
Supplementary Material for
BILCO: An Efficient Algorithm for Joint Alignment of

Time Series

Xuelong Mi1, Mengfan Wang1, Alex Bo-Yuan Chen2, Jing-Xuan Lim2,
Yizhi Wang1, Misha Ahrens2, Guoqiang Yu1

1Dept. of Electrical and Computer Engineering, Virginia Tech
2Howard Hughes Medical Institute, Janelia Research Campus

1{mixl18,mengfanw,yzwang,yug}@vt.edu
2{chena,limj2,ahrensm}@janelia.hhmi.org

Contents

S1 Proofs of lemmas and theorems 3

S1.1 Proof of Lemma 1 . 3

S1.2 Proof of Lemma 2 . 3

S1.3 Proof of Lemma 3 . 4

S1.4 Proof of Lemma 4 . 4

S1.5 Proof of Lemma 5 . 4

S1.6 Proof of Lemma 6 . 4

S1.7 Proof of Lemma 7 . 5

S1.8 Proof of Theorem 1 . 5

S1.9 Additional lemmas and proofs . 5

S1.10Duality between DTW graph and GTW subgraph 6

S2 Algorithms 6

S2.1 Graph conversion . 7

S2.2 DP on DTW graph . 7

S2.3 “Drain” operation . 9

S2.4 “Discharge” operation . 9

S2.5 “Split” operation . 10

S2.6 Gap-relabel heuristic . 10

S3 Redundancy in push-relabel method 10

S4 Illustrative example 11

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

S5 Implementation 11

S5.1 Implementation of peer methods . 11

S5.2 Implementation of BIdirectional Pushing with Linear Component Operations
(BILCO) method . 11

S5.3 Memory usage estimation . 11

S6 Experiments 13

S6.1 Hyperparameter setting . 13

S6.2 Setting for synthetic data . 13

S6.3 Setting for application to calculating signal propagation and results 15

S6.4 Setting for extracting depth information and results 15

S6.5 Setting for signature identification and results . 15

S6.6 Complementary results . 16

2

S1 Proofs of lemmas and theorems

In this section, we show the proofs for lemmas and theorem in the main body of the paper. In addition,
some new lemmas and theorems are given for a better understanding of our method.

S1.1 Proof of Lemma 1

Definition: We define the edges in graphical time warping (GTW) subgraph (Fig.1(c)(d)) as “forward
edges”, which are dual to edges in dynamic time warping (DTW) graph (Fig.1(b)). Their reverse
edges are with infinite capacities due to the GTW structure.

Lemma 1: If two nodes are in the same component, then there is at least one path linking them.

Proof: By definition, a component is segmented by two adjacent cuts in one GTW subgraph. The
nodes inside a component are connected by forward edges. For two nodes v and w, there must be one
node u bridging v and w, so that (1) u could reach both v and w, or (2) both v and w could reach
u, or (3) one of v or w could reach u, and u could reach another node. Since the component is one
subset of the GTW subgraph, the capacities of all reverse edges are infinite. For any pair of nodes
(v′, w′), if v′ could reach node w′ through path consists of positive-direction edges, v′ could also be
reached by w′ through reverse path. Thus, in any case above, v could reach w through u. ■

S1.2 Proof of Lemma 2

We claim the following two statements before proving Lemma 2. They are related to Fig.3 in the
main body.

Statement 1: To solve the max-flow/min-cut problem, the flows on Ecross can be converted to extra
edges linking to the source (entering flow) or linking to the sink (outgoing flow) whose capacity is
the same as the amount of flow on Ecross (Fig.3(a)(b)).

Proof: This statement can be proved by the fact that all extra edges can be saturated when achieving
max-flow. Due to the assumption of our algorithms, the graph conversion is only done for active
components before pushing out. Thus, the components still have more excess to push out even with
outgoing flows on Ecross. By converting the outgoing flows to edges linking to sink with the capacities
of the same amount, all such edges will be saturated to achieve the max flow. Regarding entering
flows on Ecross, they can be seen as excess received from neighboring GTW subgraphs. Thus, by
converting them to edges linking to the source, the edges can also be saturated and accumulate within
the component. The accumulation can be seen as excess flows from the source outside the component
to the source within the component. Therefore, both extra edges linking to the source or linking to
the sink can be saturated when achieving the max-flow and the flows on Ecross are converted. ■

Statement 2: If node v has an extra edge with capacity a linking to the sink t in GTW subgraph,
then such an edge can be incorporated by adding weight a to all edges above v in the same column of
DTW graph. Similarly, an extra edge on v linking to the source can be incorporated into the edges
below v in the same column of DTW graph (Fig.3(b)-(f)). Before and after such incorporation for
one node v, the corresponding cut values/path costs are the same.

Proof: Assume G = {V,E} is one single GTW subgraph and G′ = {V,E ∪ (v, t)} is one graph
with extra edge on v linking to the sink t with capacity a. Let P be one arbitrary warping path on the
DTW graph (dual graph of G) and its cost be cP . Its corresponding cut in G will segment V into two
parts VS and VT , and has the same cost cP =

∑
(v,w)|v∈S,w∈T c(v, w) due to the duality. Assume c′P

is the cost of same-location cut in G′. If P is higher than v, then c′P = cP + a since v is classified to
the VS in G′ and c′P will count one more edge c(v, t) (Fig.3(c)). If P is lower than v, then c′P = cP
since u is classified to the VT in G′ and no impact on the cost. Thus, all paths above the node v
will increase cost a if v links to t with capacity a. By adding weight a on all the edges (right or
inclined edges) above v in its column on DTW graph (Fig.3(d)(e)), the dual graph of modified DTW
graph (Fig.3(e)(f)) is equivalent to G′. Similarly, all paths below the node v will increase cost a if
v links to s with capacity a. To guarantee the equivalency, the edges below v should add weight a
on DTW graph. Then, the cost of any warping path in the modified DTW graph is the same as its
corresponding cut in G′. ■

Lemma 2: The corresponding cut values/path costs before and after graph conversion are the same.

3

Proof: By statement 1, all the flows on Ecross can be converted to the edges linking to the source
or sink. Then by statement 2, the extra edge on any node can be incorporated without changing the
values of cuts in the same location. Thus, by incorporating all extra edges, the corresponding cut
values/path costs before and after graph conversion are the same. ■

S1.3 Proof of Lemma 3

Lemma 3: The amount of maximum possible excess on node v is the min-cut value in residual graph
by taking v as sink.

Proof: The amount of maximum excess of one node v can carry is the max-flow from s to v in the
residual subgraph after pushing flow to sink within the GTW subgraph. By duality between max-flow
and min-cut, the value is also equal to the min-cut value between s and v. ■.

In residual graph, the cost of min-cut above v (between v and t) is 0, the cost of min-cut below v
(between s and v) is the excess. Regarding the original graph, the amount of maximum possible
excess is the difference between the min-cut value below v and the min-cut value above v, since s
locates on the bottom-right side and t locates on the top-left side of GTW subgraph. Note that any
cut in GTW subgraph is corresponding to one path in its dual DTW graph. Therefore, working on
the modified DTW graph (Fig.3(e)), the excess value can be obtained by calculating the difference
between the shortest path below v and the shortest path above v (the true shortest one), as shown in
Algo.4.

S1.4 Proof of Lemma 4

Lemma 4: All nodes in the same component have the same label.

Proof: By Lemma 1, for any pair v and w in the same component, there are always path
(v, v1, v2, ..., w) and path (w,w1, w2, ..., v) with no cross edge. By Equation (2a) in the main
body, d(v) ≤ d(v1) ≤ ... ≤ d(w) and d(w) ≤ d(w1) ≤ ... ≤ d(v) ⇒ d(v) = d(w). Thus, all the
nodes in the same component are with the same label. ■

S1.5 Proof of Lemma 5

Lemma 5: The new labeling function is consistent with generic push-relabel labeling function if
treating each component as one unit.

Proof: If the validity of the new labeling function holds, then the validity of the generic push-relabel
labeling function also holds by treating each component as one unit. Assume v ∈ R1, w ∈ R2,
the residual capacity of (v, w) is positive, then R1 → R2. If components R1 and R2 are in
neighboring subgraphs, then by Equation (2b) d(v) ≤ d(w)+ 1. That means, d(R1) ≤ d(R2)+ 1. If
components R1 and R2 are in the same subgraph, then by Equation (2a) d(v) ≤ d(w). That means,
d(R1) ≤ d(R2) ≤ d(R2)+ 1. Thus, maintaining the new labeling function can also keep the validity
of the generic push-relabeling function if treating each component as one unit. ■

Then, our strategy can be seen as one alternative push-relabel approach that uses the component as
the operational unit. All the statements proved in [5] hold on the component level, including the
correctness. Our method can achieve max-flow in polynomial component operation.

S1.6 Proof of Lemma 6

Lemma 6: Assume the min-cut segments the nodes V into source side VS and sink side VT , then
replacing the nodes in VS or VT by source or sink does not impact the min-cut.

Proof: Let Gf be the residual graph after pushing the max-flow. By definition, there is no edge link
from VS to VT in Gf . Replacing the nodes of VS in Gf by source, there is still no flow that can be
sent to sink. Thus, there is no change on the min-cut. Similarly, replacing the nodes in VT by sink
also does not impact the min-cut. ■.

4

S1.7 Proof of Lemma 7

Lemma 7: Assume VT represents the nodes of sink side segmented by the real min-cut of original
GTW graph, VT1

denotes the sink side segmented by the obtained min-cut of the graph under replacing
arbitrary node by the source s, then VT1

⊆ VT .

Proof: Assume original graph is G = {V,E} and G1 = {V1, E1} is the graph after replacing some
nodes in V by the source s. Let’s denote their corresponding residual graphs after achieving max-flow
as Gf and Gf

1 , respectively. By definition of the residual graph, all the nodes in VT1
can reach the

sink along some path consisting of residual edges in Gf
1 . While in the original graph G, the flow

entering VT1
could not be larger than the one in G1. Thus, the residual edges connecting VT1

in Gf

will not be saturated. The nodes in VT1
could still reach the sink in Gf and will be divided into the

sink side. Therefore, VT1
⊆ VT . ■.

S1.8 Proof of Theorem 1

Theorem 1: The obtained min-cut in bidirectional strategy is the min-cut of the original graph.

Proof: Through Lemma 7, VT1 ⊆ VT after pushing excess in one direction. Then, replacing nodes in
VT1 by the sink t, the real cut will not change according to Lemma 6. Thus, the obtained min-cut in
bidirectional strategy is the min-cut of the original graph. ■.

S1.9 Additional lemmas and proofs

In addition to the listed lemmas and theorems above, there are also some useful lemmas and theorems
that play important roles in excess pushing with linear component operations (ELCO) and need to be
proved. Lemma 8 explains why the part below the found min-cut is active and another part is inactive.
Lemma 9 shows how the property of the labeling function helps us implement the relabel step faster.
And Theorem 2 guarantees that the labeling function maintains valid in the whole ELCO process.

Lemma 8: Assume the min-cut (the one closest to the source if there are multiple equivalent min-cuts)
segments the graph into two parts VS and VT , where s ∈ VS and t ∈ VT . Then any node in VS could
hold excess.

Proof: By the definition of min-cut, all nodes in VS segmented by the chosen min-cut could be
reached by source s through some path in the residual graph. Pushing excess through such a path,
any node in VS could hold excess. ■

That’s the reason why we choose the lowest min-cut in Algo.5. Then, the new segmented component
below the min-cut is active, while the segmented component above the min-cut is inactive.

Lemma 9: If component R1 is higher than component R2 or in the left side of R2 in the same GTW
subgraph, then d(R1) ≤ d(R2).

Proof: By the property of subgraph, the capacities of reverse inner edges are infinite. If component
R1 is higher than R2 or in the left side of R2 in the same subgraph, then there must be one path that
only consists of reverse edges from the node v ∈ R1 to node w ∈ R2, since the reverse edges in one
GTW subgraph are with infinite capacities. By Equation (2a), d(R1) ≤ d(R2).

Lemma 9 could help us implement the relabel step in Algo.2 quickly.

Theorem 2: ELCO algorithm maintains the invariant that d is a valid labeling.

Proof: To check the validity of labeling function, we need to check Equations (2a) and (2b) on
Ewithin and Ecross for all steps:

“Drain” and “Discharge” operations (Algo.3 and Algo.4): “Drain” and “Discharge” operations will not
change the label of nodes within the original component. Finding the new cut within subgraph means
the constraint Equation (2a) is loosened. Thus, the labeling is maintained and Equation (2a) holds.
For “Drain” operation, no label is changed and no new cross edges are generated, thus Equation
(2b) holds. For “Discharge” operation, pushing excess through cross edge (v, w) may loosen the
constraint in pushed edge (saturate such edge) but result in more strict limitation in reverse direction
(generate reverse edge due to pushing). Assume the pushed edge is (v, w), and the generated reverse

5

Figure S1: (a) An example of DTW graph with the auxiliary edge, which is represented by the dashed line. (b)
Dual graph of (a). The dashed line is the dual edge of the auxiliary edge in (a). (c) An example cycle (purple)
for graph (a). (d) The dual graph of (c), where the purple cut is dual to the cycle in (c).

edge is (w, v) where d(v) = d(w) + 1. Since d(w) ≤ d(v) + 1 = d(w) + 2, Equation (2b) always
holds. Thus, both “Drain” and “Discharge” maintains the validity of the labeling function.

Split operation (Algo.5): Regarding splitting components with positive labels, no label is changed
and no new edges are generated. Thus, both Equations (2a) and (2b) hold. While Algo.5 will change
the label when splitting 0-label component. For 0-label component, assume the part above new
cut is R1, the part below new cut is R2, and d(R1) = 0, d(R2) is changed to 1. We will focus on
R2 since only these labels are changed. For the edge pairs of (R1, R2), d(R1) ≤ d(R2), Equation
(2a) holds. Assume there is component R3 that R2 and R3 are linked. If R2 and R3 are in the
same GTW subgraph, and R2 → R3, then by algorithm (the previous split operation), d(R3) ≥ 1,
and d(R2) = 1 ≤ d(R3), Equation (2a) holds. If R2 and R3 are in the same GTW subgraph and
R3 → R2, Equation (2a) holds before splitting means d(R3) = 0. Then d(R3) = 0 ≤ d(R2) = 1,
Equation (2a) holds. Thus, the validity of Ewithin is kept. If R2 and R3 are not in the same GTW
subgraph and R2 → R3, then d(R3) ≥ 0 ⇒ d(R2) = 1 ≤ d(R3) + 1, Equation (2b) always holds.
If R2 and R3 are not in the same GTW subgraph and R3 → R2, Equation (2b) holds before splitting
means d(R3) ≤ d(R2) + 1. d(R2) increases after splitting, Equation (2b) must hold. Thus the split
operation maintains the validity.

Relabel: as shown in Algo.2, d(R) = dminWithin satisfies Equation (2a) and d(R) = dminCross +1
satisfies Equation (2b). The relabeled value min(dminWithin, dminCross + 1) satisfies both, thus
validity is maintained. ■

Thus, the validity of the new labeling function is always maintained for ELCO method.

S1.10 Duality between DTW graph and GTW subgraph

Lemma 10: For any cut C in GTW subgraph, the corresponding dual edges can compose a warping
function P in DTW graph so that cost(C) = cost(P), and vice versa.

Proof: Linking an auxiliary edge from the top-right node to the bottom-left node (Fig. S1(a)), dual
DTW graph can be constructed (Fig. S1(b)). Each node in GTW subgraph is a face in DTW graph,
and each edge e′ in GTW subgraph connects the face from the right side of e to the left side with the
same weight in DTW graph. According to the dual graph theory [1], cycles are dual to cuts. For any
cycle in DTW graph (Fig. S1(a)(c)), there is a corresponding cut in GTW subgraph (Fig. S1(b)(d)),
and vice versa. Deleting the auxiliary edge from two graphs, it’s easy to establish a one-to-one
correspondence between the warping path P in DTW graph and the cut C in GTW subgraph. Since
the edges composing C and P are dual, cut(C) = cost(P). ■

S2 Algorithms

Before discussing the algorithms, we need to introduce some annotations first. For node v, fin(v)
denotes the total entering flow of v on Ecross and fout(v) denotes the total outgoing flow of v
on Ecross. f(v, w) denotes the flow from v to w, cf (v, w) denotes residual capacity of (v, w) in
GTW graph. And if we use edge (a, b), we denote the edge on the DTW graph, which is the dual
graph of (converted) GTW subgraph. Both a and b represents one coordinate position like (x, y).
c(a, b) or c′(a, b) denotes the cost of edge on the DTW graph before graph conversion or after graph
conversion. Besides, regarding region R, we denote its upper bound and lower bound by Pupper(R)
and Plower(R).

6

Algorithm 1 Convert(R)

Let c′(a, b) = c(a, b) for all edges (a, b) ∈ corresponding DTW graph of R, c(a, b) is its cost
for each column from left to right do

sourceModify = 0 ▷ Save the accumulative value for source edge
for each node v from top to bottom do ▷ Top-down modification

if fin(v) > fout(v) then ▷ Entering flow is larger
sourceModify = sourceModify + fin(v)− fout(v)
c′(a, b) = c′(a, b) + sourceModify, where (a, b) is the most adjacent edge below v

end if
end for
sinkModify = 0 ▷ Save the accumulative value for sink edge
for each node v from bottom to top do ▷ Bottom-up modification

if fin(v) < fout(v) then ▷ Outgoing flow is larger
sinkModify = sinkModify + fout(v)− fin(v)
c′(a, b) = c′(a, b)+sinkModify, where (a, b) is the most adjacent edge above v

end if
end for

end for
Return w′ as the modified edges for dual graph (DTW graph) of converted GTW subgraph.

Algorithm 2 DP(R, c)

(x0, y0) is the bottom-left point of R
Initialize dynamic matrix D, D(x0, y0) = 0
for each column of from left to right (x ↑) do

x− 1 and x are the x-coordinate boundary of this column
for each row from bottom to top (y ↑) do

y − 1 and y are the x-coordinate boundary of this row
Let b = (x, y)
Let ax = (x− 1, y), Cx = D(x− 1, y) + c(ax, b)
Let axy = (x− 1, y), Cxy = D(x− 1, y − 1) + c(axy, b)
Let ay = (x, y − 1), Cy = D(x, y − 1) + c(ay, b)
D(x, y) = min(Cx, Cxy, Cy)

end for
end for
Return D

S2.1 Graph conversion

Algo. 1 incorporates flows on Ecross by two-pass modifications for each column. The top-down
update incorporates all source edges since each entering flow on Ecross is similar to adding an edge
linking to the source and would impact all edges below, as shown in Fig.3(a)-(e). Through top-down
update, the entering flows can be incorporated by one pass. On contrary, the outgoing flows can be
incorporated by one-pass bottom-up update. Thus, the graph conversion can be done in linear time
complexity.

S2.2 DP on DTW graph

The dynamic matrix D can be calculated in linear time through DP, and each of its elements denotes
the shortest distance between the bottom-left starting point and current position. Then, the shortest

Algorithm 3 Drain(R)

c′ = Convert(R) ▷ Graph conversion
D = DP(R, c′)
Find shortest path P from D by tracking back from the top-right end
Return min-cut, where min-cut is dual to P

7

Algorithm 4 Discharge(R)

c′ = Convert(R) ▷ Graph conversion
Calculate Drev matrix through DP on DTW graph with edges c′. (Reverse direction of Algo. 2)
(x0, y0) is the bottom-left point of R
vMinCut = Drev(x0, y0).
Initialize dynamic matrix D, D(x0, y0) = 0
for each row from bottom to top (y ↑) do

y − 1 and y are the y-coordinate boundary of this row
Let ay = (x0, y − 1), b = (x0, y)
D(x0, y) = D(x0, y) + c′(ay, b)

end for
for each column from left to right (x ↑) do

x− 1 and x are the x-coordinate boundary of this column
Initialize vector cbelow = inf, cpre = inf ▷ Initialize the min-cut value below each node
for each node v from bottom to top do ▷ Calculate the min-cut value below each node

(a, b) is the edge below v, a = (xa, ya), b = (xb.yb)
ccurPath = D(xa, ya) +Drev(xb.yb) + c′(a, b) ▷ The cost of adjacent path below v
cpre = min(cpre, ccurPath)
cbelow(v) = cpre

end for
for each node v from top to bottom do

Excess e = cbelow(v)− vMinCut. ▷ Calculate excess on v
initialize send = 0 ▷ Record the pushed out excess
if e > 0 then

Flow pushed out ep = 0.
for {w|v → w, v ∈ Gn, w /∈ Gn} do ▷ same node but in neighbor GTW subgraphs

if d(w) = d(v)− 1 then
eh = min(e, cf (v, w))
fin(w) = fin(w) + eh, fout(v) = fout(v) + eh ▷ Push from v to w
f(v, w) = f(v, w) + eh, cf (v, w) = cf (v, w)− eh ▷ Push from v to w
ep = ep + eh, e = e− eh, send(v) = ep ▷ Update

end if
end for

end if
vMinCut = vMinCut+ ep ▷ New outgoing flow, min-cut value increases

end for
initialize sendac = 0 ▷ Accumulated modification in this column
for each row from bottom to top (y ↑) do ▷ Update D one this column

y − 1 and y are the y-coordinate boundary of this row
b = (x, y)
ax = (x− 1, y), vx is the node adjacent below (ax, b), sendac = sendac + send(vx)
Cx = D(x− 1, y) + c′(ax, b) + sendac
axy = (x− 1, y), vxy is the node adjacent below (axy, b), sendac = sendac + send(vxy)
Cxy = D(x− 1, y − 1) + c′(axy, b) + sendac
ay = (x, y − 1)
Cy = D(x, y − 1) + c′(ay, b)
D(x, y) = min(Cx, Cxy, Cy)

end for
end for
Find shortest path P from D by tracking back from the top-right end
Return min-cut, where min-cut is dual to P

8

Figure S2: Details in “Discharge” operation. (a) Dual DTW graph and node v. The red path is the
shortest path through edge (a, b). (b) The diagram shows how to calculate the shortest path cost
through edge (a, b). (c) Three-pass updating in each column.

path can also be quickly found in Θ(
√
N) by tracking back from the top-right end of the dynamic

matrix D.

S2.3 “Drain” operation

“Drain” operation only consists of graph conversion and DP, as shown in Algo. 3. Since each one is
linear-time complexity, “Drain” operation can be implemented in linear time.

S2.4 “Discharge” operation

The “Discharge” operation consists of four steps: (1) Incorporating flows on Ecross (Graph conver-
sion), which can be done in linear time. (2) Calculating reverse dynamic matrix Drev through DP in
linear time, whose each of the elements represents the shortest distance from top-right to the current
position. (3) Updating D from left to right. In each column (Fig.S2), there is one-pass bottom-up
checking the min-cut value below each node, one-pass top-down pushing excess out to other GTW
subgraphs, and another one-pass bottom-up updating dynamic matrix D in each column (considering
the pushed flow). (4) Finding the shortest path from D and returning the corresponding new min-cut.
The first three steps can be implemented in linear time, while the last step can be implemented with
less complexity. Thus, “Discharge” operation can be implemented in linear time.

Specifically, “Discharge” operation contains more than one layer of DP. We will discuss why DP can
implement the linear “Discharge” component operation in the following content.

As mentioned in Lemma 3, the maximum possible excess on node v is the min-cut value in the
residual graph by taking v as the sink. Regarding the primal graph, the value is equal to the
difference between the min-cut between v and s and the real min-cut between s and t. That is
the difference between the shortest path distance below v and the true shortest path on the dual
DTW graph. The shortest path crossing one edge (a, b) in the dual DTW graph can be calculated
as D(xa, ya) +Drev(xb, yb) + c(a, b) (Fig.S2(b)), where D and Drev are two dynamic matrices
recording the shortest path from bottom-left and top-right respectively. Through bottom-up checking
(Fig.S2(c)), the shortest path distance below one node v can be calculated, and then the excess can be
obtained. That’s corresponding to the first one-pass bottom-up checking in step (3), where the values
of shortest path distance can be recursively used. With that result, the excess on each node can be
calculated.

Excess can be pushed in any order, either top-down or bottom-up. Here we choose top-down order
so that there is a large chance for excess to reach the position closer to the sink since the sink is in
the top-left position of each GTW subgraph. This corresponds to the top-down pushing in step (3)
(Fig.S2(c)).

Then, we can normally update the dynamic matrix D by DP from bottom to top (Fig.S2(c)). But
remark that pushing excess out will further change the flow on Ecross and impacts the converted
graph. That means, it will change the values of Drev in the current column. Thus, in the outer layer
of Algo.4, we push nodes from left to right, so that the values in Drev we will use later will not be
impacted. Both dynamic matrices D and Drev will only be calculated once, and thus “Discharge”
operation can be implemented in linear-time complexity.

9

Algorithm 5 Split(R, cut)

Split R into K disjoint components {Rk|k = 1, 2, ...,K} according to cut, Pupper(R) and
Plower(R)
for all Rk higher than cut do

Mark Rk inactive
Pupper(Rk) = Pupper(R), Plower(Rk) = cut
d(Rk) = d(R)

end for
for all Rk ≺ cut do

Mark Rk active
Pupper(Rk) = cut, Plower(Rk) = Plower(R)
if d(R) = 0 then

d(Rk) = 1
else

d(Rk) = d(R)
end if

end for

S2.5 “Split” operation

Algorithm 6 Gap-relabel

Check the gap between the labels of components.
If not finding the gap, turn. Otherwise, the gap is dgap.
for all Ri|d(Ri) > dgap do

d(Ri) = |V |
Set (Ri) unselectable.

end for

It’s worth noting that the cut we selected for each “Drain” and “Discharge” operation is the lowest cut
if there are multiple equivalent min-cuts. Then, given such a min-cut, we can ensure the segmented
components above cut are inactive, and segmented components below cut are active (Fig.2(c)). This
can be easily proved by calculating the excess of nodes as shown in step (3) of Algo.4. Besides, for
0-label components, the labels of new segmented active components are set to 1. That’s to ensure
the property that all 0-label components still have the ability to drain excess, and it won’t break the
validity of the labeling function as proved in Theorem 2.

S2.6 Gap-relabel heuristic

Algo.S2.5 is the same as the gap-relabel heuristic in generic push-relabel but on the component level,
setting the components with the label higher than the gap unselectable. According to the labeling
function and the rule of pushing, the component with label d can only push excess to the component
with label d− 1. That means no matter how to push the excess, the components with the label higher
than the gap cannot send flow to the sink.

S3 Redundancy in push-relabel method

For push-relabel-based methods, if some excess cannot reach the sink, it will still be pushed back and
forth many rounds until the nodes/components carrying them are relabeled high enough, as Fig.S3
shows. Then, they can be absorbed by the source and the push-relabel method could terminate. These
redundant steps can not make a real influence on the finial result. Even using the gap-relabel heuristic,
the process of identifying the gap is still redundant, especially when a large number of nodes are
connected and the excess on them cannot reach the sink. The excess has to be conveyed through each
connected node until the minimum label of those nodes is larger than the real gap.

10

S4 Illustrative example

Here we show one simple example of joint alignment problem with 2 time series and 4 time points
as shown in Fig. S4. Since our algorithm majorly works on the dual graph of GTW subgraph, i.e.,
DTW graph, here we show the cut, component, pushing operations on the DTW graphs. We also
have an animation attached in the supplementary to demonstrate this example and explain how the
cut is calculated.

S5 Implementation

S5.1 Implementation of peer methods

We use the following implementations for our comparison, and all of them can be found in our
supplemental material or GitHub website.

• Incremental breadth-first search (IBFS): We use the C++ implementation de-
signed by Goldberg in [4] and the MATLAB wrapper is provided by Anton
https://github.com/aosokin/graphCutMex_IBFS.

• Hochbaum’s pseudoflow (HPF): We use the C implementation described in [6]
https://riot.ieor.berkeley.edu/Applications/Pseudoflow/maxflow.html. MATLAB wrapper is
also provided in the package.

• Boykov-kolmogorov (BK) max-flow: BK method was developed by Boykov and
Kolmogorov [2] and the C++ code with MATLAB wrapper was provided by Anton
https://github.com/aosokin/graphCutDynamicMex_BoykovKolmogorov.

• Highest-label push-relabel (HIPR): This algorithm was implemented in C language by An-
drew Goldberg [5, 3](v3.5, http://www.avglab.com/andrew/soft.html). The implementation
has two stages while only the first stage for finding the min-cut is used in our comparison.
The MATLAB wrapper was implemented by our team and also attached in the supplemental
material.

S5.2 Implementation of BIdirectional Pushing with Linear Component Operations (BILCO)
method

We implement our algorithm in C++ with a MATLAB wrapper. Due to the requirement of anonymity,
here we only attach our code in the supplemental material. In the camera-ready version, we will
publish our code on GitHub.

S5.3 Memory usage estimation

We have shown the memory comparison between BILCO and peer methods in Table 1. In the
following, we will explain how we obtain those values. It is worth noting that each element of E
we use includes both forward edge and reverse edge. But for other max-flow methods, each edge
structure only store one directed edge.

From the implementation of BILCO and peer methods mentioned in previous subsections, the memory
usage of each node and edge can be obtained as shown in Table S1. Each input edge contains two

Figure S3: Diagram of the common issues in push-relabel-based methods.

11

https://github.com/aosokin/graphCutMex_IBFS
https://riot.ieor.berkeley.edu/Applications/Pseudoflow/maxflow.html
https://github.com/aosokin/graphCutDynamicMex_BoykovKolmogorov
https://web.archive.org/web/20181228140954/http://www.avglab.com/andrew/soft.html

Figure S4: An illustrative example.

12

Table S1: Memory usage (bytes) of node and edge among IBFS, HPF, BK, and HIPR.
IBFS HPF BK HIPR

Node 48 88 48 48
Edge 32 32 32 24

directed edges, the memory of IBFS and BK can be calculated as the same 48|V |+ 64|E|. HPF and
HIPR are more complex. There are extra memory costs such as saving “buckets” in HIPR, or saving
“roots”. Especially, for HIPR, it stores every directed edge individually and further creates a new edge
as the corresponding reverse edge. Each input edge we use will correspond to four edge structures in
HIPR. Counting all extra cost, HPF and HIPR cost the memory 156|V |+96|E| and 64|V |+112|E|,
respectively.

For BILCO algorithm, it takes the structure of GTW graph into account. For each node, it uses 8
bytes (the length of pointer) to record their corresponding component address, 4 bytes (float type)
to store fin and fout (save in the same vector. Positive and negative values represent entering
flow and outgoing flow), 2 bytes to record the cost of one point in the warping function (like the
distance between x[k1] and y[k2]. Two nodes are in the same block of DTW graph thus each
element of cost (float type, 4 bytes) is corresponding to two nodes). Besides, we also record
the flows on Ecross, each edge will cost 4 bytes. However, due to the structure of GTW graph,
|E| = |Ewithin|+ |Ecross| ≈ 1.5|V |+ |Ecross| (2 nodes are corresponding to one block in the dual
DTW graph, averagely 3 edges for one block). Since the smoothness in Equation (1) is the same, the
capacities of all edges are the same and there is no need to record the capacity for each edge. And the
bucket is set dynamic, compared to the |V | or |E|, the memory usage is neglectable. Counting all the
necessary memory, BILCO costs 8|V |+ 4|E| bytes.

S6 Experiments

In this section, we state the empirical hyperparameter setting in Section S6.1, then explain the details
of each experiment (synthetic data, real data on three distinct categories) in Section S6.2 - S6.5. More
experimental results are given in Section S6.6.

cost(Pn) in Equation (1) may use the different distance measures. Here we use function
g(x[k1], y[k2]) to represent the cost of aligning the k1th time point of time series x and the
k2th time point of time series y together in the following settings. That means, cost(Pn) =∑

(k1,k2)∈P g(x[k1], y[k2]). In different experiments, the distance metric is different.

S6.1 Hyperparameter setting

The hyperparameter κ in Equation (1) adjusts the balance between the pairwise profile similarity of
single time series pair and the warping function distance between two neighbor pairs. Since in all the
experiments we’ve done preprocessing step to normalize the data, we set κ to 0.2 or 1, an empirical
setting for good alignment performance.

S6.2 Setting for synthetic data

We generate the synthetic data mimicking the real propagation in [12]. The bell-shaped signal first
appears in the center of a 2D grid, then propagates to the boundaries with the same speed in each
direction. The intensity of the signal keeps the same during the propagation, while Gaussian noise is
added with 10 dB signal-to-noise (SNR) ratio. The smoothness of warping functions was encouraged
in 4-connected neighbor pixels, of which the GTW graph is just like the one in Fig. 1(d). To use the
empirical setting of κ, the curves of all the pixels are normalized by dividing the standard deviation of
the noise. And all the curves are aligned with the same referenced curve, which is the signal template
without noise. The distance metric is set by squared error, i.e., g(x[k1], y[k2]) = (x[k1]− y[k2])

2.

13

Figure S5: The obtained signal propagation of one example dataset. Different color shows the
different rising time, while the intensity of color shows the strength of the signal. If there is nearly no
signal, it will show a gray background.

Figure S6: Results of extracting depth information. The top row, second row, and the last row show
the left view of binocular stereo, pairwise alignment result, and joint alignment result.

14

S6.3 Setting for application to calculating signal propagation and results

Data acquisition: The “Glia Ca2+” data is one crop data collected in the experiment following the
similar setting of [7]. There are 24411 time series pairs with curve length 150. The downsample
“Glia Ca2+∗” is the spatial downsampling data of the former with resizing parameter 0.25. That is,
“1570” time series pairs with the curve length. “5 rat astro ATP” data is one crop of public data in
[10], with 8243 time series pairs and 70 time points. “Exvivo Ca2+” data is one crop public data in
[11] that needs to align 6794 time series pairs and 70 time points.

Preprocessing: This application is aimed to calculate the signal propagation, where background
intensity is not considered. Thus, for each dataset, we estimated the background image first (moving
average) and then removed it from the original data. To apply the empirical κ setting, we normalized
each pixel curve by its noise standard deviation. The processed reference curves and test curves can
be found in supplemental materials.

Alignment setting: We used the same referenced curve for all pixels in the same dataset to calculate
the signal propagation. That is, the curves of all pixels were aligned to the same template. The
template is calculated by averaging all the curves to align first and then smoothed later. Due to
the strong signal in these datasets, a small κ = 0.2 is enough to constrain the distance of warping
functions and give a good signal propagation result. We used the squared error as the distance metric
in this application (g(x[k1], y[k2]) = (x[k1]− y[k2])

2).

Alignment results: Fig.S5 shows the obtained signal propagation pattern of one example dataset.
Though the high resolution makes it hard to find the difference in the large scope, in a small scope
the artifacts in pairwise alignment can be found while joint alignment shows a good result. For a
low SNR scenario as Fig.1(e), where κ = 0.2, the necessity of joint alignment is obvious. From the
result of joint alignment, we can definitely find two different signals and detect the boundary between
them, while from pairwise alignment, it’s hard to discover the same thing. And under such case, if do
smoothing on the result of pairwise alignment, the boundary will be blurred and two signals may be
considered as one signal. That demonstrates the necessity of joint alignment.

S6.4 Setting for extracting depth information and results

Data acquisition: All the binocular stereo data in this application are collected from [9], where two
images of the same scene are recorded and processed with image rectification. The depth information
is inversely proportional to the binocular disparity, which is the misalignment of the same object only
in the horizontal direction. Thus, through alignment technique, the depth information can be derived.
The original data is 1080× 1920, while the downsampled data is 324× 576. They can be found in
supplemental materials.

Preprocessing: Since our BILCO is designed for general use of joint alignment and not purposely
designed for dealing with RGB data, the input data is converted to gray data in preprocessing step.

Alignment setting: We align each row of two images of the same scene, where the smoothness is
encouraged between adjacent rows according to the smooth surface assumption. The absolute error is
adopted as the distance cost in this application (g(x[k1], y[k2]) = |x[k1]− y[k2])|. Besides, we set a
window size of 1/5 sequence length to avoid unnecessary computation.

Alignment results: Fig.S6 shows the depth information extracted through pairwise alignment and
joint alignment. Though joint alignment also contains some artifacts, it is much better than pairwise
alignment and can provide enough depth information for the major targets. The performance of such
an application is very hopeful to be improved if we take three channels of RGB data into account.

S6.5 Setting for signature identification and results

Data acquisition: The signatures are obtained from [8], where only the first 20 people’s signatures
are used in our experiment. There are 25 genuine signatures and 25 forgeries for each person, thus
totally we have compared 1000 signatures. Each signature has five dimension feature sequences:
x-coordinate, y-coordinate, pressure, pen azimuth, and pen elevation. All these features are collected
under a sampling rate 100Hz. The lengths of sequences of the same signature are the same, while
different signatures may have different lengths, even if they belong to the same person. Due to

15

Figure S7: - (a) Distance measure distributions for genuine signatures and forgeries under pairwise
alignment and joint alignment from first two persons. (b) Distribution of BILCO speed-up compared
with the best peer method in 1000 signature identifications.

the license limitation, we won’t provide the signature data in our supplemental material. It can be
required from http://atvs.ii.uam.es/atvs/mcyt100s.html.

Preprocessing: To balance the impact of different sequences, we normalize the data by following
two steps: (1) Subtract the mean value from each sequence. (2) Divide the standard deviation of each
sequence. For example, the feature sequence x is processed by x′ = x−mean(x)

std(x) .

Alignment setting: For each person, we used one genuine signature as the reference pattern to
match other signatures from the same person. The same features are aligned, while smoothness is
imposed between different features. We adopt the squared error as the distance cost in this application
(g(x[k1], y[k2]) = (x[k1]− y[k2])

2). The hyperparameter κ is set to be an empirical setting 0.2.

Alignment results: Fig.S7(a) compares distance measure distributions under pairwise alignment
and joint alignment for first two persons’ signatures. It’s obvious to find that the genuine signatures
and forgeries are more separable under joint alignment, this demonstrates the necessity of utilizing
dependency information. Fig.S7(b) also shows how many folds speed up BILCO can present
compared with the best peer method in 1000 comparisons, where BILCO provides an averagely
15-fold speed-up.

S6.6 Complementary results

We’ve done more experiments on the application of calculating signal propagation and extracting
depth information, the efficiency and results are listed in Table.S2, Fig.S8 and Fig.S9.

16

http://atvs.ii.uam.es/atvs/mcyt100s.html

Figure S8: The obtained signal propagation of complementary experiments. Different color shows
the different rising time, while the intensity of color shows the strength of the signal. If there is nearly
no signal, it will show the gray background.

Figure S9: Results of extracting depth information for complementary experiments. The top, the
second, and the last row shows the left view of binocular stereo, pairwise alignment result, and joint
alignment result.

References
[1] RK Ahujia, Thomas L Magnanti, and James B Orlin. Network flows: Theory, algorithms and

applications. New Jersey: Rentice-Hall, 1993.

[2] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE transactions on pattern analysis and
machine intelligence, 26(9):1124–1137, 2004.

[3] Boris V Cherkassky and Andrew V Goldberg. On implementing push-relabel method for the
maximum flow problem. In International Conference on Integer Programming and Combinato-

17

rial Optimization, pages 157–171. Springer, 1995.

[4] Andrew V Goldberg, Sagi Hed, Haim Kaplan, Robert E Tarjan, and Renato F Werneck. Maxi-
mum flows by incremental breadth-first search. In European Symposium on Algorithms, pages
457–468. Springer, 2011.

[5] Andrew V Goldberg and Robert E Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM (JACM), 35(4):921–940, 1988.

[6] Dorit S Hochbaum. The pseudoflow algorithm: A new algorithm for the maximum-flow
problem. Operations research, 56(4):992–1009, 2008.

[7] Yu Mu, Davis V Bennett, Mikail Rubinov, Sujatha Narayan, Chao-Tsung Yang, Masashi
Tanimoto, Brett D Mensh, Loren L Looger, and Misha B Ahrens. Glia accumulate evidence
that actions are futile and suppress unsuccessful behavior. Cell, 178(1):27–43, 2019.

[8] Javier Ortega-Garcia, J Fierrez-Aguilar, D Simon, J Gonzalez, Marcos Faundez-Zanuy, V Es-
pinosa, A Satue, I Hernaez, J-J Igarza, C Vivaracho, et al. Mcyt baseline corpus: a bimodal
biometric database. IEE Proceedings-Vision, Image and Signal Processing, 150(6):395–401,
2003.

[9] Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg Krathwohl, Nera Nešić, Xi Wang,
and Porter Westling. High-resolution stereo datasets with subpixel-accurate ground truth. In
German conference on pattern recognition, pages 31–42. Springer, 2014.

[10] Yinxue Wang, Guilai Shi, David J Miller, Yizhi Wang, Congchao Wang, Gerard Broussard, Yue
Wang, Lin Tian, and Guoqiang Yu. Automated functional analysis of astrocytes from chronic
time-lapse calcium imaging data. Frontiers in neuroinformatics, 11:48, 2017.

[11] Yizhi Wang, Nicole V DelRosso, Trisha V Vaidyanathan, Michelle K Cahill, Michael E Reitman,
Silvia Pittolo, Xuelong Mi, Guoqiang Yu, and Kira E Poskanzer. Accurate quantification of
astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level
physiology. Nature neuroscience, 22(11):1936–1944, 2019.

[12] Yizhi Wang, David J Miller, Kira Poskanzer, Yue Wang, Lin Tian, and Guoqiang Yu. Graphical
time warping for joint alignment of multiple curves. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, pages 3655–3663, 2016.

18

Table S2: Efficiency Comparison of different methods on real data.
Problem BILCO IBFS HPF BK HIPR

Time Time/(Time of BILCO)Name |V| |E|
Memory Memory/(Memory of BILCO)

Calculate signal propagation in imaging data (the third one is from [10], others are generated by us)

19s ×11.2 ×10.8 ×435.3 ×43.86 rat astro ATP[10] 3.1× 107 1.0× 108 0.7GB ×11.3 ×19.9 ×11.3 ×17.4
200s ×9.5 ×13.2 >12hours ×54.7gfap atp jrgecp 1 1.8× 108 6.2× 108 4.5GB ×10.5 ×18.2 ×10.5 ×18.4
43s ×18.9 ×26.5 ×405.1 ×168.8gfap atp jrgecp 2 9.9× 107 3.4× 108 2.2GB ×11.9 ×20.7 ×11.9 ×16.1
238s ×8.8 ×15.5 >12hours Out ofgfap atp jrgecp 3 2.2× 108 7.5× 108 5.2GB ×11.1 ×17.8 ×11.1 Memory
112s ×17.4 ×26.0 >12hours ×81.3gfap atp jrgecp 4 1.8× 108 6.4× 108 4.3GB ×11.5 ×20.2 ×11.5 ×20.1

Extract depth information in binocular stereo (data from [9], no window size is limited)

120s ×15.3 ×142.3 >12h ×229.6chess1* 2.1×108 5.4×108 3.9GB ×10.6 ×20.3 ×10.6 ×17.2
34s ×29.5 ×133.3 ×217.8 ×413.6chess2* 2.1×108 5.4×108 3.8GB ×10.9 ×21.4 ×10.9 ×19.6
166s ×6.4 ×25.5 ×157.7 ×99.7podium1* 2.1×108 5.4×108 3.8GB ×11.0 × 21.4 ×11.0 × 19.4

1135s Out of Out of Out of Out ofumbrella* 9.5×108 2.4×109 16.5GB Memory Memory Memory Memory

19

	Proofs of lemmas and theorems
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Theorem 1
	Additional lemmas and proofs
	Duality between DTW graph and GTW subgraph

	Algorithms
	Graph conversion
	DP on DTW graph
	``Drain'' operation
	``Discharge'' operation
	``Split'' operation
	Gap-relabel heuristic

	Redundancy in push-relabel method
	Illustrative example
	Implementation
	Implementation of peer methods
	Implementation of BIdirectional Pushing with Linear Component Operations (BILCO) method
	Memory usage estimation

	Experiments
	Hyperparameter setting
	Setting for synthetic data
	Setting for application to calculating signal propagation and results
	Setting for extracting depth information and results
	Setting for signature identification and results
	Complementary results

