
A Implementation Details

The implementation details often matter with reinforcement learning [12]. For this reason, full source
code is provided in the supplementary material for all experiments. This section details some of
the more important implementation decisions made, most of which match those found in [3]. We
ran all experiments (PPO, DNA, PPG) using these same implementation choices to confirm that
performance differences were not due differences in implementation.

Reward normalization We normalized rewards such that returns have unit variance, as is common
with PPO.17 Even though we used two separate models, and therefore had less reason to balance the
magnitude of the value and policy loss, we still kept reward normalization so that distillation loss,
and its interaction with the policy constraint, would be of a similar scale between environments.

Observation normalization We also adopted observation normalization. Each state s was normal-
ized by s′ = clip((s− sµ)/sσ,−3, 3) where sµ was the element wide mean over states seen by the
agent so far, and sσ was the standard deviation. Normalization constants were shared between the
policy and value networks.

Repeat action penalty We found that our policy would occasionally get stuck repeating a single
action, causing the game to freeze until the time limit occurred. This could occur if the agent
mistakenly thought it would get a slightly negative score for continuing and therefore acted to
postpone that reward as long as possible.18 Q-learning algorithms, such as DQN, which make use of
ϵ-greedy, do not experience this problem so long as ϵ > 0. To address this, we implemented a reward
penalty of 0.25 (normalized) if the agent repeated the same action more than 100 times. We leave
finding a better solution to this problem for future work.19

Integrating time and action information We added a watermark to the least recent frame in the
4-frame stack indicating the proportion of time which has occurred as a ‘progress bar’ as well as
markers on each frame indicating which action the agent selected on the previous frame. Inclusion of
time is necessary to avoid violation of the Markovian property in time-limited environments [26].
Action indicators were added to allow the agent to understand when it repeated the same action
multiple times, which is not always possible to determine from the state itself (due to multiple actions
causing identical outcomes).

Warmup / desyncing environments When initializing our environments, we ran each of the
parallel 128 environments for t ∼ U(1, 1000) interactions with actions selected uniformly over
the action space. This served two purposes: to provide initial normalization parameters and to
desynchronize the environments. We found that if we did not do this, agents would terminate around
the same time on some environments, causing parallel rollouts to become correlated. While we found
this made very little difference to the agent’s performance, it removed oscillating scoring artefacts
found early in training in some environments.

B Hyperparameters and Environmental Settings

We selected initial hyperparameters from an initial coarse hyperparameter search on the Atari-3
validation set. In some cases, where only small differences in performances were observed, we
prefered settings that had been used in previous papers or were likely to be more efficient. For
example, our search found a mini-batch size of 256 optimal for value and distil updates. However, we
selected 512 instead, as the difference was not large and found this a more computationally efficient
mini-batch size when trained on a GPU. A full list of hyperparameters are given in Table 1. We also
provide hyperparameters for our PPG experiments in Table 2. The environmental settings we used
are given in Table 3.

17We also clipped normalized rewards to [−5, 5] but found that this occurred exceedingly rarely, especially
after the first 1 million frames.

18An example of this would be the agent failing to press the reset button after losing a life in Breakout.
19Adding some kind of exploration strategy, such as Random Network Distillation [7] would likely solve this

problem more elegantly.

13

Setting DNA PPO PPOorig

Entropy bonus (ceb) 0.01 0.01 α× 0.01
Rollout horizon (N) 128 128 128
Parallel agents (A) 128 128 8
PPO epsilon ϵ 0.2 0.2 0.1
Discount gamma (γ) 0.999 0.999 0.99
Learning Rate 2.5× 10−4 2.5× 10−4 α× 2.5× 10−4

Policy lambda (λπ) 0.95 0.95 0.95
Value lambda (λV) 0.95 0.95 0.95
Policy epochs (Eπ/Eppo) 2 2 3
Value epochs (EV) 2 - -
Distil epochs (ED) 2 - -
Distil beta (β) 1.0 - -
Policy mini-batch size 2048 2048 256
Value mini-batch size 512 - -
Distil mini-batch size 512 - -
Repeated action penalty 0.25 0.25 0.25
Global gradient clipping 5.0 5.0 5.0

Table 1: Summary of hyperparameters found in coarse hyperparameter search. Epoch counts, and λ∗
values were further fine-tuned as detailed in the main study. For PPOorig, α was linearly annealed
over training from [1, 0].

Setting PPG PPG (tuned)

Policy epochs (Eπ) 1 2
Value epochs (EV) 1 1
Distil epochs (ED) 0 0
Auxiliary epochs (Eaux) 6 2
Auxiliary Period (Nπ) 32 32

Table 2: Summary of hyperparameters used in the Phasic Policy Gradient experiments. All other
hyperparameters were set according to the DNA settings in Table 1.

Setting Easy Hard

Terminal on Loss of Life True False
Action Space Minimal Full
Repeat Action Probability 0.0 0.25

Training frames 200M
Color / grayscale Grayscale
Frame stacked 4
Action repetitions 4
Reward clipping No
Episode timeout 108K
Resolution 84 × 84
Noop Starts 1-30

Table 3: Environmental Settings used in experiments. ‘Hard’ mode settings follow best practice by
[22], ‘easy’ mode correspond to those used in the Rainbow DQN paper [16], with the exception that
we do not apply the domain specific reward clipping modification. Training frames includes skipped
frames, that is our agents performed 50M interactions with the environment.

14

0 25 50 75 100 125 150 175 200
Frame (M)

0

50

100

150

200

250

Sc
or

e
(A

ta
ri-

5)

DNA (ref)
DNA (mb=512)
DNA (no distil)
DNA (V = = 0.95)
PPO (basic)
Rainbow

Figure 7: Training curves for the ablation studies. Shading indicates standard error over 3 seeds.

C Ablation Study

This appendix quantifies the performance contribution of several important components of DNA. We
considered the following changes:

• DNA (mb=512) Our analysis of noise levels suggested a much larger mini-batch size for
policy updates than for value updates. We measure the impact of this change by evaluating
DNA with mini-batch sizes for all three training objectives set to 512.

• DNA (no distil) Validation scores indicated an improvement in performance using distilla-
tion over no distillation. We verify that this result is replicated on our test set.

• DNA (λV = λπ = 0.95) We measured the impact of using non-homogeneous values for
λV and λπ by testing with these both set to 0.95.

We also include the reference run from the main study and a "PPO (basic)" run, which was a single
network with the ‘Nature-CNN’ encoder, and a mini-batch size of 512, and can be thought of as
DNA with all novel components turned off. Results are provided in Figure 7, along with the score,
and performance regression in Table 4. We found non-homogeneous values for λV and λπ, and a
larger policy mini-batch size, to be the most significant changes, with distillation also providing some
benefit.

Table 4: Atari-5 scores for each of the ablation runs.

Run Atari-5 Score Regression

DNA (ref) 252 0.0
DNA (no distil) 226 -10.2%
DNA (mb=512) 195 -22.5%
DNA (λV = λπ = 0.95) 191 -24.3%
PPO (basic) 81 -67.7%

15

D Noise Scale for Distillation Learning

In this appendix, we present the noise scale results for distillation learning. We expected distillation
to have a low noise level because the targets are drawn from the relatively noise-free value network
estimations and not from the higher variance value targets. Our results in Figure 8 confirm this
hypothesis. Of note is that the difference in noise scale between environments was much more
significant for distillation loss than it was for the value or policy loss. These results indicate
that distillation may benefit from smaller mini-batch sizes. However, the decreased efficiency of
processing these smaller batches on GPU hardware may out-weigh any potential advantages.

0 25 50 75 100 125 150 175 200
Frame (M)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
g 1

0(
1+

)

Policy (Assault)
Policy (MsPacman)
Policy (YarsRevenge)
Value (Assault)
Value (MsPacman)
Value (YarsRevenge)
Distil (Assault)
Distil (MsPacman)
Distil (YarsRevenge)

Figure 8: Noise level of the three tasks, policy learning, value learning, and distillation, over the three
games in our validation set.

E Proof of Relationship between GAE and TD(λ)

We provide a proof that calculating the General Advantage Estimate [30] is equivalent to calculating
TD(λ) returns, then subtracting the state value estimate. Concretely, for some λ ∈ [0..1) and
γ ∈ [0..1] we have from [30]

Â
(k)
t :=

k−1∑
l=0

γlδVt+l = −V (st) +
(k−1∑

i=0

γirt+i

)
+ γkV (st+k) (13)

= −V (st) + NSTEP(γ,k)(st). (14)

The GAE advantage estimate is defined as an exponentially weighted sum of these A(k)’s as follows

Â
GAE(γ,λ)
t :=

∞∑
i=0

(1− λ)λiÂ
(i+1)
t (15)

= (1− λ)

∞∑
i=0

λi(−V (st) + NSTEP(i+1)(st)) (16)

=

[
(1− λ)

∞∑
i=0

λi(−V (st))

]
+

[
(1− λ)

∞∑
i=0

λiNSTEP(i)(st)

]
(17)

= −V (st) + TD(γ,λ)(st) (18)

as required.

F Results under Rainbow DQN Style Environmental Settings.

In our main study, we compared DNA to PPO on the Atari-5 benchmark under the recommended
settings given by [22]. Many prior results have been generated using the simpler, non-stochastic

16

version of the environments and with domain-specific knowledge, such as loss of life as a terminal
state and a custom clipped reward modifier. We evaluated DNA and our implementation of PPO here
in the simplified environments and found a modest improvement under these settings. We provide
these results for better comparison against previous works.

In these experiments we did not use reward clipping. Reward clipping is a domain-specific reward
modification that reduces all positive rewards to +1 and all negative rewards to -1. We were concerned
that clipping rewards would bias the algorithm, as the agent is optimizing a reward structure that may
not match the true rewards of the game. It could be that reward clipping may be necessary for Deep
Q-learning approaches to reduce high variance returns.20 However, we have not found this to be an
advantage over reward normalization for PPO or DNA.

We found that DNA outperformed Rainbow DQN on all five environments, and obtained a better
Atari-5 score after just 49M environmental frames. Proximal Policy Optimization, with a single
policy update, also outperformed Rainbow DQN on this task.

0 25 50 75 100 125 150 175 200
Frame (M)

0

50

100

150

200

250

300

350

400

Sc
or

e
(A

ta
ri-

5)

DNA
PPO (2x)
Rainbow

0 100 200
0.0

0.5

1.0 1e5 BattleZone

0 100 200
2

0

1e1 DoubleDunk

0 100 200
0

1

2
1e4NameThisGame

0 100 200
0

2

4
1e5 Phoenix

0 100 200
0

2

4
1e4 Qbert

Figure 9: Results on the Atari-5 benchmark, with ‘easy’ environmental settings matched to those
used by Rainbow DQN [16]. Shaded regions indicate standard error over three seeds.

G Supplementary Results

We investigated some supplementary questions. Specifically, we wanted to validate that the perfor-
mance improvement of DNA compared to PPO and PPG did not result solely from the hyperparameter
choices. We, therefore, evaluated PPO and PPG under a range of alternative hyperparameters on
Atari-5 and note the results here.

We tested a variety of alternatives for PPO as described below. We found that none of the alternative
settings resulted in improved performance (Figure 10 left).

20Or squashing the value function, see Appendix A of [4].

17

0 25 50 75 100 125 150 175 200
Frame (M)

0

50

100

150

200

Sc
or

e
(A

ta
ri-

5)
PPO (ref)
PPO (E = 2)
PPO (1x)
PPO (V = 0.95ext = 0.8)
PPO (orig)
Rainbow

0 25 50 75 100 125 150 175 200
Frame (M)

0

50

100

150

200

Sc
or

e
(A

ta
ri-

5)

PPG (ref)
PPG (tuned)
Rainbow

Figure 10: Training curves for the supplementary studies. Shading indicates standard error over 3
seeds. Reference runs are from the main study.

• PPO (Eπ = 2) Our tuning process found a single epoch optimal for PPO, but two epochs
optimal for DNA, would PPO have performed better if it was given two epochs instead of
one? We found that while initial performance was stronger, this change ultimately regressed
the performance.

• PPO (λV = 0.95 λπ = 0.8) Using separate return estimations for advantages and value
targets does not require a dual network setup. Therefore we checked if the performance of
PPO can be improved by using the non-homogeneous λ values used in our DNA experiment.
We found these settings regressed performance.

• PPO (1x) In our experiments DNA and PPO used different network encoders (PPO used
twice as many channels). It is possible that increasing the parameters made training more
difficult for PPO? We tested PPO with the standard NatureCNN encoder, and found this
change regressed performance.

• PPO (orig) Our settings for PPO deviated from those used by [31]. For completeness we
also provide results using these settings. We found that while the these original settings
performed well initially, they eventually unperformed the reference by a large margin. We
also note that these settings took much longer to train (see Appendix H).

We also evaluated PPG with alternative settings (Figure 10 right).

• PPG (tuned) In our main experiment we evaluated PPG using Eπ = 1, EV = 1, Eaux =
6 taken from [11]. These differ significantly from those used for DNA. We therefore
reevaluated PPG using Eπ = 2, EV = 1, Eaux = 2 which more closely match the settings
used by DNA. We found this change had little impact on the performance of the algorithm.

H Training Time

DNA makes use of two independent networks and three training phases, which may have a negative
effect on training time. We examine this here. All times are approximate and for comparative
purposes only. Rainbow DQN times are on different hardware and using a different codebase.

Our implementation of DNA ran very quickly and is faster than PPO when PPO is configured as per
[31]. This is due to our use of more parallel agents (128 vs 8) coupled with a larger mini-batch size.
We give approximate training times in Table 5 which were taken from a 24-core machine with four
2080-TIs. We found we could train 8 DNA models in 8-hours on our 4-GPU machine, giving a rate
of 4 GPU hours per game learned.

I Tuning for Proximal Policy Optimization

We repeated the same hyperparameter sweep on PPO as we did for DNA for a fair comparison. We
found that, like DNA, PPO also benefited greatly from reduced epochs during training. We present

21There are faster ways of training DQN like algorithms, for example Ape-X [18].

18

Table 5: Approximate training times for the algorithms used in this paper.

Algorithm GPU hours per game

PPO (our settings) 3
DNA 4
PPG 4.5
PPO ([31] settings) 7.5
Rainbow DQN 24021

the results here for 1,2,3 and 4 epochs, along with a search over the choice for λ used in the General
Advantage Estimate. Results from the main study used the best performing model, which was found
to be λ = 0.95, and Eπ = 1. These hyperparameters differ from those used by [31], and achieve a
significant improvement in performance with less computation (see Appendix F, H).

We found the performance of PPO to plateau after a point in training which decreases with the number
of training epochs. This is consistent with [31], who trained for 40M frames and whose results show
performance levelling off around 20M. However, when fewer epochs are used, performance continues
to increase after these points. We also performed some quick experiments using partial epochs (0.5
and 0.75) but found these under-performed a single epoch and have not included the results here. We
also found that the single network setup of PPO did not benefit as much as DNA from tuning the λ
parameter and that the commonly used λ = 0.95 was optimal for our training set.

0 25 50 75 100 125 150 175 200
Frame (M)

0

50

100

150

200

250

Sc
or

e
(A

ta
ri-

3-
Va

l)

E = 1
E = 2
E = 3
E = 4

0 25 50 75 100 125 150 175 200
Frame (M)

0

50

100

150

200

250

Sc
or

e
(A

ta
ri-

3-
Va

l)

= 0.8
= 0.9
= 0.95
= 0.975

Figure 11: Training Curves for Proximal Policy Optimization over various epoch counts, and settings
for λGAE. Shaded area indicates standard error over three seeds.

J Distillation Targets

We evaluated two distillation targets for our distillation phase: a random projection into R16, and the
value networks value estimates as well as a third strategy, feature matching.22 Random projection
and value estimate outperformed the no distillation baseline, and feature matching underperformed
the baseline. Results (Figure 12) are from a single seed on the Atari-3 validation dataset. In all
cases, distillation was trained on two passes of trajectories sampled from the rollout and used a policy
constraint.

K Additional Results on MuJoCo

We applied DNA to the robotics task MuJoCo [34]. We used hyperparameters based on the work of
[31]. However, we used the slightly different ‘v2’ versions of the environments rather than the ’v1’
versions used in their experiments. Scores are taken during training. PPO and DNA learned a per
action standard deviation independent of the state.

22That is, the distillation step minimized the mean squared error between the features outputted by the policy
network and the features output by the value network. As with our other targets, gradients were only propagated
through the policy network.

19

0 25 50 75 100 125 150 175 200
Frame (M)

0

50

100

150

200

250

300

Sc
or

e
(A

ta
ri-

3-
Va

l)

Distil (off)
Distil (VV)
Distil (projection)
Distil (features)

Figure 12: Performance of the four distillation strategies trailed. Only a single seed was used.

0

1000

Ant

0

1000

HalfCheetah

0

1000

2000
Hopper

0

2500

5000

7500

InvertedDoublePendulum

0 1
0

500

1000
InvertedPendulum

0 1
100

50

Reacher

0 1
0

50

100
Swimmer

0 1
0

1000

2000

Walker2d

DNA
PPO

Figure 13: Results from the MuJoCo experiments for PPO and DNA over 30 seeds, with one standard
error shown shaded.

DNA shows an improvement over PPO on five of the eight of the environments tested (Ant, HalfChee-
tah, Reacher, Swimmer, and Walker2d) (see Figure 13). In the remaining three environments,
DNA and PPO produce similar results. We performed only basic hyperparameter tuning, using the
Walker2D environment. Hyperparameters for these experiments are given in Table 6.

Unlike in our Atari experiments, we found setting λπ to 0.8 to produce poor results, and so reverted
this setting back to 0.95. We removed the KL divergence penalty for distillation and replaced it with
the mean-squared error between the center of the Gaussian distribution outputs for the policy and
value networks.

20

Table 6: Hyperparameters used for MuJoCo. Hyperparameters follow closely to that of [31]. Agents
where trained for one-million interactions. † Learning rate was annealed linearly to 0.0 over training.

Setting PPO DNA

Entropy bonus (ceb) 0.01
Rollout horizon (N) 2048
Parallel agents (A) 1
PPO epsilon ϵ 0.2
Discount gamma (γ) 0.99
Learning Rate 3.0× 10−4†
Policy lambda (λπ) 0.95
Value lambda (λV) 0.95

Policy epochs (Eπ/Eppo) 10 10
Value epochs (EV) - 10
Distil epochs (ED) - 10
Distil beta (β) - 1.0
Policy mini-batch size 64 64
Value mini-batch size - 64
Distil/Aux mini-batch size - 64
Global gradient clipping 5.0 5.0

21

L Additional Results on Procgen

We ran additional experiments on the Procgen benchmark [10]. Each environment within this
benchmark requires learning across a set of 200 procedurally generated environments. Because of
this, algorithms benefit from large replay buffers able to capture the diverse conditions under which
the agent must act. Unlike PPG, DNA does not make use of replay buffer and so is not likely to
perform well at this task.

Despite this, we found DNA to be competitive with PPG on many of the environments tested (coinrun,
fruitbot, leaper, maze, miner, ninja, dodgeball and heist), as shown in Figure 15. When scores across
all environments are normalized, DNA produces an average normalized score of 0.65 compared to
0.49 for PPO and 0.75 for PPG (see Figure 14).

0 20 40 60 80 100
Frame (M)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Sc

or
e

(n
or

m
al

ize
d)

DNA
PPO
PPG

Figure 14: Results on the Procgen benchmark (hard distribution settings). Scores are average
normalized score over all 16 environments. PPG results are taken from [11].

We kept hyperparameters close to that of [11] and used the bigfish environment to select one
policy, one value, and two distil epochs as optimal for DNA. We note that these settings require the
observations to be forwarded through a network only six times, compared to fourteen times in PPG.
This makes DNA similar in computational requirements to PPO.23 PPG’s unusually high score early
on in heist appears to be an error, but is presented verbatim from the source.24

We generated results for DNA and PPO and used the results supplied by [11] for PPG.25 We also
noticed a modest decline in the performance of our implementation of PPO compared to that of
[11] (0.49 vs 0.58). This could be due to our use of observation normalization. The difference in
performance is especially apparent in the environment plunder (for both DNA and PPO). This might
indicate that performance could be improved further by adopting the fixed scaling preprocessing
procedure used in PPG. We give hyperparameters for our experiments in Table 7.

23PPG’s auxiliary phase requires forwarding through both the policy and value networks, whereas DNA’s
distillation update only requires a forward through the policy network.

24We suspect this is due to a bug in the environment where the first episode is identical (and trivial to solve)
regardless of the seed.

25As recorded in the corresponding Github repository https://github.com/openai/procgen. We note
some artefacts in the scores they supply, most notable in heist and maze. We believe this may be due to how
their environments were initialized.

22

https://github.com/openai/procgen

4

6

8

10
coinrun

0

10

20

fruitbot

5

10
leaper

5

10
climber

0

10

20

starpilot

2.5

5.0

7.5

chaser

2.5

5.0

7.5

10.0
maze

0

5

10

15

plunder

5

10

caveflyer

0

5

10

15
miner

0

10

20

30

bigfish

2.5

5.0

7.5

10.0
ninja

0 100
0

5

10

dodgeball

0 100

2.5

5.0

7.5
jumper

0 100

5

10
heist

0 100
0

5

10

bossfight

DNA
PPO
PPG

Figure 15: Results on each game in the Procgen benchmark (hard distribution settings). Scores
smoothed for clarity. PPG results are taken from [11] and are an average over three seeds. PPO and
DNA are our results over one seed.

Table 7: Hyperparameters used for ProcGen. PPG hyperparameters are taken from [11].

Setting PPO DNA PPG

Entropy bonus (ceb) 0.01
Rollout horizon (N) 256
Parallel agents (A) 256
PPO epsilon ϵ 0.2
Discount gamma (γ) 0.999
Learning Rate 5.0× 10−4

Policy lambda (λπ) 0.95
Value lambda (λV) 0.95
Repeated action penalty 0.0

Policy epochs (Eπ/Eppo) 3 2 1
Value epochs (EV) - 1 1
Distil/Aux epochs (ED) - 2 6
Distil/Aux beta (β) - 1.0 1.0
Policy mini-batch size 8192 8192 8192
Value mini-batch size - 2048 8192
Distil/Aux mini-batch size - 512 4096
Global gradient clipping 5.0 5.0 off

23

M Additional Results on ALE

Our main study used Atari-5 to allow enough time for seeded runs and because it provides an
established training/test split. Because Atari-5 is a new benchmark, we thought it important to
validate our algorithm’s performance on the full 57-game suite. We, therefore, provide results for
both PPO (2x) and DNA on all 57 games in the ALE using both the ‘easy’ settings similar to [16]
and the more difficult settings used in our main study.

We measured the median score as the median human-normalized score over the past 100-episodes
and report the final median scores as the average for this measure over the last 10M frames (5% of
training frames). Individual game scores are also reported as the average over the final 10M frames.

We found, under both the hard and the easy settings, DNA outperformed PPO by a wide margin
(see Table 8). DNA also outperformed Rainbow DQN on the easy settings after just 85.5M training
frames (Figure 16). Training plots are provided in Figures 17, 18. Results for each game are given in
Tables 9, 10. Most surprising is that when trained with only a single policy epoch, a larger batch size,
and more parallel agents, PPO becomes comparable to Rainbow DQN on the easy settings despite
being a much simpler algorithm and being 80-times faster to train.

Table 8: Summary of results on the Atari-57 benchmark.

Algorithm Median (easy) Median (hard)

Rainbow 223 -
PPO 224 155
DNA (ours) 311 207

0 25 50 75 86.5 100 125 150 175 200
Frames (M)

0

50

100

150

200

250

300

350

At
ar

i-5
7

Hu
m

an
-N

or
m

al
ize

d
M

ed
ia

n
Sc

or
e

DNA
PPO (2x)
Rainbow DQN

0 25 50 75 100 125 150 175 200
Frames (M)

0

50

100

150

200

250

At
ar

i-5
7

Hu
m

an
-N

or
m

al
ize

d
M

ed
ia

n
Sc

or
e

Figure 16: Median Score over all 57 games for DNA and PPO with 2x parameters. Left: performance
under easy settings. DNA matches Rainbow DQN performance after just 86.5M frames. Right:
performance under hard settings.

N Pseudocode for Generating Noise Scale Estimates.

In their paper, McCandlish et al. [23] define the noise scale as,

Bnoise :=
tr(HΣ)

GTHG
(19)

where at parameter values θ, G is the true gradient, H is the true Hessian, and Σ is the per-example
covariance matrix. For large models, the calculation of the Hessian is not practical. We, therefore,
use their simplified measure

Bsimple :=
tr(Σ)

|G⃗|2
. (20)

24

Even though this formulation makes the unrealistic assumption that the Hessian is a multiple of the
identity matrix, empirical studies by McCandlish et al. have shown it to provide a surprisingly good
approximation for Bnoise.

Our method for generating estimates of Bsimple follows closely that of [23] and is formalized in
Algorithm 2. While the estimates for tr(Σ), and |G⃗|2 are both unbiased their ratio may not be. We
mitigate this by averaging over multiple samples when calculating G⃗Bsmall and applying smoothing to
our estimate for |G|2.

Algorithm 2 Estimate Noise Scale
1: function ESTIMATENOISESCALE(

D, a batch of data.
L, a loss function.
θ, the model parameters.
Nsamples, the number of small mini-batches to use.
Bbig, Bsmall, the big and small mini-batch sizes.
|G|2old, the previous smoothed |G|2 value.
α, smoothing factor to use for |G|2)

2: Define SAMPLE(x,y), to draw y samples from x without replacement.
3: Dbig ← SAMPLE(D,Bbig)

4: |G⃗Bbig |2 ← |∇θLDbig(θ)|2

5: |G⃗Bsmall |2 ← 0
6: for i = 1..Nsamples do
7: Dsmall ← SAMPLE(D,Bsmall)

8: |G⃗Bsmall |2 ← |G⃗Bsmall |2 + (1/Nsamples)|∇θLDsmall(θ)|2

9: |G|2new ← (Bbig|G⃗Bbig |2 −Bsmall|G⃗Bsmall |2)/(Bbig −Bsmall)

10: S ← (|G⃗Bsmall |2 − |G⃗Bbig |2)/(1/Bsmall − 1/Bbig)

11: |G|2 ← α|G|2old + (1− α)|G|2new ▷ Perform smoothing over |G|2, to reduce variance
12: Bsimple ← S/|G|2
13: return Bsimple ▷ the (squared) noise scale estimate.
14: return |G|2 ▷ pass to next call of EstimateNoiseScale

25

0.0

2.5

5.0

7.5
1e3 Alien

0

2

4

6
1e2 Amidar

0.0

0.5

1.0
1e4 Assault

0.0

0.5

1.0
1e5 Asterix

0.0

0.5

1.0

1.5
1e5 Asteroids

0.0

2.5

5.0

7.5

1e5 Atlantis

0.0

0.5

1.0

1e3 BankHeist

0

2

4

6
1e4 BattleZone

0.0

0.5

1.0
1e4 BeamRider

0.5

1.0

1.5
1e3 Berzerk

0

1

2
1e2 Bowling

0.0

0.5

1.0
1e2 Boxing

0

2

4
1e2 Breakout

0

2

4

1e4 Centipede

0

1

2

3
1e4ChopperCommand

0.0

0.5

1.0
1e5 CrazyClimber

0

2

4

6
1e4 Defender

0

5

1e4 DemonAttack

2

1

0 1e1 DoubleDunk

0

1

1e3 Enduro

1.0

0.5

0.0

0.5 1e2 FishingDerby

0

1

2

3
1e1 Freeway

0.5

1.0

1e3 Frostbite

0

2

4

6
1e4 Gopher

1

2

1e3 Gravitar

0

1

2

3 1e4 Hero

0

1

1e1 IceHockey

0.0

0.5

1.0

1.5
1e3 Jamesbond

0.0

0.5

1.0

1.5 1e4 Kangaroo

2.5

5.0

7.5

1e3 Krull

0

2

4

6
1e4 KungFuMaster

0.0

0.5

1.0
1e3MontezumaRevenge

2

4

1e3 MsPacman

0.0

0.5

1.0

1.5

1e4 NameThisGame

0.0

2.5

5.0

7.5
1e4 Phoenix

5

0
1e1 Pitfall

2

0

2
1e1 Pong

0

1

2
1e3 PrivateEye

0.0

2.5

5.0

7.5

1e4 Qbert

0.5

1.0
1e4 Riverraid

0

2

4

1e5 RoadRunner

0

2

4

6
1e1 Robotank

0

1

2

1e3 Seaquest

3.0

2.5

2.0

1e4 Skiing

0

1

2

3
1e3 Solaris

0

1

2

3
1e3 SpaceInvaders

0

2

4

6
1e4 StarGunner

1

0

1
1e1 Surround

2

1

0
1e1 Tennis

2

4

6
1e3 TimePilot

0

1

2

1e2 Tutankham

0

1

2

3
1e5 UpNDown

0.0

0.5

1.0

1.5
1e3 Venture

0

2

4
1e5 VideoPinball

0.0

0.5

1.0
1e4 WizardOfWor

0 100 200
0.0

0.5

1.0

1.5
1e5 YarsRevenge

0 100 200
0

1

2
1e4 Zaxxon

DNA
PPO (2x)

Figure 17: Training plots for DNA on all 57 games in the Atari-57 benchmark under ‘hard’ settings.
Results are from a single seed, with smoothed results in bold, and non-smoothed results shown faded.

26

0.0

2.5

5.0

7.5

1e3 Alien

0.0

0.5

1.0
1e3 Amidar

0.0

0.5

1.0

1.5

1e4 Assault

0

2

4

1e5 Asterix

0.0

0.5

1.0

1.5
1e5 Asteroids

0.0

0.5

1.0
1e6 Atlantis

0.0

0.5

1.0

1e3 BankHeist

0.0

2.5

5.0

7.5

1e4 BattleZone

0

1

2

1e4 BeamRider

0

1

2
1e4 Berzerk

0

1

1e2 Bowling

0.0

0.5

1.0
1e2 Boxing

0

2

4

6
1e2 Breakout

0.0

0.5

1.0

1e5 Centipede

0

2

4
1e4ChopperCommand

0.0

0.5

1.0

1.5
1e5 CrazyClimber

0.0

0.5

1.0

1.5
1e5 Defender

0.0

0.5

1.0
1e5 DemonAttack

2

1

0
1e1 DoubleDunk

0

1

2
1e3 Enduro

1.0

0.5

0.0

0.5
1e2 FishingDerby

0

1

2

3
1e1 Freeway

0

2

4

1e3 Frostbite

0.0

2.5

5.0

7.5
1e4 Gopher

0

1

2

1e3 Gravitar

0

1

2

1e4 Hero

0

1

1e1 IceHockey

0.0

0.5

1.0

1.5
1e4 Jamesbond

0.0

0.5

1.0

1.5 1e4 Kangaroo

0.5

1.0

1e4 Krull

0.0

0.5

1.0
1e5 KungFuMaster

0

2

4
1e2MontezumaRevenge

0.0

2.5

5.0

7.5

1e3 MsPacman

0

1

2
1e4 NameThisGame

0

2

4
1e5 Phoenix

1.0

0.5

0.0
1e2 Pitfall

2

0

2
1e1 Pong

5

0

5
1e2 PrivateEye

0

2

4

1e4 Qbert

0.5

1.0

1.5

1e4 Riverraid

0

2

4

6
1e4 RoadRunner

0

2

4

6
1e1 Robotank

0

2

4
1e3 Seaquest

3.0

2.5

2.0

1e4 Skiing

0

2

1e3 Solaris

0

1

2

3
1e3 SpaceInvaders

0.0

0.5

1.0
1e5 StarGunner

1

0

1
1e1 Surround

2

1

0
1e1 Tennis

0.5

1.0

1e4 TimePilot

0.0

0.5

1.0

1.5
1e2 Tutankham

0

1

2

3
1e5 UpNDown

0

2

4

1e1 Venture

0

2

4

1e5 VideoPinball

0

1

2

1e4 WizardOfWor

0 100 200
0

2

4

6
1e5 YarsRevenge

0 100 200
0

1

2

1e4 Zaxxon

DNA
PPO (2x)

Figure 18: Training plots for DNA on all 57 games in the Atari-57 benchmark under ‘easy’ settings.
Results are from a single seed, with smoothed results in bold, and non-smoothed results shown faded.

27

Table 9: Final scores for all 57 games in ALE under ‘hard’ settings. Reported as mean score over the
final 10M frames of training.

Game Random Human PPO (2x) DNA

Alien 228 7,128 3,976 7,617
Amidar 5.8 1,720 391 610
Assault 222 742 10,098 10,282
Asterix 210 8,503 52,958 85,070
Asteroids 719 47,389 99,458 157,926
Atlantis 12,850 29,028 816,033 813,564
BankHeist 14.2 753 1,159 1,125
BattleZone 2,360 37,188 44,227 54,462
BeamRider 364 16,926 8,587 9,369
Berzerk 124 2,630 897 1,429
Bowling 23.1 161 175 187
Boxing 0.1 12.1 94.7 99.4
Breakout 1.7 30.5 399 416
Centipede 2,091 12,017 53,676 49,444
ChopperCommand 811 7,388 18,160 26,998
CrazyClimber 10,780 35,829 94,695 89,864
Defender 2,874 18,689 51,002 62,935
DemonAttack 152 1,971 64,180 88,673
DoubleDunk -18.6 -16.4 -0.8 -0.8
Enduro 0.0 860 1,150 1,819
FishingDerby -91.7 -38.7 32.0 41.9
Freeway 0.0 29.6 32.3 33.0
Frostbite 65.2 4,335 497 1,211
Gopher 258 2,412 28,785 46,348
Gravitar 173 3,351 2,209 2,627
Hero 1,027 30,826 20,673 28,526
IceHockey -11.2 0.9 12.9 9.4
Jamesbond 29.0 303 1,444 861
Kangaroo 52.0 3,035 11,556 14,367
Krull 1,598 2,666 8,539 9,161
KungFuMaster 258 22,736 44,648 58,895
MontezumaRevenge 0.0 4,753 0.0 385
MsPacman 307 6,952 4,102 5,067
NameThisGame 2,292 8,049 16,050 18,155
Phoenix 761 7,243 47,804 75,709
Pitfall -229.4 6,464 -10.4 -0.7
Pong -20.7 14.6 17.9 18.9
PrivateEye 24.9 69,571 129 36.5
Qbert 164 13,455 3,273 54,706
Riverraid 1,338 17,118 10,642 9,005
RoadRunner 11.5 7,845 38,970 520,458
Robotank 2.2 11.9 51.5 65.0
Seaquest 68.4 42,055 2,494 2,655
Skiing -17098.1 -4336.9 -29553.4 -29974.5
Solaris 1,236 12,327 2,379 2,976
SpaceInvaders 148 1,669 1,808 2,940
StarGunner 664 10,250 54,488 62,760
Surround -10.0 6.5 9.5 0.9
Tennis -23.8 -8.3 0.0 0.2
TimePilot 3,568 5,229 4,907 5,554
Tutankham 11.4 168 199 272
UpNDown 533 11,693 250,253 280,014
Venture 0.0 1,188 1,375 1,562
VideoPinball 0.0 17,668 120,142 432,752
WizardOfWor 564 4,756 8,834 8,480
YarsRevenge 3,093 54,577 87,267 147,864
Zaxxon 32.5 9,173 13,244 19,125

28

Table 10: Final scores for all 57 games in ALE under ‘easy’ settings. Reported as mean score over
the final 10M frames of training.

Game Random Human Rainbow DQN PPO (2x) DNA

Alien 228 7,128 9,492 8,525 5,021
Amidar 5.8 1,720 5,131 844 1,025
Assault 222 742 14,198 16,688 16,293
Asterix 210 8,503 428,200 321,207 323,965
Asteroids 719 47,389 2,713 161,787 165,973
Atlantis 12,850 29,028 826,660 997,292 932,559
BankHeist 14.2 753 1,358 951 1,286
BattleZone 2,360 37,188 62,010 82,834 71,003
BeamRider 364 16,926 16,850 13,932 20,393
Berzerk 124 2,630 2,546 1,083 19,789
Bowling 23.1 161 30.0 175 181
Boxing 0.1 12.1 99.6 95.6 99.9
Breakout 1.7 30.5 418 553 626
Centipede 2,091 12,017 8,167 131,062 100,194
ChopperCommand 811 7,388 16,654 31,912 31,181
CrazyClimber 10,780 35,829 168,788 151,937 131,623
Defender 2,874 18,689 55,105 58,201 152,768
DemonAttack 152 1,971 111,185 88,958 97,909
DoubleDunk -18.6 -16.4 -0.3 -1.3 -1.3
Enduro 0.0 860 2,126 1,230 2,059
FishingDerby -91.7 -38.7 31.3 29.0 57.4
Freeway 0.0 29.6 34.0 33.5 33.0
Frostbite 65.2 4,335 9,590 4,190 320
Gopher 258 2,412 70,355 67,850 80,104
Gravitar 173 3,351 1,419 2,632 2,190
Hero 1,027 30,826 55,887 11,125 24,904
IceHockey -11.2 0.9 1.1 13.8 7.2
Jamesbond 29.0 303 19,480 14,947 14,102
Kangaroo 52.0 3,035 14,638 11,687 14,373
Krull 1,598 2,666 8,742 11,007 10,956
KungFuMaster 258 22,736 52,181 67,657 110,962
MontezumaRevenge 0.0 4,753 384 0.0 0.0
MsPacman 307 6,952 5,380 8,712 5,894
NameThisGame 2,292 8,049 13,136 20,053 20,226
Phoenix 761 7,243 108,529 220,560 391,085
Pitfall -229.4 6,464 0.0 -0.5 0.0
Pong -20.7 14.6 20.9 19.6 19.7
PrivateEye 24.9 69,571 4,234 99.9 100
Qbert 164 13,455 33,817 8,836 52,398
Riverraid 1,338 17,118 22,500 17,156 16,789
RoadRunner 11.5 7,845 62,041 17,596 61,713
Robotank 2.2 11.9 61.4 56.7 64.8
Seaquest 68.4 42,055 15,899 957 4,146
Skiing -17098.1 -4336.9 -12957.8 -29974.4 -29974.0
Solaris 1,236 12,327 3,560 2,513 2,225
SpaceInvaders 148 1,669 18,789 2,497 2,731
StarGunner 664 10,250 127,029 70,247 104,125
Surround -10.0 6.5 9.7 9.1 5.3
Tennis -23.8 -8.3 0.0 -8.8 -10.9
TimePilot 3,568 5,229 12,926 8,918 12,774
Tutankham 11.4 168 241 147 127
UpNDown 533 11,693 103,600 247,994 291,934
Venture 0.0 1,188 5.5 0.0 0.0
VideoPinball 0.0 17,668 533,936 359,099 505,392
WizardOfWor 564 4,756 17,862 11,996 20,851
YarsRevenge 3,093 54,577 102,557 166,670 564,513
Zaxxon 32.5 9,173 22,210 20,330 22,588

29

	Introduction
	Preliminaries and Related Work
	The Noise Properties of Value Learning and Policy Gradient
	Motivating Example
	Noise Scale in Reinforcement Learning

	Dual Network Architecture
	Independent Networks
	Decoupled Return Estimation
	Distillation
	Training

	Evaluation
	Main Experimental Results
	Impact of Training Epochs
	Return Estimation
	Comparison to PPO and PPG

	Discussion
	Conclusion
	Implementation Details
	Hyperparameters and Environmental Settings
	Ablation Study
	Noise Scale for Distillation Learning
	Proof of Relationship between GAE and TD()
	Results under Rainbow DQN Style Environmental Settings.
	Supplementary Results
	Training Time
	Tuning for Proximal Policy Optimization
	Distillation Targets
	Additional Results on MuJoCo
	Additional Results on Procgen
	Additional Results on ALE
	Pseudocode for Generating Noise Scale Estimates.

