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A Proof of Proposition 2.1

For the statistical risk, we first need one standard result about the distribution of a multivariate normal
random variable conditioned on an affine function:
Lemma A.1. Consider a multivariate normal random variable X ∼ N (µ,Σ) with mean µ ∈ Rd
and covariance Σ ∈ Rd×d. Then for any A ∈ Rk×d, b ∈ Rk, and y ∈ Rk it holds

X|(AX + b) = y ∼ N (µ+ ΣAT (AΣAT )+(y −Aµ− b),Σ− ΣAT (AΣAT )+AΣ) .

In particular, if X is a standard normal random variable (Σ = Id, µ = 0) and b = 0, it is

X|AX = y ∼ N (AT (AAT )+y, Id −AT (AAT )+A)

Proof. Let Y = AX + b. The joint distribution of X and Y is again a multivariate normal, because
it can be written as an affine transformation of X:(

X
Y

)
=

(
Id
A

)
︸ ︷︷ ︸

=:A′∈R(d+k)×d

X +

(
0d
b

)
︸ ︷︷ ︸

=:b′∈Rd+k

= A′X + b′ ,

which implies that(
X
Y

)
= A′X + b′ ∼ N (A′µ+ b′, A′Σ(A′)T ) = N (

(
µ

Aµ+ b

)
,

(
Σ ΣAT

AΣ AΣAT

)
) .

The claim then follows from the standard formula for conditionals of multivariate normal distributions,

which states that if
(
Z1

Z2

)
∼ N (

(
µ1

µ2

)
,

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)
), then

Z1|Z2 = z ∼ N (µ1 + Σ1,2Σ+
2,2(z − µ2),Σ1,1 − Σ1,2Σ+

2,2Σ2,1) .

Proposition 2.1 (Causal and Statistical Risk). For any β̂ ∈ Rd, the risks defined in Eq. (2) satisfy

RC(β̂) = ‖β̂ − β‖2Σ + σ̃2 + ‖Γ‖2Σ and RS(β̂) = ‖β̂ − β̃‖2Σ + σ̃2 .

Proof. The key step for this proof is to characterize the distribution of y under the do-intervention
y|do(x) and the usual observational conditional y|x. We start with the proof for the causal risk
under the do-intervention. Intervening on x under the causal model given by Eq. (1) corresponds to
removing all arrows to x, which corresponds to the structural equations

z ∼ N (0, Il) , ε ∼ N (0, σ2) , y = xTβ + zTα+ ε .

In this model, z acts as additional independent noise on y through zTα ∼ N (0, ‖α‖2), which implies
that y|do(x) ∼ N (xTβ, ‖α‖2 + σ2). Equivalently, y|do(x) has the same distribution as xTβ + ε′

with ε′ ∼ N (0, σ̃2 + ω2) because ‖α‖2 + σ2 = σ̃2 + ω2. This lets us compute the causal risk of a
linear predictor β̂ ∈ Rd as

RC(β̂) = ExEy0|do(x)

(
xT β̂ − y

)2

= ExEε′
(
xT
(
β̂ − β

)
− ε′

)2

= Ex
(
xT
(
β̂ − β

))2

− 2Ex
[
xT
(
β̂ − β

)
Eε′ε′︸ ︷︷ ︸

=0

]
+ ExEε′ (ε′)

2

=
∥∥∥β̂ − β∥∥∥2

Σ
+ σ̃2 + ω2 , (ExxxT = Σ)
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which proves the claim for the causal risk. The proof for the statistical risk is analogous once we
have characterized the conditional distribution y|x under the causal model. Recall that Σ = MMT ,
Γ = M+Tα, and ω2 = ‖Γ‖2Σ. We first observe that x = Mz is a linear map of the Gaussian
distribution z ∼ N (0, Il), for which Lemma A.1 yields

z|x ∼ N (MT (MMT )+x, I −MT (MMT )+M)

and therefore zTα|x ∼ N (αTMT (MMT )+x, ‖α‖2 − αTMT (MMT )+Mα)

= N (xTΓ, ‖α‖2 − ‖Γ‖2Σ) ,

where the last equality used the identity

αTMT (MMT )+Mα = αTM+MMTM+Tα = ΓTΣΓ = ‖Γ‖2Σ = ω2 .

Since y = xTβ + zTα+ ε, it follows that

y|x ∼ N (xT (β + Γ), σ2 + ‖α‖2 − ω2) = N (xT β̃, σ̃2) ,

which concludes the proof.

B Proofs for Section 3.1

The bias-variance decomposition of the causal risk is based on the following general lemma:
Lemma B.1 (Bias-Variance Decomposition for General Norm). Consider a random variable Z
on Rd, a constant c ∈ Rd, and the general norm ‖x‖2A = xTAx for some positive-definite A ∈ Rd×d.
Then we have the decomposition

EZ ‖Z − c‖2A = ‖EZ − c‖2A + EZ ‖Z − EZZ‖2A .

An alternative form of the variance term is given by EZ ‖Z − EZZ‖2A = Tr [CovZ ·A].

Proof. Let E := EZ and µ := EZ. It is

E ‖Z − c‖2A = E ‖(Z − µ) + (µ− c)‖2A
= E ‖Z − µ‖2A + E ‖µ− c‖2A + 2E(Z − µ)T︸ ︷︷ ︸

=0

A(µ− c)

= E ‖Z − µ‖2A + E ‖µ− c‖2A ,

which proves the first part of the statement. For the second part, let ΣZ := EZZT and denote the
Hadamard product between matrices A,B ∈ Rd×d by (A�B)i,j = Ai,jBi,j . It is

E ‖Z − µ‖2A = EZTAZ − 2EZTAµ+ µTAµ

=

n∑
i,j=1

(ΣZ �A)i,j − µTAµ

= Tr [ΣZ ·A]− µTAµ (
∑n
i,j=1(A�B)i,j = Tr(A ·B))

= Tr [ΣZ ·A]− Tr
[
AµµT

]
(Tr(baT ) = aT b)

= Tr
[
(ΣZ − µµT ) ·A

]
(Tr(B) = Tr(BT ) and linearity of trace)

= Tr [CovZ ·A] . (CovZ = EZZT − µµT )

Proposition B.2 (Causal Bias-Variance Decomposition for the Ridge Estimator). For any λ > 0,
the expectation over the causal risk of the ridge regression estimator β̂λ conditioned on X admits the
bias-variance decomposition

RCX(β̂λ) = ‖EY |X β̂λ − β‖2Σ︸ ︷︷ ︸
=:BCX(β̂λ)

+EY |X‖β̂λ − EY |X β̂λ‖2Σ︸ ︷︷ ︸
=:V CX (β̂λ)

+σ̃2 + ‖Γ‖2Σ , (9)

whereBCX(β̂λ) = ‖(I−(Σ̂+λId)Σ̂)β̃−Γ‖2Σ and V CX (β̂λ) = σ̃2

n Tr[Σ̂(Σ̂+λId)
−2Σ]. The empirical

covariance matrix of X is denoted by Σ̂ := XTX/n.
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Proof. Recall that RCX(β̂λ) = EY |X
∥∥∥β̂λ − β∥∥∥2

Σ
. The first part of the statement follows directly

from Lemma B.1 with β̂λ as a random variable in Y |X and β. The remainder of the proof consists
of computing expectation and covariance of the ridge regression solution β̂λ = β̂λ(X,Y ) under
the distribution Y |X . The samples (X,Y ) are drawn from the observational distribution of the
causal model defined in Eq. (1). As shown in the proof of Proposition 2.1, the corresponding
conditional distribution is y|x ∼ N (xT β̃, σ̃2). Since (X,Y ) consist of independent draws, this
implies Y |X ∼ N (Xβ̃, σ̃2In). Together with β̂λ = (XTX + nλI)−1XTY this yields

β̂λ|X ∼ N ((XTX + nλI)−1XTXβ̃, (XTX + nλI)−1XT σ̃2InX(XTX + nλI)−1)

= N (
(

Σ̂ + λId

)−1

Σ̂β̃,
σ̃2

n

(
Σ̂ + λId

)−1

Σ̂
(

Σ̂ + λId

)−1

) .

The characterizations of BCX(β̂λ) and V CX (β̂λ) then simply follow from plugging in expectation and
covariance of β̂λ:

BCX(β̂λ) =
∥∥∥EY |X β̂λ − β∥∥∥2

Σ
=

∥∥∥∥(Σ̂ + λId

)−1

Σ̂β̃ − β
∥∥∥∥2

Σ

= ‖(I −Πλ) (β + Γ)− β‖2Σ

= ‖Πλβ − (I −Πλ)Γ‖2Σ
and, using the alternate form of the variance term from Lemma B.1,

V CX (β̂λ) = Tr
[
CovY |X β̂λ · Σ

]
= Tr

[
σ̃2

n

(
Σ̂ + λId

)−1

Σ̂
(

Σ̂ + λId

)−1

· Σ
]

=
σ̃2

n
Tr

[
Σ̂
(

Σ̂ + λId

)−2

Σ

]
,

where the last equality used that
(

Σ̂ + λId

)−1

commutes with Σ̂.

Theorem 2 (Limiting Causal Bias-Variance Decomposition for the Ridge Estimator). Let
‖β‖2 = r2, ‖Γ‖2 = ω2, 〈Γ, β〉 = η, and σ2

ε̃ = σ̃2. Then as n, d→∞ such that d/n→ γ ∈ (0,∞),
it holds almost surely in X for every λ > 0 that

BCX(β̂λ)→ BCλ := ω2 + r̃2λ2m′(−λ)− 2(ω2 + η)λm(−λ) and (7)

V CX (β̂λ)→ VCλ := σ̃2γ(m(−λ)− λm′(−λ)) , (8)

where m(λ) = ((1− γ − λ)−
√

(1− γ − λ)2 − 4γλ)/(2γλ) and r̃2 = r2 + ω2 + 2η. Therefore
RCX(β̂λ)→ RCλ := BCλ + VCλ + σ̃2 + ω2. The corresponding limiting quantities for the min-norm
interpolator can be obtained by taking the limit λ→ 0+ in equations (7) and (8), which yields

BCX(β̂0)→ BC0 =

{
ω2, γ < 1

ω2 + (r2 − ω2)(1− 1
γ ), γ > 1

, V CX (β̂0)→ VC0 =

{
σ̃2 γ

1−γ , γ < 1

σ̃2 1
γ−1 , γ > 1

.

Therefore RCX(β̂0)→ RC0 = BC0 + VC0 + σ̃2 + ω2.

Proof. From Proposition B.2, the causal risk RCX(β̂λ) can be decomposed as a sum of the causal
bias BCX(β̂λ), and causal variance V CX (β̂λ). In what follows, we derive the limiting expressions for
BCX(β̂λ) and V CX (β̂λ) to obtain the limiting causal risk for any γ ∈ (0,∞).

Limiting expressions for causal bias

BCX(β̂λ) = ‖β − E|X β̂λ‖2Σ = ‖Πλβ − (I −Πλ)Γ‖2 (Σ = I)

= ‖Πλ(β + Γ)− Γ‖2

= ‖Πλβ̃‖2 + ‖Γ‖2 − 2〈Γ,Πλ(β̃)〉
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First, let us consider the sequence of functions given by

‖Πλβ̃‖2 = ‖(I − (Σ̂ + λI)−1Σ̂)β̃‖2

=
∥∥∥λ((Σ̂ + λI)−1)β̃

∥∥∥2

(Add and subtract λI)

= λ2β̃T (Σ̂ + λI)−2β̃T

= λ2 Tr
[
β̃β̃T (Σ̂ + λI)−2

]
To derive the limiting expression for this sequence, we utilize the “derivative trick”. This technique
has been employed in a similar context in Dobriban et al. (2018). More generally similar terms
(although not identical) often also arise in the analysis of the statistical of the ridge regression
estimator and therefore one can find similar approaches to deriving the limiting expressions for such
terms in the statistical analysis for ridge regression (for example, Hastie et al. (2022), Dobriban et al.
(2018), and Dicker (2016)). Here, we include a self-contained proof of the result.

The idea relies on an application of Vitali’s convergence theorem (see Bai et al. (2010, Lemma 2.14))
to obtain the limit of derivatives of a sequence of functions analytic on some domain D ⊂ C by the
derivative of the limit of the sequence of functions. Observe that

Tr
[
(β + Γ)(β + Γ)T (Σ̂ + λI)−2

]
=

∂

∂λ
− Tr

[
(β + Γ)(β + Γ)T (Σ̂ + λI)−1

]
By recognizing the quantity (Σ̂ + λI)−1 as the resolvent Q(−λ), we can invoke the Marchenko-
Pastur Theorem due to Marčenko et al. (1967) and Silverstein (1995) which states that the Stieltjes
transform of the empirical distribution ˆm(z) of eigenvalues of Σ̂ converges almost surely to the
Stieltjes transform m(z) of the empirical spectral distribution given by the Marchenko-Pastur Law F
for any z ∈ C/R+. 2 That is, we have for all λ > 0,

1

d
Tr
[
(Σ̂ + λI)−1

]
a.s−−→ mF (−λ)

Rubio et al. (2011, Theorem 1) provide a generalization of this result which includes providing almost
sure convergence of quadratic forms of resolvents of the form uT (Σ̂− zI)v for sequences of vectors
{u} , {v} such that their outer product uvT has a bounded trace norm for any z ∈ C/R+. By this
result, it is easy to verify that for any λ > 0,

Tr
[
β̃β̃T (Σ̂ + λI)−1

]
a.s−−→ mF (−λ)r̃2

It is easy to see that the sequence of functions
{
fd(λ) = Tr

[
β̃β̃T (Σ̂ + λI)−1

]}
is analytic for

λ > 0. Furthermore, for any λ > 0, the absolute value of the sequence of functions {fd(λ)} is
uniformly bounded in d since

|fd(λ)| ≤ Tr[β̃β̃T ]
1

λ
≤ r̃2

λ
Therefore, by Vitali’s convergence theorem, it holds (almost surely) that for every λ > 0, the
derivatives of the sequence of functions f1, f2, · · · converges to the derivative of their limit and we
have

λ2 Tr
[
β̃β̃T (Σ̂ + λI)−2

]
→ λ2r̃2m′F (−λ),

where m′F (−λ) denotes the derivative of the Stieltjes transform of the Marchenko-Pastur Law
evaluated at −λ.

To obtain the limiting function of the sequence 〈Γ,Πλβ̃〉, observe that

〈Γ,Πλβ̃〉 = λ〈Γ, (Σ̂ + λI)−1β̃〉 = λTr[β̃ΓT (Σ̂ + λI)−1]
a.s−−→ λ(ω2 + η)mF (−λ),

2While the convergence result in Silverstein (1995) is stated for z ∈ C+ =
{z = u+ iv ∈ C|Im(z) = v > 0}, it can be extended to z ∈ C/R+ following standard arguments
for convergence of sequences of analytic functions (see Hachem et al. (2007, Proposition 2.2)) via Vitali’s
convergence theorem or Montel’s theorem. See Rubio et al. (2011, Proof of Theorem 1, Page 14) for an example
of this argument.
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where the limit is obtained by invoking Rubio et al. (2011, Theorem 1).

Therefore, we have that as n, d→∞ and d/n→ γ,

BCX(β̂λ)
a.s−−→ ω2 + r̃2λ2m′F (−λ)− 2(ω2 + η)λmF (−λ).

Limiting expressions for causal variance.

By recalling the expression for variance we have

V CX (β̂λ) =
σ̃2

n
Tr
[
Σ̂(Σ̂ + λI)−2

]
=
σ̃2

n
Tr
[
(Σ̂ + λI − λI)(Σ̂ + λI)−2

]
= σ̃2 d

n
Tr

[
1

d
(Σ̂ + λI)−1 − 1

d
λ(Σ̂ + λI)−2

]

By Marchenko-Pastur Theorem (Marčenko et al., 1967; Silverstein, 1995), we already know that for
any λ > 0

Tr

[
1

d
(Σ̂ + λI)−1

]
→ mF (−λ)

Further, recognizing that

−Tr

[
1

d
(Σ̂ + λI)−2

]
=

∂

∂λ
Tr

[
1

d
(Σ̂ + λI)−1

]
and that |Tr[ 1

d (Σ̂ + λI)−1]| ≤ 1
λ , we can again invoke Vitali’s convergence theorem to obtain the

limit of the derivatives by taking the derivative of the limit to obtain

V CX (β̂λ) = σ̃2γ(mF (−λ)− λm′F (−λ)).

Marchenko-Pastur Law admits an explicit form under our model assumptions (see for example, (Bai
et al., 2010, Page 52)) for any z ∈ C+ (which can be extended by analytic continuity arguments for
any z ∈ C/R+) and is given by

mF (z) =
1− γ − z −

√
(1− γ − z)2 − 4γz

2γz
.

Following arguments similar to Dobriban et al. (2018) and Hastie et al. (2022) for exchanging the
limits n, d→∞ and λ→ 0+, we can derive the limiting expressions for the causal bias and variance
of the min-norm estimator.

C Asymptotics for the Statistical Risk

The following theorems describes the limiting expressions for the statistical risk analogue to the
causal results from Theorem 3.1.
Theorem C.1 (Limiting Statistical Bias-Variance Decompositions). Let β̂0 be the min-norm in-
terpolator. Then as n, d→∞ such that d/n→ γ ∈ (0,∞), it holds almost surely in X that

BSX(β̂0)→ BS0 =

{
0, γ < 1

r̃2(1− 1
γ ), γ > 1

, V SX (β̂0)→ VS0 =

{
σ̃2 γ

1−γ , γ < 1

σ̃2 1
γ−1 , γ > 1

(10)

and therefore, RSX(β̂0)→ RS0 = BS0 + VS0 + σ̃2.
For λ > 0 and the corresponding ridge regression estimator β̂λ, it holds almost surely in X that

BSX(β̂λ)→ BSλ = r̃2λ2m′(−λ) , V SX (β̂λ)→ VSλ = σ̃2γ(m(−λ)− λm′(−λ)), (11)

where m(λ) =
(1−γ−λ)−

√
(1−γ−λ)2−4γλ

2γλ . Therefore, RSX(β̂λ)→ RSλ = BSλ + VSλ + σ̃2.

Proof. As stated in the main paper, this result for the statistical model was already proven in Hastie
et al. (2022).
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D Proof of Proposition 3.2

Proposition 3.2 (Causal Risk Increases with Confounding Strength). Consider the family of
causal models parameterized as in (1) that entail the same observational distribution. Let C1 and C2

be two such causal models with confounding strengths ζ1 and ζ2 and alignments η1 and η2 (defined
in Theorem 3.1), respectively. Then for all λ, γ ∈ (0,∞),

ζ1 > ζ2, η1 ≤ η2 =⇒ RC1

λ > RC2

λ .

In particular, for any fixed η, the measure of confounding strength ζ establishes a strict ordering of
causal models. This includes the ICM under which η = 0.

Proof. For any fixed λ ∈ (0,∞), the difference in limiting causal risks incurred by β̂λ on causal
models C1 and C2 is given by

RC1 (γ, λ)−RC2 (γ, λ) = 2r̃2
(
(
ω2

1

r̃2
− ω2

2

r̃2
)− (ζ1 − ζ2)λm(−λ)

)
= 2r̃2

(
(ζ1 − ζ2)(1− λm(−λ))− (η1 − η2)

)
= 2r̃2

(
(ζ1 − ζ2)(1− λm(−λ))− (η1 − η2)

)
Since, as shown below, (1− λm(−λ)) > 0 for any λ, γ ∈ (0,∞), it holds that

ζ1 > ζ2, η1 ≤ η2 =⇒ RC1 (γ, λ) > RC2 (γ, λ).

1− λm(−λ) = 1−
γ − 1− λ+

√
(1 + λ+ γ)2 − 4γ

2γ

=
(1 + γ + λ)−

√
(1 + λ+ γ)2 − 4γ

2γ

> 0 (since γ > 0)

E Proofs for Sections 4 and 5

We start with a technical lemma that we need in the proofs of the following theorems. It controls a
function that appears in the derivative of the limiting causal riks ∂λRCλ .
Lemma E.1. For λ ≥ 0 and γ, S > 0 consider the function

f(λ, γ, S) = 2γ
λ− S−1γ

(1 + λ+ γ −
√

(1 + λ+ γ)2 − 4γ)((1 + λ+ γ)2 − 4γ)
.

This function has the following properties

(i) f is increasing in λ,

(ii) f(λ, γ, S) −−−−→
λ→∞

1, and

(iii) f(λ, γ, S) −−−→
λ→0


−S−1 γ

(γ−1)2 , γ < 1

−∞, γ = 1

−S−1 γ2

(γ−1)2 , γ > 1

.

Proof. For readability, we use the shorthand notations x = 1 + λ+ γ and ϕ = x2− 4γ, under which
f is given by

f(λ, γ, S) = 2γ
λ− S−1γ

(x−√ϕ)ϕ
.
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(i) The partial derivative of f in λ is given by

∂λf(λ, γ, S) = 2γ
(x−√ϕ)ϕ− (λ− S−1γ)

[
(1− x√

ϕ )ϕ+ 2x(x−√ϕ)
]

(x−√ϕ)2ϕ2

=
2γ

(x−√ϕ)ϕ2︸ ︷︷ ︸
>0

[
ϕ− (λ− S−1γ)(2x−√ϕ)

]︸ ︷︷ ︸
=:g(λ)

,

where the first fraction is positive because ϕ > x2 and x−√ϕ > 0. It is therefore sufficient to show
g(λ) ≥ 0 for ∂λf(λ, γ, S) ≥ 0. We first get rid of the S term via

g(λ) = ϕ− (λ− S−1γ) (2x−√ϕ)︸ ︷︷ ︸
≥0

≥ ϕ− λ(2x−√ϕ) .

Finally, we lower bound
√
ϕ in two different ways depending on γ. For γ ≤ 1, it is ϕ = (1 + λ−

γ)2 + 4γλ and therefore
√
ϕ ≥ 1 + λ− γ = x− 2γ. This yields

g(λ) ≥ ϕ− λ(2x−√ϕ) ≥ ϕ− λ(x+ 2γ) = (1− γ)λ+ (γ − 1)2 ≥ 0 .

For γ > 1, it is ϕ = (−1 + λ+ γ)2 + 4λ and therefore
√
ϕ ≥ −1 + λ+ γ = x− 2. This yields

g(λ) ≥ ϕ− λ(2x−√ϕ) ≥ ϕ− λ(x+ 2) = (γ − 1)λ+ (γ − 1)2 ≥ 0 .

In summary, we have shown ∂λf(λ, γ, S) ≥ g(λ) ≥ 0.

(ii) With the first order Taylor approximation 1−
√

1− h = 1/2h+O(h2), we get

(x−√ϕ)ϕ =

(
1−

√
1− 4γ

x2

)
xϕ =

(
2γ

x2
+O(λ−4)

)
xϕ = 2γx+O(λ−1) = 2γλ+O(1) ,

which yields

f(λ, γ, S) = 2γ
λ− S−1γ

(x−√ϕ)ϕ
=

2γλ− 2S−1γ2

2γλ+O(1)
−−−−→
λ→∞

1 .

(iii) The denominator satisfies

(x−√ϕ)ϕ −−−→
λ→0

(1 + γ − |γ − 1|)(γ − 1)2 =


2γ(γ − 1)2, γ < 1

0, γ = 1

2γ − 1)2, γ > 1

.

Since λ− S−1γ −−−→
λ→0

S−1γ < 0, the claim follows.

Recall that the optimal causal regularization is defined as the minimizer of the causal risk λ∗C(γ) =
arg infλ∈(0,∞)RCλ . The following lemma distinguishes between three different regimes of the risk
functionRCλ depending on the confounding strength ζ.

Lemma E.2 (Regimes of the Optimal Causal Regularization). For any causal model parameter-
ized as in (1), we can distinguish the following regimes of λ∗C(γ):

1. The function λ 7→ RCλ is increasing (which implies λ∗C(γ) = 0), if and only if γ 6= 1 and

ζ ≤ −SNRS
−1 γmax {1, γ}

(1− γ)2
.

2. For any γ > 0, the function λ 7→ RCλ is decreasing (which implies λ∗C(γ) = ∞) if and only if
ζ ≥ 1.
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3. For any ζ ∈ R, γ ∈ (0,∞) which do not satisfy the conditions 1. or 2., it is λ∗C(γ) ∈ (0,∞) and
it λC(γ) satisfies the critical point condition ∂λRCλ (λ∗C(γ)) = 0, or equivalently,

0 = λ∗C(γ)− SNRS
−1 γ − ζ

2γ

(
1 + λ∗C(γ) + γ −

√
ϕ(λ∗C(γ))

)
ϕ(λ∗C(γ)) ,

where ϕ(λ) = (1 + λ+ γ)2 − 4γ.

Proof. We use the shorthand notation ϕ(λ) = (1 + λ+ γ)2 − 4γ. Recall the confounding strength
ζ = (r2 + η)/r̃2 and the statistical signal-to-noise ratio SNRS = r̃2/σ̃2. The derivative of the
limiting causal riskRCλ in λ is given by

∂λRCλ =
2r̃2

ϕ(λ)3/2

(
λ− SNRS

−1 γ − ζ

2γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ)

)
1. The first condition ∂λRCλ ≥ 0 for all λ > 0 can be equivalently rearranged for the confounding

strength as

ζ ≤ 2γ
λ− SNRS

−1 γ(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ)

= f(λ, γ, SNRS) ,

where f is the function investigated in Lemma E.1. This in turn is equivalent to taking the
infimum over λ, which is given by Lemma E.1 as

ζ ≤ inf
λ>0

f(λ, γ, SNRS) = −SNRS
−1 γmax{1, γ}

(1− γ)2
.

Note that for γ = 1 this infimum is −∞, so the condition cannot be satisfied for any ζ.

2. The proof of the second claim is analogue to the first with the reverse inequality ∂λRCλ ≤ 0.
Rearranging for ζ and using Lemma E.1 yields the equivalent condition

ζ ≥ sup
λ>0

f(λ, γ, SNRS) = 1 .

3. For the third claim, assume that the pair of ζ and γ satisfies neither of the first points. We will
use this to show that the derivative at 0 is negative ∂λRCλ (0) < 0 and the derivative ∂λRCλ for
sufficiently large λ is positive. This together then implies that the minimum λ∗C(γ) of the function
RCλ is indeed attained at a finite value in (0,∞), and RCλ satisfies the critical point condition
∂λRCλ (λ∗C(γ)) = 0.

For the derivative at 0, assume that the converse is true, that is, ∂λRCλ (0) ≥ 0. Rearranging this
condition for ζ yields similarly to the first case of this lemma that ζ ≤ f(0, γ, SNRS). However
Lemma E.1 states that f is increasing in λ, which means that this condition already implies
ζ ≤ f(λ, γ, SNRS) for all λ. This means that the pair ζ, γ would satisfy the condition of the first
case, which contradicts our assumption.

For the behavior of large λ, observe that the sign of the derivative is determined by the sign of the
term λ− SNRS

−1 γ − ζ
2γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ). As derived in the proof of Lemma E.1,

we have the asymptotic behavior(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ) = 2γλ+O(1) ,

which yields

λ− SNRS
−1 γ − ζ

2γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ) = (1− ζ)λ+O(1) .

Since the pair ζ, γ does by assumption not satisfy the conditions of the second case, we have
ζ < 1, which means that the above term is eventually positive.
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Theorem 4.1 (Optimal Regularization can be Negative). For any causal model parameterized as
in (1), the following cases distinguish between whether the min-norm interpolator is optimal or not.

1. For negative confounding strength ζ < 0 the optimal causal regularization λ∗C can be 0 or even
negative. A necessary and sufficient condition for λ∗C ≤ 0 depends on the difference in causal
and statistical signal-to-noise ratios and is given by

SNRC−SNRS ≥
γmax {1, γ}

(1− γ)2
.

2. For positive confounding strength ζ > 0 the optimal causal regularization is positive λ∗C > 0
andRC0 > RCλ∗C , hence regularization is beneficial. This includes the ICM.

Proof. The first statement of the theorem is a special case of Theorem 5.2. The necessary and
sufficient condition for λ∗C = 0 stated there is equivalently reformulated as

ζ ≤ −SNRS
−1 γmax {1, γ}

(1− γ)2

⇔ −SNRS ζ ≥
γmax {1, γ}

(1− γ)2

⇔ SNRC−SNRS ≥
γmax {1, γ}

(1− γ)2
,

where the last part used the equality SNRC = (1− ζ) SNRS. The statement about negative λ∗C refers
to the fact that the derivative of the risk at 0 can be positive, that is, ∂RCλ (0) > 0. This was shown
in the proof of Lemma E.2 and suggests that without our restriction λ∗C ≥ 0, a negative value of λ
would yield an even smaller risk.

For the second statement, observe that the condition ζ > 0 implies the cases 2. or 3. from Lemma E.2.
In particular, this implies λ∗C > 0. The proof of Lemma E.2 showed that in both of these cases it
holds ∂λRCλ (0) < 0, which means that the causal limiting risk BCλ is strictly decreasing in a small
neighborhood around 0. In particular, this implies that the minimal risk is strictly smaller than the
risk at 0, that is,RC0 > RCλ∗C .

Theorem 5.1 (Optimal Statistical vs. Causal Regularization). For any causal model parameter-
ized as in (1), the condition ζ = 0 defines a phase transition for the optimal regularization via

ζ < 0 ⇐⇒ λ∗C < λ∗S , ζ = 0 ⇐⇒ λ∗C = λ∗S , and ζ > 0 ⇐⇒ λ∗C > λ∗S .

In particular under the ICM, the optimal causal regularization λ∗C is always strictly larger than the
optimal statistical regularization λ∗S , unless ζ = 0, in which case they coincide.

Proof. Lemma E.2 distinguishes between three different regimes of ζ. The first two regimes yield

ζ ≤ −SNRS
−1 γmax {1, γ}

(1− γ)2
=⇒ λ∗C = 0 and 1 ≤ ζ =⇒ λ∗C =∞ .

Combined with λ∗S = SNRS
−1 γ ∈ (0,∞), these regimes agree with the claim in the theorem. It

remains to show that the theorem also holds for the last regime −SNRS
−1 γmax {1,γ}

(1−γ)2 < ζ < 1. In
this regime according to Lemma E.2, the optimal causal regularization λ∗C satisfies the critical point
condition

0 = λ∗C − SNRS
−1 γ − ζ

2γ

(
1 + λ∗C + γ −

√
ϕ(λ∗C)

)
ϕ(λ∗C)

⇔ λ∗C − λ∗S =
ζ

2γ

(
1 + λ∗C + γ −

√
ϕ(λ∗C)

)
ϕ(λ∗C) .

Since the term 1/(2γ)
(
1 + λ∗C + γ −

√
ϕ(λ∗C)

)
ϕ(λ∗C) is positive, the sign of λ∗C−λ∗S is determined

by the sign of ζ as claimed in the theorem.
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Theorem 5.2 (Increasing Confounding Strength Requires Stronger Regularization). Consider
the family of causal models parameterized as in (1) that entail the same observational distribution.
The optimal causal regularization λ∗C only depends on the confounding strength ζ and λ∗C is an
increasing function in ζ. More specifically, using % = −SNRS

−1 γmax {1, γ}/(1− γ)2:

% < ζ < 1 =⇒ λ∗C ∈ (0,∞) with ∂ζλ∗C > 0 ,

λ∗C = 0 if ζ ≤ % and λ∗C =∞ for ζ ≥ 1.

Proof. The theorem follows directly from Lemma E.2, except for the statement about λ∗C being
strictly increasing in ζ. In the corresponding regime, Lemma E.2 states that λ∗C satisfies the critical
point condition ∂λRCλ (λ∗C) = 0, which we will use to show that the derivative of λ∗C in ζ is strictly
positive. For readability, we use the notation x(ζ) = 1 + λ∗C(ζ) + γ and ϕ(ζ) = x(ζ)2 − 4γ. The
optimal causal regularization λ∗C(ζ) satisfies the critical point condition

0 = x(ζ)− (1 + γ + SNRS
−1 γ)− ζ

2γ

(
x(ζ)−

√
ϕ(ζ)

)
ϕ(ζ) =: g(x(ζ), ζ) .

Rearranging this equation yields

ζ

2γ

(
x(ζ)−

√
ϕ(ζ)

)
=
x(ζ)− (1 + γ + SNRS

−1 γ)

ϕ(ζ)
. (12)

The partial derivatives of the function g = g(x, ζ) evaluated at (x(ζ), ζ) are given by

∂ζg(x(ζ), ζ) = − 1

2γ

(
x(ζ)−

√
ϕ(ζ)

)
ϕ(ζ) < 0

and

∂xg(x(ζ), ζ) = 1− ζ

2γ

[(
1− x(ζ)√

ϕ(ζ)

)
ϕ(ζ) + 2x(ζ)

(
x(ζ)−

√
ϕ(ζ)

)]

= 1− ζ

2γ

(
x(ζ)−

√
ϕ(ζ)

)(
2x(ζ)−

√
ϕ(ζ)

)
= 1− x(ζ)− (1 + γ + SNRS

−1 γ)

ϕ(ζ)

(
2x(ζ)−

√
ϕ(ζ)

)
(Using Eq. (12))

> 1−
x(ζ)− 2

√
γ

ϕ(ζ)

(
2x(ζ)−

√
ϕ(ζ)

)
. (1 + γ + SNRS

−1 γ > 2
√
γ)

Since ϕ(ζ) = (x(ζ)− 2
√
γ)(x(ζ) + 2

√
γ) < (x(ζ) + 2

√
γ)2, it further follows

∂xg(x(ζ), ζ) > 1−
x(ζ)− 2

√
γ

(x(ζ)− 2
√
γ)(x(ζ) + 2

√
γ)

(2x(ζ)− (x(ζ) + 2
√
γ))

= 1−
x(ζ)− 2

√
γ

x(ζ) + 2
√
γ

> 0 .

With these results, we can take the derivative in ζ of the critical point condition 0 = g(x(ζ), ζ) and
obtain

0 =
d

dζ
g(x(ζ), ζ) = ∂xg(x(ζ), ζ)︸ ︷︷ ︸

>0

·dx
dζ

(ζ) + ∂ζg(x(ζ), ζ)︸ ︷︷ ︸
<0

·1 ,

which yields 0 < dx
dζ (ζ) =

dλ∗C
dζ (ζ). This implies that λ∗C is increasing in ζ and concludes the

proof.
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F Shift interventions.

F.1 Causal risk under relative interventions.

Here, we characterize the causal risk of any linear predictor under relative or shift interventions.
Similar to the definition of causal risk under hard interventions, to isolate the effects of the choice of
α on the risk, we draw perturbations from the marginal of x. Formally, intervening on x under the
causal model given by Eq. (1) corresponds to the structural equations

z ∼ N (0, Il) , ε ∼ N (0, σ2) , ν ∼ N (0,MMT ) , x = Mz , x′ = x+ν , y = x′Tβ+zTα+ε .

Similar to the proof of Proposition 2.1, the key step here is to characterize the distribution of y under
the shift intervention y|do(x′ := x+ ν) for some ν chosen independently of x.

This lets us compute the risk of a linear predictor β̂ ∈ Rd under a shift intervention as

RC(β̂) = EνExEy0|do(x′=x+ν)

(
xT β̂ − y

)2

= EνEx,z,ε
(

(β̂ − β)T (x+ ν) + αT z + ε
)2

= Eν
(

(β̂ − β)T ν
)2

+ ExEz,ε|x
(

(β̂ − β)Tx+ αT z + ε
)2

=
∥∥∥β̂ − β∥∥∥2

Σ
+
∥∥∥β̂ − β̃∥∥∥2

Σ
+ σ̃2

To obtain the last equality, refer to the derivation of the statistical and causal risks in Proposition 2.1.
The expected risk under conditioning of X is then given by

EY |X‖β̂ − β‖2Σ + EY |X‖β̂ − β̃‖2Σ . (13)

F.2 Asymptotics and Optimal Ridge Regularization.

The limiting risk of any ridge estimator can then be directly derived from Theorems 3.1 and C.1.
Theorem F.1 (Limiting Causal Risk of the Ridge Estimator Under Shift Interventions). Let
‖β‖2 = r2, ‖Γ‖2 = ω2, 〈Γ, β〉 = η, and fix σ̃2. Then as n, d→∞ such that d/n→ γ ∈ (0,∞), it
holds almost surely in X for every λ > 0 that

RCX(β̂λ)→ RCλ = ω2 + 2r̃2λ2m′(−λ)− 2(ω2 + η)λm(−λ) + 2σ̃2γ(m(−λ)− λm′(−λ)) ,

where m(λ) = ((1 − γ − λ) −
√

(1− γ − λ)2 − 4γλ)/(2γλ) and r̃2 = r2 + ω2 + 2η. The
corresponding limiting quantities for the min-norm interpolator can be obtained by taking the limit
λ→ 0+.
Lemma F.2 (Regimes of the Optimal Causal Regularization Under Shift Interventions). For
any causal model parameterized as in (1), we can distinguish the following regimes of λ∗C(γ):

1. The function λ 7→ RCsoft

λ is increasing (which implies λ∗Csoft
(γ) = 0), if and only if γ 6= 1 and

ζ ≤ −2 SNRS
−1 γmax {1, γ}

(1− γ)2
.

2. For any γ > 0, the function λ 7→ RCsoft

λ is decreasing (which implies λ∗Csoft
(γ) =∞) if and only

if ζ ≥ 2.

3. For any ζ ∈ R, γ ∈ (0,∞) which do not satisfy the conditions 1. or 2., it is λ∗Csoft
(γ) ∈ (0,∞)

and it λ∗Csoft
(γ) satisfies the critical point condition ∂λR

Csoft

λ (λ∗Csoft
(γ)) = 0, or equivalently,

0 = λ∗Csoft
(γ)− SNRS

−1 γ − ζ

4γ

(
1 + λ∗Csoft

(γ) + γ −
√
ϕ(λ∗Csoft

(γ))
)
ϕ(λ∗Csoft

(γ)) ,

where ϕ(λ) = (1 + λ+ γ)2 − 4γ.
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Proof. We use the shorthand notation ϕ(λ) = (1 + λ+ γ)2 − 4γ. Recall the confounding strength
ζ = (r2 + η)/r̃2 and the statistical signal-to-noise ratio SNRS = r̃2/σ̃2. The derivative of the
limiting causal risk under shift interventionsRCsoft

λ in λ is given by

∂λRCsoft
λ =

2r̃2

ϕ(λ)3/2

(
λ− SNRS

−1 γ − ζ

4γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ)

)
1. The first condition ∂λRCsoft

λ ≥ 0 for all λ > 0 can be equivalently rearranged for the confounding
strength as

ζ ≤ 4γ
λ− SNRS

−1 γ(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ)

= 2f(λ, γ, SNRS) ,

where f is the function investigated in Lemma E.1. This in turn is equivalent to taking the
infimum over λ, which is given by Lemma E.1 as

ζ ≤ inf
λ>0

2f(λ, γ, SNRS) = −2 SNRS
−1 γmax{1, γ}

(1− γ)2
.

Note that for γ = 1 this infimum is −∞, so the condition cannot be satisfied for any ζ.

2. The proof of the second claim is analogue to the first with the reverse inequality ∂λRCsoft
λ ≤ 0.

Rearranging for ζ and using Lemma E.1 yields the equivalent condition

ζ ≥ sup
λ>0

2f(λ, γ, SNRS) = 2 .

3. For the third claim, assume that the pair of ζ and γ satisfies neither of the conditions from above.
We will use this to show that the derivative at 0 is negative ∂λRCsoft

λ (0) < 0 and the derivative
∂λRCsoft

λ for sufficiently large λ is positive. This together then implies that the minimum λ∗Csoft
(γ)

of the functionRCsoft
λ is indeed attained at a finite value in (0,∞), andRCsoft

λ satisfies the critical
point condition ∂λRCsoft

λ (λ∗Csoft
(γ)) = 0.

For the derivative at 0, assume that the converse is true, that is, ∂λRCsoft
λ (0) ≥ 0. Rearranging this

condition for ζ yields similarly to the first case of this lemma that 2ζ ≤ f(0, γ, SNRS). However
Lemma E.1 states that f is increasing in λ, which means that this condition already implies
ζ ≤ 2f(λ, γ, SNRS) for all λ. This means that the pair ζ, γ would satisfy the condition of the
first case, which contradicts our assumption.

For the behavior of large λ, observe that the sign of the derivative is determined by the sign of the
term λ− SNRS

−1 γ − ζ
4γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ). As derived in the proof of Lemma E.1,

we have the asymptotic behavior(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ) = 2γλ+O(1) ,

which yields

λ− SNRS
−1 γ − ζ

4γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ) = (1− ζ/2)λ+O(1) .

Since the pair ζ, γ does by assumption not satisfy the conditions of the second case, we have
ζ < 1, which means that the above term is eventually positive.

Theorem F.3 (Optimal Causal Regularization Under Shift Interventions). For any causal model
parameterized as in (1),

1. If ζ ≥ 0, then the optimal causal regularization under shift interventions λ∗Csoft
satisfies λ∗S ≤

λ∗Csoft
≤ λ∗C .
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2. If ζ < 0, then λ∗C ≤ λ∗Csoft
≤ λ∗S .

Indeed, the optimal causal regularization under shift interventions satisfies λ∗Csoft
= λ∗S+(λ∗C−λ∗S)/2.

Proof. Lemma E.2 distinguishes between three different regimes of ζ. The first two regimes yield

ζ ≤ −2 SNRS
−1 γmax {1, γ}

(1− γ)2
=⇒ λ∗C = 0 and 2 ≤ ζ =⇒ λ∗C =∞ .

Combined with λ∗S = SNRS
−1 γ ∈ (0,∞), these regimes agree with the claim in the theorem. It

remains to show that the theorem also holds for the last regime −2 SNRS
−1 γmax {1,γ}

(1−γ)2 < ζ < 2. In
this regime according to Lemma E.2, the optimal causal regularization λ∗C satisfies the critical point
condition

0 = λ∗Csoft
− SNRS

−1 γ − ζ

4γ

(
1 + λ∗Csoft

+ γ −
√
ϕ(λ∗Csoft

)
)
ϕ(λ∗Csoft

)

⇔ λ∗Csoft
− λ∗S =

ζ

4γ

(
1 + λ∗Csoft

+ γ −
√
ϕ(λ∗Csoft

)
)
ϕ(λ∗Csoft

) .

Similarly, we know from the proof of Theorem 5.1 λ∗C satisfies

0 = λ∗C − SNRS
−1 γ − ζ

2γ

(
1 + λ∗C + γ −

√
ϕ(λ∗C)

)
ϕ(λ∗C)

⇔ λ∗C − λ∗Csoft
=

ζ

4γ

(
1 + λ∗Csoft

+ γ −
√
ϕ(λ∗Csoft

)
)
ϕ(λ∗Csoft

) .

Since the term 1/(2γ)
(

1 + λ∗Csoft
+ γ −

√
ϕ(λ∗Csoft

)
)
ϕ(λ∗Csoft

) is positive, the sign of λ∗Csoft
−λ∗S and

λ∗C − λ∗Csoft
is determined by the sign of ζ as claimed in the theorem.
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Figure 5: Causal risk of the minimum norm l2 interpolator and the (causally)optimally regularized
ridge regressor under a student-t distribution with unbounded 4th moments (3 degrees of freedom,
left), a student-t distribution with bounded 4th moments (10 degrees of freedom, middle), a mixture
of Gaussians (right). We choose the parameters d = 300, l = 350, statistical signal r̃2 = 5, statistical
noise σ̃2 = 1, causal noise σ2 = .5 and confounding strength ζ = 0.5. For Gaussian mixtures,
we consider a (centered and normalized) mixture of k = 5 Gaussians. Each individual mixture
component has mean µi ∼ N (0l,

k2

(k−1)lIl) and identity covariance Covi = Il.

The analysis of this paper can be extended beyond the Gaussian setting by considering random
variables generated by finite mixtures of Gaussians. The analysis can get considerably more technical
and is left as future work, but we include a brief discussion here. Due to the Universality phenomenon
in the high-dimensional limit, we believe that our limiting expressions (and the qualitative messages
derived henceforth) would be rather robust to shifts in the marginal distribution as long as moments
of order (4 + δ) for some δ > 0 are bounded. We conducted experiments to verify this claim and
the corresponding results can be found in Figure 5. These experiments compare our theoretically
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derived asymptotic risks with finite-sample risks of the min-norm interpolator and causally optimally
regularized ridge regressor. Instead of Gaussian confounders z ∼ N (0, Il), we only fix the first two
moments 0 and Il and generate z such that E[z] = 0, Cov[z] = I from heavy-tailed multivariate
t-distribution with different degrees of freedom, and finite mixture of Gaussians. Each plot shows the
causal risk of min-norm interpolator and optimally regularized ridge regressor based on finite samples
along with our theoretical asymptotic predictions. Our experiments show that, for distributions with
finite 4th moments, the finite-sample risks closely match the theoretical results.
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