the arithmetic-geometric inequality, we have

H2,j(t) �
2�4

j

⌦2
j
� 4�

⇣
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q
�
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t+1
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⌘
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2�4
j

⌦2
j
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⇣
��t+1 +�t+1

⌘
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In the second case, we assume ⌦2
j
� 4� < 0. In this case, �2,j and �3,j are complex conjugates with

magnitude �, and therefore we have the relation

�
t

2,j = �t
e
i✓jt, and �t3,j = �t

e
�i✓jt,

for some ✓j 2 R. By Euler’s formula, we obtain

��t+1 +
1

2

⇣
�
t+1
2,j + �

t+1
3,j

⌘
= ��t+1 +�t+1 cos(✓jt)  0.

and combined with the condition ⌦2
j
� 4� < 0 gives H2,j(t) � 0. Hence these two cases give the

claim.

The next proposition establishes that, under an upper bound on the learning rate, the maximum of
the eigenvalues {�2,j} for j 2 [n] has its magnitude less than one. Let �2,max

def
= maxj |�2,j |. A

simple computation shows that when �2,j is complex then |�2,j | = �. In particular, when all the
eigenvalues �2,j are complex numbers, �2,max = �. Otherwise, �2,max > �. Recall again that
�
2
max and �2

min be the largest and smallest (nonzero) eigenvalue of AA
T , respectively.

Proposition 14. If � <
2(1+�)
⇣�2

max
and 0  � < 1, then �2,max < 1.

Proof. First observe that

� <
2(1 +�)

⇣�2
max

() ⌦min
def
= 1� �⇣�

2
max +� > �1��,

so we conclude ⌦j > �1�� for all j 2 [n]. Note that ⌦j increases as �j decreases. Fix j 2 [n].
First, when ⌦j is non-positive, i.e.

0 � ⌦j > �1��,

this implies 0  ⌦j < (1+�)2. Second, let ⌦j � 0. Then by the definition of ⌦j = 1� �⇣�
2
j
+�,

and as �2
j
> 0, we have ⌦j  1 +�, or ⌦2

j
< (1 +�)2. So in both cases, we have

⌦2
j
< (1 +�)2. (47)

Then plugging in (47) into the expression of �2,j gives
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2
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2
= 1,

where the second last inequality comes from the constraint 0  � < 1.

Now we are ready to prove Proposition 2.

Proof of Proposition 2

Proof. Note that � <
1+�
⇣�2

max
implies not only �2,max < 1 from Proposition 14, but also ⌦j > 0

for all j 2 [n]. Let C̃j

def
= �

2
⇣(1 � ⇣)�4

j
/(⌦2

j
� 4�) for the following. Using the the fact that
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�2,j�3,j = �2 and �2,j + �3,j = �2�+ ⌦2
j
, we have
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where ⌦j > 0 was used in the last inequality.

When the norm of the kernel is less than 1, we can specify the limit of the solution  (t) to the Volterra
equation when t ! 1, as Proposition 1 states.

Proof of Proposition 1

Proof. This is immediate from [4, Proposition 7.4]. In particular, from our expression of the renewal
equation (13), we have

 (t) !
F (1)

1� kKk
as t ! 1.

Now the proof is done once we evaluate the limit of F (t) = R

2 h1(t) +
R̃

2 h0(t). Note that
limt!1 h1(t) = 0. On the other hand, as for h0(t), if n > d, �j = 0 for j = d + 1, · · · , n. And
for such j’s satisfying �j = 0, we can easily verify that �2,j = 1,�3,j = �2

,⌦j = 1 +�,2,j =
1,3,j = �. Therefore,

lim
t!1

h0(t) = lim
t!1

8
<

:
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n

nX
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2

⌦2
j
� 4�

�
0 +

1

2
(1��)2 · 1 + 0

�
9
=

; =
n� d

n
= 1� r,

and this proves the claim.

C.2 Malthusian exponent and convergence rate

In this section, we show that the Malthusian exponent ⌅ is always smaller than ��1
2,max for a finite

dimension n. Also, in the problem constrained regime we show that SGD+M shares the same
convergence rate with full batch gradient descent with momentum with adjusted learning rate.
Proposition 15. The Malthusian exponent defined in (15) satisfies

⌅ < (�2,max)
�1

when the dimension n is finite.

Proof. It suffices to observe that the convergence rate of H2(t) is determined by �2,max; if all
�2,j , j 2 [n], are real numbers, then we can easily show that �2,j > � > �3,j . Therefore �2,max
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takes over the convergence rate of H2(t). If, for some j 2 [n], �2,j and �3,j are both complex
numbers, observe that |�2,j | = |�3,j | = �. In that case, if we let �2,j = � exp(i✓j) for some
✓j 2 R, �3,j = � exp(�i✓j) then

��t+1 +
1

2
�
t+1
2,j +

1

2
�
t+1
3,j = ��t+1 +

1

2
�t+1

· 2 cos(i(t+ 1)✓j) = �t+1(�1 + cos(i(t+ 1)✓j)).

Therefore, � is the governing convergence rate of such j-th summand of H2(t) and the overall
convergence rate of H2(t) is still determined by �2,max. If all �2,j , j 2 [n], are complex numbers
then the observation above shows that the governing convergence rate of H2(t) should be � = �2,max

and this proves our claim.

When �2,max takes over the convergence behavior of SGD+M, we can easily see that its convergence
dynamics is nothing but its analogue with full batch size but with adjusted learning rate. This can be
easily obtained by ⇣ = 1 in Theorem 1, but we provide a statement for full batch SGD+M and its
proof for completeness.

Proof of Proposition 4

Proof. Basically, we follow the same arguments introduced in A.2, but with ⇣ = 1; so we would not
have any errors generated by selecting mini-batches. In other words, E(l,j)

B
= 0. This implies the

following, which is an analogue of (38),
0

@
w

2
t+1,j

w
2
t,j
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1

A =
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@
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j
�2

�2�⌦j

1 0 0
⌦j 0 ��

1

A

| {z }
=Mj

0

@
w

2
t,j

w
2
t�1,j

wt,jwt�1,j

1

A . (48)

This implies w2
t+1,j = (M t

j
X̃1,j)1 and following the same arguments in A.2 gives

(M t

j
X̃1,j)1 =

2(R
n
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2
j
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n
)
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2
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2
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.

Therefore, this leads to

f(t+ 1) =
R

2
h1(t+ 1) +

R̃

2
h0(t+ 1) + E(t),

with the error term E(t) = EIC(t). Now taking n ! 1 combined with Proposition 8 gives (20).
Note that the convergence rate of  full(t) is determined by �(full)

2,max := maxj |�
(full)
2,j |, where

�
(full)
2,j =

�2�+ (⌦(full)
j

)2 +
q

(⌦(full)
j

)2((⌦(full)
j

)2 � 4�)

2
, ⌦(full)

j

def
= 1� �full�

2
j
+�.

And observing that �(full)
2,j = �2,j if �full = �⇣ gives our conclusion.

C.3 Choice of optimal learning rate and momentum

In this section, we prove Proposition 3 which states a sufficient condition for a set of learning rate
and momentum parameters to be in the problem constrained regime. We also offer the proof of
Proposition 5, which gives an optimal learning rate and momentum so that SGD+M outperforms
SGD in terms of convergence rate. Finally, the proof of Proposition 6 will be given as well.

Proof of Proposition 3
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Remark on the assumption. The first assumption on the learning rate, i.e., � 
1+�
⇣�2

max
im-

plies that ⌦j � 0 for all j 2 [n]. On the other hand, the second condition, i.e., � 
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2
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,

implies that ⌦max � 2
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p
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�
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max +p
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max(⌦
2
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Proof. First recall that '(n)
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n
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where C = (1� ⇣)�/(1��). Observe, as ⌦j � 0,
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n
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Let us analyze the denominator of the summand first. Let fj(x) := 1+x
2��x⌦j , 1 < x <

p
��1.

Then the denominator in the summand is fj(
p
⌥). Especially, fmin(x) := minj fj(x) = 1+ x

2��

x⌦max,⌦max = 1� �⇣�min
2 +�. Note that fmin(x) is a quadratic function of x and the solution to
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�1
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q
�
�1
3,max exceeds the valid domain of x). Also, observe

that this is where the assumption ⌦max � 2
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� is used.

Note that fj(1) = �⇣�
2
j
. Simple algebra shows that for 1 < x < ↵ < �, c1(x � ↵)2  c2(x �

↵)(x� �) where c1, c2 > 0 satisfies c1(1� ↵)2 = c2(1� ↵)(1� �), i.e. two functions coincide at
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j
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Therefore, when
p
⌥ =

1+
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�
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2 , (49) gives
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.
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Moreover, in order to bound the denominator (1�⌥�) on the right-hand side, if we define g(x)
def
=

1��x
2, g is a decreasing function on [1,

p
��1] and

g(
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2
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��1
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,

by considering a linear line passing through (1, 1��) and (
p
��1, 0) that lies below g. Therefore,
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Proof of Proposition 5

Proof. First, when the assumption (1�
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is met, we have
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Furthermore, from Proposition 3, when � = (1�
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Next, we present the proof of Proposition 6.

Proof of Proposition 6

Proof. For brevity and clarity, we define the following quantities:
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Note that the assumptions on the learning rate � in Proposition 2 imply that �  min(�1, �3).

First, let us assume that � � �2. Recall that this condition implies that ⌦2
max � 4�  0 and therefore
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So, combining the condition ⇣  1/2 with the above inequality gives the claim. Therefore, for
the following arguments, we assume that �  �2. It is worthwhile to note that by the definition of
�2,max and ⌦max = 1� �⇣�

2
min +�, we know that �2,max is an increasing function of ⌦max when

⌦2
max � 4� � 0 and ⌦max � 0 and ⌦max is a decreasing function of �. Therefore, �2,max attains its

minimum at the maximum feasible learning rate �.

First, let as assume that �  �3  �1. Then �2,max attains its minimum at � = �3 and
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where c1
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(1�⇣)̄ < 1. One can easily verify that f1 is an increasing function of �, 0  � < 1, so
we conclude that p
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p
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and we obtain the claim with the condition ⇣  1/2.

Second, now we assume that �  �1  �3. Then �2,max attains its minimum at � = �1 and
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and we finish the proof.
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Proof of Proposition 7

Proof. First, you could easily verify the following (by just setting � = 0 in the proof of the
proposition), which is an analogue of Proposition 3 for SGD without momentum.

Corollary 2. If the learning rate � 
1

⇣�2
max

, with the trace condition 8(1� ⇣)� ·
1
n
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then � is in the problem constrained regime with " = 1/2.
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j
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D Numerical Simulations

To illustrate our theoretical results, we compare SGD+M’s dynamics to (29) on moderately sized
problems (n ⇡ 1000) under the setting of section 1. Moreover, the dynamics were also compared
using the MNIST data set. Finally, heat maps were displayed to illustrate the interplay between the
algorithmic and problem constraints. For all MNIST experiments the hyperparameters R and R̃ were
found by running a grid-search. For simulated data experiments, we fixed R and R̃ and generated the
data according to assumption 1.1.

Random least squares. In all simulations of the Gaussian random least squares problem, the initial
weight vector x0 is set to zero and the signal and noise vectors x̃ and ⌘ are set to N(0, R

n
I) and

N(0, R̃

n
I) respectively with R̃ = R = 1. Moreover, A is constructed by independently sampling its

entries Aij ⇠ N(0, 1) then row-normalized. Similarly, b is first sampled b ⇠ N(0, R̃d

n
I) then the

i-th entry of b is divided by the norm of the i-th row of A. The objective function in which we run
SGD+M in all cases is the least squares objective function f(x) = 1

2 ||Ax� b||
2.

Random features (RF). In Figure 5, we generate the data matrix A using a random features set-up.
The model was introduced by [30] as a randomized approach for scaling kernel methods to large data
sets, and has seen a surge of interest in recent years as a way to study the generalization properties of
neural networks [2, 12, 17, 23]. RF is a way to increase the number of parameters without changing
the data set for a least-squares problem.

In this model, the entries of A are the result of a matrix multiplication composed with a (potentially
non-linear) activation function � : R ! R:

Aij

def
= �

✓
[XW ]ij
p
n0

◆
, where X 2 Rn⇥n0 and W 2 Rn0⇥d. (51)

The entries of W (in Fig 5) are i.i.d. with zero mean and variance 1. The data matrix X is the MNIST
data set where each row of X is an image (i.e., n0 = 784). In these experiments, the activation
function � is the normalized ReLU function �(·) = (max{0, ·} � 1/

p
2⇡)/

p
0.5� 1/(2⇡)); it is

normalized so that � applied to a standard Gaussian outputs a mean 0 and variance 1 random variable
(not necessarily Gaussian).
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Figure 6: SGD+M vs. Theory on even/odd MNIST. MNIST (60, 000 ⇥ 28 ⇥ 28 images) [16] is
reshaped into a single matrix of dimension 60, 000⇥ 784 (preconditioned to have centered rows of
norm-1), representing 60,000 samples of 10 digits. The target b satisfies bi = 0.5 if the ith sample is
an odd digit and bi = �0.5 otherwise. SGD+M was run 10 times with � = 0.8, various values of ⇣ ,
and learning rates � = 0.005, 0.001, 0.0005 (left to right, top to bottom) and empirical Volterra was
run once with (R = 11, 000, R̃ = 5300). The R and R̃ values were found by running a grid-search.
The 10th to 90th percentile interval is displayed for the loss values of 10 runs of SGD+M. Volterra
predicts the convergent behavior of SGD+M in this setting.

Empirical Volterra equation. We assume that we have access to the eigenvalues of the matrix
AA

T . The empirical Volterra equation (29) were computed using a dynamic programming approach
by using as inputs the eigenvalues of AA

T . First, the values of h0(t), h1(t), H2(t) were computed
and stored for values of t 2 [T ]. Then a dynamic programming approach is used to compute  (t) for
values of t 2 [T ]. The discrete convolution operation in (29) is computed by an array reversal and
Numpy dot product.

Volterra equation with Marchenko-Pastur distribution. In this setting, we use the theoretical
limiting distribution for a large class of random matrices. In a celebrated work by [21], when the
entries of (n⇥ d) matrix A are drawn from a common, mean 0, variance 1/d distribution with fourth
moment O(d�2) (e.g., Gaussian N(0, 1

d
)), it is known that the distribution of eigenvalues of AA

T

converges to the Marchenko-Pastur law

dµMP (�)
def
= �0(�)max{1� r, 0}+

r

p
(�� ��)(�+ � �)

2⇡�
1[��,�+],

where �
� def

= (1�

r
1

r
)2 and �

+ def
= (1 +

r
1

r
)2.

(52)

For these experiments, we generated the data matrix A with entries N(0, 1/d). Instead of using
the eigenvalues of AA

T in the Volterra equation (29), we used the Marchenko-Pastur distribution
directly. We used a Chebyshev quadrature rule to approximate the integrals with respect to the
Marchenko-Pastur distribution that arise in (29). Similar to the finite case, the integrand is computed
using dynamic-programming. However, the implementation of the quadrature rule ignores the point
mass at 0 so we manually add this at the end.

Volterra simulations remarks. Despite the numerical approximations to the integral, the resulting
solution to the Volterra equation  (red line in figure 1) models the true behavior of SGD+M
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Figure 7: Different convergence rate regions for MNIST dataset. Plots are functions of momen-
tum (x-axis) and learning rate (y-axis). Optimal parameters that maximize �2,max denoted by Polyak
parameters (orange circle, (17)) and the optimal parameters for SGD+M (orange dot); below red
line is the problem constrained region; otherwise the algorithmic constrained region. The MNIST
data set is standardized. As the batch fraction decreases (left ⇣ = 0.7 to right ⇣ = 0.25), the optimal
parameters of SGD+M and Polyak parameters are quite far from each other. The Malthusian exponent
(algorithmically constrained region) starts to control the SGD+M rate as batch fraction ! 0.

remarkably well. Notably, the fit of the Volterra equation to SGD+M is extremely accurate across
various learning rates, batch sizes, and momentum parameters as long as the learning rate condition
is satisfied. In Figure 1, the red line corresponds to the Volterra equation with Marchenko-Pastur
distribution with values R = R̃ = 1. Also, we opted to shade the 10th to 90th percentile instead of
an ↵-confidence interval for an easier read. One can observe the exact same dynamics in either case.

Heat maps. The heat maps (Figures 4, 7, and 9) illustrate when the convergence rate is dictated by
the problem, (�2,max � ⌅�1) or by the algorithm (�2,max < ⌅�1). The white regions of the heat
maps represent divergent behaviour (�2,max > 1). The threshold, denoted by the red line, describes
the boundary for two different regimes. Any non-white point above or to the right of the threshold
lies in the algorithmic constraint setting. Conversely, all non-white points lying below or to the left of
the threshold lies in the problem constraint setting.

The heat maps are generated by computing �2,max and ⌅ (when it exists) across values of (�, �).
Here �2,max is obtained by calculating

�2,max =
�2�+ ⌦2

max +
p
⌦2

max(⌦
2
max � 4�)

2
, ⌦max = 1��⇣�2

min+�, and �2
min =

�
1�

r
1

r

�2
.

In order to compute ⌅, recall that ⌅ is the solution of

K̃(⌅)
def
=

1X

t=0

⌅t
K(t) = 1, (53)

when it exists. One can show (53) is equal to (see Appendix C.3 for detail)
nX

j=1

⇣(1� ⇣)�2�4
j

n

✓
(1 + ⌅�)

(1� ⌅�)(1 + ⌅�+
p
⌅⌦j)(1 + ⌅��

p
⌅⌦j)

◆
= 1, (54)

which is computed using the Chebyshev quadrature rule.

For a given (�, �), we are interested in the algorithmic case (1  ⌅  �
�1
2,max) so if ��1

2,max < 1 we
assign a Nan value to ⌅. Otherwise, because of monotonicity of K̃ in (53), we perform a binary
search starting with initial endpoints 1 and ��1

2,max to find the solution ⌅ satisfying (53). Finally, with
⌅�1 and �2,max computed for a given (�, �), we plot the maximum of the two.
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Figure 8: Convergence behavior near the ICR. For each value of batch fraction ⇣ , run SGD+M for
20 (left) and 50 (right) iterations (colored lines – blue, green, and purple) and record the function
value of the last iterate. The momentum and learning rate parameters are set to be near-optimal
(see (22)). Gray dot is the computed ICR (24), ⇣ value. Data matrix A 2 Rd,n Gaussian entries,
x̃ ⇠ N(0, 1/nId), x0 = 0 (R = 1.0), and ⌘ ⇠ N(0, 0.0001/nIn) (R̃ = 0.0001). Different colored
lines (blue, green, purple) correspond to running SGD+M with different values of the ratio d/n. At
the predicted ⇣ = ICR (gray dot), there is a noticeable change in the behavior of the last iterate.
For ⇣ values less than the ICR, the value of the last iterate gets smaller as ⇣ increases. Then the
batch fraction ⇣ hits the ICR and we see little to no improvement in the value of the last iterate. This
agrees exactly with our theory for batch fraction saturation (Prop 5 and Prop. 6). For ⇣ � ICR, the
convergence rate does not change; thus the values of the last iterates are approximately all equal in
this regime. For ⇣ < ICR, our theory predicts the convergence rate improves as ⇣ ! ICR, O(⇣/̄).
Hence the value of the last iterate decreases here. Moreover (left), SGD+M dynamics match the
predicted last value given by the Volterra equation (red) (see Thm 1).
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Figure 9: Convergence rate regions for Gaussian random least squares. Same set-up as in
Figure 4 but for a wider range of batch fractions.
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