A CaSE: additional details

A.1 CaSE implementation

Standardization Empirically we have observed that standardizing the pooled representations before
passing them to the MLP improves the training stability in CaSE (but not in SE). Standardization is
performed by taking the pooled representation at layer as showed in Equation (), that is h) € R®,
subtracting the mean and dividing by the standard deviation.

Activation function for the output layer Standard SE blocks usually rely on a sigmoid function
in the last layer of the MLPs. This works well when the adaptive block is trained in parallel with
the underlying neural network. However, in our case we use a pretrained model and learning can be
speeded up considerably by enforcing the identity function as output of the MLPs. We achieve this
by multiplying the output of the sigmoid by a constant scalar ¢ = 2 which extends the range to [0, 2],
and then set to zero the weights and bias of the layer. This has the effect of enforcing the identity
function at the beginning of the training. We have also used a linear activation function instead of a
sigmoid, with good results. When using a linear output the identity can be enforced by setting the
weights of the last layer to zero, and the bias to one. An ablation over the activation function of SE
and CaSE is provided in Appendix [C.4](Table 6).

CaSE location For the choice of CaSE location in the feature extractor, we followed the same
principles used in Bronskill et al.| (2021) for FILM generators. In EfficientNetBO we place CaSE at
the beginning of each hyperblock and the last layer (excluding the first layer). Differently from FILM
(placed after the BatchNorm) we place CaSE after the non-linearity (as done in standard SE) and
before the Squeeze-and-Excitation block (included by default in EfficientNet):

Conv2d—BatchNorm2d— SiLU—CaSE—SqueezeExcitation—Conv2d—BatchNorm2d

This results in a total of 18 CaSE blocks for EfficientNetBO. Increasing the number of blocks did not
provide a significant benefit. In ResNet18 we place two CaSE blocks per each basic block as:

Conv2d—BatchNorm2d—ReLU—CaSE—Conv2d—BatchNorm2d—ReLU—CaSE

Similarly we place two CaSE blocks inside a bottleneck block in ResNet50. See the code for more
details.

Based on the qualitative analysis reported in Section [5| we hypothesize that adaptive blocks are not
needed in the initial layers of the network, since at those stages their activity is minimal. Identifying
which layer needs adapters and which layer does not, can reduce even more the parameter count of
adaptive blocks. Additional work is needed to fully understand this factor.

CaSE reduction The number of parameters allocated to the CaSE blocks is regulated by a divider r
that is used to compute the number of hidden units in the MLPs. Given the input size C' (corresponding
to the number of channels in that layer) the number of hidden units is given by C'/r. We also use a
clipping factor r,,;, that prevents the number of units to fall under a given threshold. This prevents
the allocation of a low number of units for layers with a small number of channels.

A.2 Context pooling

In this section we provide additional details about the context pooling operation performed in a CaSE
adaptive block (described in Section [2).

Similarities with other methods Context pooling is a way to summarize a task with a permutation-
invariant aggregation of the embeddings. A similar mechanism has been exploited in various
meta-learning methods. For instance, in ProtoNets (Snell et al.|[2017) a prototype for a single class is
computed by taking the average over all the context embeddings associated to the inputs for that class.
The embeddings are generated in the last layer of the feature extractor. In Simple-CNAPs (Bateni
et al.| 2020) a prototype is estimated as in ProtoNets but it is used to define a Gaussian distribution
instead of a mean vector. Neural latent variable models, such as those derived from the Neural
Processes family (Garnelo et al. |2018)) also rely on similar permutation-invariant aggregations to
define distributions over functions.

14

Global vs. local context-pooling Comparing CaSE with the FiLM generators of |Bronskill et al.
(2021} it is possible to distinguish between two types of context pooling: global and local. The FILM
generators of |Bronskill et al.| (2021)) rely on a global pooling strategy, meaning that the aggregation is
performed once-for-all by using a dedicated convolutional set encoder. More specifically, the encoder
takes as input all the context images and produces embeddings for each one of them, followed by an
average-pooling of those embeddings. The aggregated embedding is then passed to MLPs in each
layer that generates a scale and shift parameter. Crucially, each MLP receives the same embedding.

CaSE exploits a local context-pooling at the layer level. The convolutional set encoder is discarded,
and the feature maps produces by the backbone itself at each stage are used as context embeddings.
Therefore, the MLPs responsible for generating the scale parameters receive a unique embedding. As
showed in the experimental section (Section [5)), local pooling improves performances and uses less
parameters, as no convolutional encoder is needed. Additional details about the differences between
CaSE and FiLM generators is also provided in the paper (Section).

15

A.3 Pytorch code for CaSE

Implementation of a CaSE adaptive block in Pytorch. The script is also available as case.py at
https://github.com/mpatacchiola/contextual-squeeze-and-excitationl

import torch
from torch import nn

class CaSE(nn.Module):
def __init__(self, cin, reduction=32, min_units=32,
standardize=True, out_mul=2.0,
device=None, dtype=None):

nwnn

Initialize a CaSE adaptive block.

Parameters:

cin (int): number of input channels.

reduction (int): divider for computing number of hidden units.
min_units (int): clip hidden units to this value (if lower).
standardize (bool): standardize the input for the MLP.

out_mul (float): multiply the MLP output by this value.

mamnn

factory_kwargs = {’device’: device, ’dtype’: dtypel}

super (CaSE, self).__init__()

self.cin = cin

self.standardize = standardize

self.out_mul = out_mul

hidden = max(min_units, cin // reduction)

self .gamma_generator = nn.Sequential(
nn.Linear (cin, hidden, bias=True, **factory_kwargs),
nn.SiLU(),
nn.Linear (hidden, hidden, bias=True, **factory_kwargs),
nn.SiLU(),

nn.Linear (hidden, cin, bias=True, **factory_kwargs),
nn.Sigmoid ())
self .reset_parameters ()

def reset_parameters(self):
nn.init.zeros_(self.gamma_generator [4].weight)
nn.init.zeros_(self.gamma_generator[4].bias)
self.gamma = torch.tensor ([1.0])

def forward(self, x):
if (self.training): # adaptive mode
self .gamma = torch.mean(x, dim=[2,3]) # spatial pooling

self.gamma = torch.mean(self.gamma, dim=[0]) # context pooling
if (self.standardize):
self .gamma = (self.gamma - torch.mean(self.gamma)) / \
torch.sqrt (torch.var(self.gamma, unbiased=False) + 1le-5)
self .gamma = self.gamma.unsqueeze (0)
self.gamma = self.gamma_generator (self.gamma) * self.out_mul

self .gamma = self.gamma.reshape([1,-1,1,1])
return self.gamma * x
else: # inference mode
self .gamma = self.gamma.to(x.device)
return self.gamma * x

def extra_repr (self):
return ’cin={}’.format(self.cin)

16

https://github.com/mpatacchiola/contextual-squeeze-and-excitation

B UppereCaSE: additional details

B.1 Algorithm of UpperCaSE

Algorithm 1 UpperCaSE: training function for the few-shot classification setting.

Require: D = {71, ..., 7p} training dataset
Require: by () pretrained feature extractor (body) with CaSE blocks parameterized by ¢.
Require: step(): gradient-step function; £ loss; o, B: step-size hyperparameters for the optimizer.

1: Set ¢ to random values > optional: set ¢ to enforce identity in CaSE output
2: while not done do

3 Sample task 7 = (C,7) ~ D
4: Forward pass over context set by (C*) — z1,...,2N§ > CaSE in adaptive mode
5: Store context embeddings and associated labels M = {(zn, yn) }h—1 > temporary memory buffer
6: Define a linear model for the head h.,_() and set 4. to zero
7: for total inner-steps do > loop to estimate head params
8: Sample (with replacement) mini-batch of training pairs 5 ~ M
9: Update the head parameters 1. < step(a, £, B, hy)
10: end for
11: Update the CaSE parameters ¢ < step (3, L,C, T, bg, hqp_) > CaSE in adaptive mode

12: end while

Algorithm 2 UpperCaSE: test function for the few-shot classification setting.

Require: 7. = (C., X.) unseen test task with target input x.. an context C..
Require: by () pretrained feature extractor (body) with meta-learned CaSE blocks parameterized by ¢.
Require: step(): gradient-step function; £ loss; a: step-size hyperparameter for the optimizer.

1: Forward pass over context set by (CY) — 2z1,...,2N > CaSE in adaptive mode
2: Store context embeddings and associated labels M. = {(zn,yn)}2_1 > temporary memory buffer
3: Define a linear model for the head h.,__ () and set 1 to zero

4: for total inner-steps do i > loop to estimate head params
5: Sample (with replacement) mini-batch of training pairs B, ~ M.

6: Update the head parameters ¥, < step(a, L, By, hy,)

7: end for

8: Return Prediction g = hy (bg(xx)) > CaSE in inference mode

C Additional experimental details and results

C.1 Additional details

MAC:s counting MACs are proportional to the size of the task, size of the images, and number of
classes. We can count MACs using synthetic tasks. In our case we used a synthetic task of 100-way,
10-shot with input images of size 224 x 224 x 3 generated via Gaussian noise (x = 0,0 = 1), and
labels generated as random integers. We used a mini-batch of size 128 and 500 update steps for
UpperCaSE and BiT with an EfficientNetB0 backbone for the first and a ResNet50-S for the second.
For MD-Transfer we used the same parameters reported in | Dumoulin et al.| (2021)) with images of
size 126 x 126 x 3 and ResNet18 backbone. For the ORBIT experiments we counted MACs by
using the code in the original repository E] and reporting the average MACs over all test tasks for both
CLE-VE and CLU-VE using a ResNet18 backbone.

VTAB+MD training We follow the protocol reported in the original papers (Triantafillou et al.||2019;
Dumoulin et al.,2021)) training UpperCaSE for 10K tasks on the training datasets and evaluating on
the MD test set and on the VTAB datasets. At evaluation time we sample 1200 tasks from the MD
test set, and report the mean and confidence intervals. On VTAB we report the results of a single run
on the test data (data points are given in advance and do not change across seeds). In all experiments
we used the MetaDataset-v2 (MDv2) which does not include ImageNet in the test set. We used a
pretrained EfficientNetBO from the official Torchvision repository’} and a pretrained ResNet50-S

"https://github.com/microsoft/0RBIT-Dataset
*https://pytorch.org/vision

17

https://github.com/microsoft/ORBIT-Dataset
https://pytorch.org/vision

from the BiT repository ﬂ We normalized the inputs using the values reported in the Torchvision
documentation (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), for ResNet50-S we use the
BiT normalization values (mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]).

ORBIT training For the ORBIT experiments we trained UpperCaSE on MDv?2 using a pretrained
ResNet18 taken from the official Torchvision repository. We normalized the inputs using the values
reported in the Torchvision documentation (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]).
For the evaluation phase we followed the instructions reported in Massiceti et al.|(2021).

C.2 CaSEvsSE

Table 4: Comparing CaSE against standard Squeeze-and-Excitation (SE) on VTAB+MD using
different adaptation heads. MD: Mahalanobis distance head (Bronskill et al.,[2021). Linear: linear
head trained with UpperCaSE. All adaptive blocks use a reduction of 32. Best results in bold.

Model SE CaSE SE CaSE
Contextual pooling No Yes No Yes
Adaptation head MD MD | Linear Linear
Image size 84 84 224 224
MetaDataset (all) 67.8 69.6 74.6 76.2
VTAB (all) 43.6 453 56.6 58.2
VTAB (natural) 47.5 50.2 65.3 68.1
VTAB (specialized) 63.6 64.9 79.8 79.6
VTAB (structured) 30.6 31.8 38.6 40.1

C.3 CaSE vs other adapters

Table 5: Comparing CaSE adaptive blocks (with reduction 64, 32, 16) on VTAB+MD against the
FiLM generators used in [Bronskill et al.| (2021)), and a baseline with no body adaptation. CaSE
blocks are more efficient in terms of adaptive and amortization parameters while providing higher
classification accuracy. All models have been trained and tested on 84 x 84 images, using a
Mahalanobis distance head. Best results in bold.

Adaptation type None FiLM CaSE64 CaSE32 CaSEl6
Adaptive Params (M) n/a 0.02 0.01 0.01 0.01
Amortiz. Params (M) n/a 1.7 0.4 0.8 1.6
MetaDataset (all) 534 684 69.8 69.6 70.4
VTAB (all) 435 447 46.2 453 46.4
VTAB (natural) 454 495 52.1 50.2 52.6
VTAB (specialized) 694 638 66.3 64.9 65.5
VTAB (structured) 29.1 31.7 31.8 31.8 321

C.4 Ablation studies

In this section we provide additional experimental results focusing on ablation studies of the CaSE
adaptive block. The results can be summarized as follows:

* Ablation of the activation function for the output layer for both CaSE and SE. We have
tested three activation funcitons: linear, sigmoid, sigmoid with multiplier. The sigmoid with
multiplier uses a constant value set to 2 to center the sigmoid at 1 (this enforces the identity
function). The empirical results reported in Table[6] show that the sigmoid with multiplier
and the linear layer provide the best results.

*https://github.com/google-research/big_transfer

18

https://github.com/google-research/big_transfer

* Ablation of the number of hidden units in the hidden layers of CaSE. The number of hidden
units is controlled by the reduction and min-units parameters in the code and it depends on
the number of inputs. See the paper for more details. The results reported in Table [§] show
that blocks with more units provide marginal gains or no gains at all. This is probably due
to overfitting issues affecting the models with more units.

 Ablation of the number of hidden layers of CaSE. The results reported in Table[/|show that
the best performance is obtained with 1 and 2 layers. The performance worsen when there
are 3 or more layers which is likely due to overfitting issues affecting the models with more
parameters.

* Ablation of the activation function for the hidden layers. Results reported in Table [0 show
that CaSE is quite robust against this factor when activations like ReLU and SiL.U are used
but the performance worsen with Tanh. We have chosen SiLU for the experiments as this is
the same activation typically used in Squeeze-and-Excitation layers (e.g. in EfficientNet
backbones).

Table 6: Performance on VTAB+MD for various activation functions used in the last layer of SE and
CaSE. Sigmoid-2 indicates that the output of a standard Sigmoid is multiplied by 2. Both SE and
CaSE use a reduction factor of 32 with min-clipping of 32. All model have been trained using an
EfficientNetB0 backbone with a linear head on images of size 224 x 224. Results for SE with linear
activation have not been reported because the training was unstable (loss rapidly diverging at the first
iterations). Best results in bold.

Adaptive block SE SE CaSE CaSE CaSE
Activation (output) Sigmoid Sigmoid-2 Linear Sigmoid Sigmoid-2
MetaDataset (all) 74.2 74.6 75.8 74.9 76.2
VTAB (all) 56.8 56.6 58.4 56.8 58.2
VTAB (natural) 67.0 65.3 68.3 67.1 68.1
VTAB (specialized) 81.1 79.8 79.5 80.8 79.6
VTAB (structured) 36.9 38.6 40.3 37.1 40.1

Table 7: Comparing CaSE adaptive blocks with different number of hidden layers on VTAB+MD.
All models have been trained and tested on 224 x 224 images, using CaSE with reduction 64 and
clip factor (min-units) 16, using UpperCaSE and EfficientNetBO backbone. Best results in bold.

Hidden layers 1 2 3 4

Amortiz. Params (M) 0.420 0426 0432 0438
MetaDataset (all) 76.0 76.1 75.5 75.2
VTAB (all) 582 584 582 58.0
VTAB (natural) 683 69.1 680 674

VTAB (specialized) 79.7 803 80.5 803
VTAB (structured) 40.0 394 39.7 39.7

19

Table 8: Comparing CaSE adaptive blocks with different number of hidden units on VTAB+MD. The
number of hidden units depends on the input size and is defined by the reduction and the clip factor
(min-units). All models have been trained and tested on 224 x 224 images, using UpperCaSE and
EfficientNetB0 backbone. Best results in bold.

Reduction factor 64 32 16 8
Clip factor 16 32 48 64
Amortiz. Params (M) 04 0.8 1.6 30
MetaDataset (all) 76.1 76.2 758 76.2
VTAB (all) 584 582 579 585
VTAB (natural) 69.1 68.1 679 683

VTAB (specialized) 80.3 79.6 794 179.0
VTAB (structured) 394 40.1 39.7 40.9

Table 9: Comparing CaSE adaptive blocks with different activation functions for the hidden layers on
VTAB+MD. All models are based on a reduction factor of 64 and a clip factor of 16 (0.4M amortiza-

tion parameters) and they have been trained and tested on 224 x 224 images, using UpperCaSE and
EfficientNetBO backbone. Best results in bold.

Activation (hidden) SiLU ReLU Tanh

MetaDataset (all) 76.1 75.8 74.8
VTAB (all) 58.4 57.8 482
VTAB (natural) 69.1 698 67.0
VTAB (specialized) 80.3 79.7 80.8
VTAB (structured) 394 394 364

20

C.5 Role of CaSE blocks

2.00 Omniglot 2.00 Aircrafts) II
1.75 _ T 1.75 ll I
1.50 1.50

1.25

Sl | 2eespel

a0
| — |
| IR S|
| S — |

0.50 {

025 I 0.25 e T I
0.00 =S 4 . 0.00 = E I T
2.00 Birds - - 200 DTD 2
0 | |
1.75 [9Q 1.75 { {

gggﬁ%%el%ﬂu H%P H *%’L*H :

- L LR
200 Quickdraw o jj: Funghi |
i sl W %% v ba N H
S LK H sl :%H il
e e
e L I B e
- . |

Figure 4: Boxplots for all the MDv?2 test datasets (100 tasks per dataset) reporting the CaSE activation
(vertical axis) at different stages of an EfficientNetBO (horizontal axis, with early stages on the left).
The box encloses first to third quartile, with the median represented by the orange line. The whiskers
extend from the box by 1.5 the inter-quartile range. Outlier (point past the end of the whiskers) are
represented with black circles.

21

—— omniglot —— aircraft —— cu birds —— dtd —— quickdraw —— fungi -~ traffic sign —— mscoco

15
1.0

05

250

500

500
15
1.0
05

o 200 400 600 800 1000 1200

0 200 an0 600 800 1000 1200

o 200 400 600 800 1000 1200

1

o
o 200 400 600 800 1000 1200

Figure 5: CaSE activation values (vertical axis) for all channels (horizontal axis) at different stages
(top plots are early stages) in EfficientNetBO for the MDv2 test dataset (one task per dataset). Values
are similar and closer to one in the first stages but diverge in the latest. The magnitude tends to
increase with depth.

22

C.6 UpperCaSE: results on VTAB+MD

In this section we provide a full breakdown of the results for UpperCaSE vs. other methods on
the VTAB+MD benchmark. Results for other methods are taken from [Bronskill et al.| (2021)) and
Dumoulin et al.| (2021)). UpperCaSE uses CaSE with reduction 64 (min-clip 16) for EfficientNetBO
and reduction 32 (min-clip 32) for ResNet50-S. Results for UpperCaSE on MD are the average over
1200 test tasks.

In Table [T0] we report the results for UpperCaSE against fine-tuning methods (BiT, MD-Trasnfer,
SUR) and in Table[IT]the results for UpperCaSE against meta-learning and hybrid methods (ProtoNet,
ProtoMAML, Cross Transformer CTX, LITE). Overall UpperCaSE performs well on MD and the
natural split of VTAB, this may be due to the fact that transfer learning is more beneficial on those
datasets as they are more similar to those used during meta-training. The largest difference in
performance between UpperCaSE and fine-tuning methods is on the structured split of VTAB, which
includes tasks that require counting and pose estimation. This is likely due to the difference w.r.t. the
meta-training set. In this case, fine-tuning the entire network is more effective than body adaptation
as the knowledge gap is wider and it requires more adjustments to the parameters.

Table 10: Comparing UpperCaSE against fine-tuning methods. Best result in bold.

Model BiT MD-Transfer SUR UpperCaSE UpperCaSE
Image Size 224 126 224 224 224
Network RN50-S RN18 RN50x7 ENBO RN50-S
Params (M) 23.5 11.2 164.5 4.0 235
Omniglot 68.0£4.5 82.0£1.3 92.8+0.5 90.7+04 89.1+0.5
Aircraft 77.4+£3.5 76.8+£1.2 84.4+0.6 89.4+04 87.5+0.4
Birds 90.8£1.5 61.2£1.3 75.8£1.0 90.4+0.4 89.6+0.4
DTD 85.0£2.5 66.0£1.1 74.3£0.7 83.4+0.4 84.8+£0.5
QuickDraw 66.6£3.7 61.3£1.1 70.3£0.7 76.8+0.5 73.7£0.6
Fungi 59.4£4.2 35.5+1.1 81.7£0.6 59.3£0.8 56.8£0.8
Traffic Sign 73.5£4.7 84.7+0.9 50.0£1.1 68.5£0.8 70.6£0.8
MSCOCO 65.7£2.7 39.6£1.0 49.4+1.1 50.8£0.7 46.7£0.8
Caltech101 87.2 70.6 82.3 88.3 86.2
CIFAR100 54.4 31.3 33.7 52.7 47.0
Flowers102 83.3 66.1 55.7 85.3 83.0
Pets 87.9 49.1 76.3 89.9 89.3
Sun397 333 13.9 27.5 35.8 325
SVHN 70.4 83.2 18.7 62.7 59.8
EuroSAT 94.4 88.7 78.9 92.2 91.6
Resics45 76.1 63.7 62.4 75.5 74.4
Patch Camelyon 83.1 81.5 75.6 79.3 80.9
Retinopathy 70.2 57.6 27.9 74.3 73.7
CLEVR-count 74.0 40.3 30.0 40.3 42.0
CLEVR-dist 51.5 52.9 37.1 38.9 37.3
dSprites-loc 82.7 85.9 30.0 45.3 38.1
dSprites-ori 55.1 46.4 19.8 42.5 41.4
SmalINORB-azi 17.8 36.5 12.9 15.7 15.1
SmalINORB-elev 32.1 31.2 18.1 22.7 21.0
DMLab 43.2 379 333 38.7 36.1
KITTI-dist 79.9 58.7 523 71.0 69.6
MetaDataset (all) 73.3 63.4 71.0 76.1 74.9
VTAB (all) 65.4 55.6 42.9 58.4 56.6
VTAB (natural) 69.4 52.4 49.0 69.1 66.3
VTAB (specialized) 81.0 72.9 61.2 80.3 80.1
VTAB (structured) 54.5 49.4 29.2 394 37.6

23

Table 11: Comparing UpperCaSE against meta-learning and hybrid methods. Best result in bold.

Model ProtoNet ~ ProtoMAML CTX LITE UpperCaSE ~ UpperCaSE
Image Size 224 126 224 224 224 224
Network ENBO RN18 RN34 ENBO ENBO RNS50-S
Params (M) 4.0 11.2 21.3 4.0 4.0 23.5
Omniglot 88.31+0.8 90.2£0.7 84.6+0.9 86.5£0.8 90.7£0.4 89.1+0.5
Aircraft 85.0£0.7 82.1+0.6 85.3+0.8 83.6£0.7 89.4+0.4 87.5+0.4
Birds 90.2+0.5 73.4£0.9 729+1.1 88.6+0.7 90.4+0.4 89.61+0.4
DTD 81.4£0.6 66.31+0.8 77.3+£0.7 84.1+0.7 83.4+04 84.8+0.5
QuickDraw 76.0+£0.7 66.4+1.0 73.3+£0.8 75.7+0.8 59.3+0.8 56.8+0.8
Fungi 57.4+1.1 46.3+1.1 48.0+1.2 56.9+1.2 59.3+£0.8 56.8+0.8
Traffic Sign 53.5+1.1 50.3+£1.1 80.1+1.0 65.8+1.1 68.5+0.8 70.6£0.8
MSCOCO 49.8+1.1 39.0£1.0 514+1.1 50.0+1.0 50.8+0.7 46.7£0.8
Caltech101 87.4 73.1 84.2 87.7 88.3 86.2
CIFAR100 43.1 29.7 37.5 48.8 52.7 47.0
Flowers102 78.2 60.2 81.8 83.5 85.3 83.0
Pets 88.6 56.6 70.9 89.3 89.9 89.3
Sun397 329 8.1 24.8 30.9 35.8 325
SVHN 35.2 46.8 67.2 51.0 62.7 59.8
EuroSAT 83.3 80.1 86.4 89.3 92.2 91.6
Resics45 68.8 53.5 67.7 76.4 75.5 74.4
Patch Camelyon 73.3 75.9 79.8 814 79.3 80.9
Retinopathy 31.3 73.2 35.5 40.3 74.3 73.7
CLEVR-count 27.2 32.7 27.9 314 40.3 42.0
CLEVR-dist 28.5 354 29.6 32.8 38.9 37.3
dSprites-loc 13.4 42.0 232 12.3 45.3 38.1
dSprites-ori 19.6 23.0 46.9 31.1 425 41.4
SmalINORB-azi 9.4 13.4 37.0 14.5 15.7 15.1
SmalINORB-elev 17.0 18.8 21.6 21.0 22.7 21.0
DMLab 35.8 325 31.9 394 38.7 36.1
KITTI-dist 56.5 544 543 63.9 71.0 69.6
MetaDataset (all) 72.7 64.2 71.6 73.9 76.1 74.9
VTAB (all) 46.1 45.0 50.5 51.4 58.4 56.6
VTAB (natural) 60.9 45.7 61.1 65.2 69.1 66.3
VTAB (specialized) 64.2 70.7 67.3 71.9 80.3 80.1
VTAB (structured) 25.9 31.5 34.1 30.8 394 37.6

24

