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Abstract

The cooperative Multi-Agent Reinforcement Learning (MARL) with permutation
invariant agents framework has achieved tremendous empirical successes in real-
world applications. Unfortunately, the theoretical understanding of this MARL
problem is lacking due to the curse of many agents and the limited exploration
of the relational reasoning in existing works. In this paper, we verify that the
transformer implements complex relational reasoning, and we propose and analyze
model-free and model-based offline MARL algorithms with the transformer approx-
imators. We prove that the suboptimality gaps of the model-free and model-based
algorithms are independent of and logarithmic in the number of agents respectively,
which mitigates the curse of many agents. These results are consequences of a
novel generalization error bound of the transformer and a novel analysis of the
Maximum Likelihood Estimate (MLE) of the system dynamics with the trans-
former. Our model-based algorithm is the first provably efficient MARL algorithm
that explicitly exploits the permutation invariance of the agents. Our improved
generalization bound may be of independent interest and is applicable to other
regression problems related to the transformer beyond MARL.

1 Introduction

Cooperative MARL algorithms have achieved tremendous successes across a wide range of real-
world applications including robotics [1} 2], games [3, 4], and finance [3)]. In most of these works,
the permutation invariance of the agents is embedded into the problem setup, and the successes of
these works hinge on leveraging this property. However, the theoretical understanding of why the
permutation invariant MARL has been so successful is lacking due to the following two reasons.
First, the size of the state-action space grows exponentially with the number of agents; this is known
as “the curse of many agents” [6,[7]. The exponentially large state-action space prohibits the learning
of value functions and policies due to the curse of dimensionality. Second, although the mean-field
approximation is widely adopted to mitigate the curse of many agents [6} 18], this approximation fails
to capture the complex interplay between the agents. In the mean-field approximation, the influence
of all the other agents on a fixed agent is captured only through the empirical distribution of the local
states and/or local actions [6, 18]. This induces a restricted class of function approximators, which
nullifies the possibly complicated relational structure of the agents, and thus fails to incorporate
the complex interaction between agents. Therefore, designing provably efficient MARL algorithms
that incorporate the efficient relational reasoning and break the curse of many agents remains an
interesting and meaningful question.

In this paper, we regard transformer networks as the representation learning module to incorporate
relational reasoning among the agents. In particular, we focus on the offline MARL problem with
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the transformer approximators in the cooperative setting. In this setting, all the agents learn policies
cooperatively to maximize a common reward function. More specifically, in the offline setting, the
learner only has access to a pre-collected dataset and cannot interact adaptively with the environment.
Moreover, we assume that the underlying Markov Decision Process (MDP) is homogeneous, which
means that the reward and the transition kernel are permutation invariant functions of the state-action
pairs of the agents. Our goal is to learn an optimal policy that is also permutation invariant.

To design provably efficient offline MARL algorithms, we need to overcome three key challenges.
(i) To estimate the action-value function and the system dynamics, the approximator function needs
to implement efficient relational reasoning among the agents. However, the theoretically-grounded
function structure that incorporates the complex relational reasoning needs to be carefully designed.
(i1) To mitigate the curse of many agents, the generalization bound of the transformer should be
independent of the number of agents. Existing results in [9]] thus require rethinking and improvements.
(iii) In offline Reinforcement Learning (RL), the mismatch between the sampling and visitation
distributions induced by the optimal policy (i.e., “distribution shift”) greatly restricts the application
of the offline RL algorithm. Existing works adopt the “pessimism” principle to mitigate such a
challenge. However, this requires the quantification of the uncertainty in the value function estimation
and the estimation of the dynamics in the model-free and model-based methods respectively. The
quantification of the estimation error with the transformer function class is a key open question.

We organize our work by addressing the abovementioned three challenges.

First, we theoretically identify the function class that can implement complex relational reasoning. We
demonstrate the relational reasoning ability of the attention mechanism by showing that approximating
the self-attention structure with the permutation invariant fully-connected neural networks (i.e., deep
sets [[L0O]) requires an exponentially large number of hidden nodes in the input dimension of each
channel (Theorem [T). This result necessitates the self-attention structure in the set transformer.

Second, we design offline model-free and model-based RL algorithms with the transformer ap-
proximators. In the former, the transformer is adopted to estimate the action-value function of the
policy. The pessimism is encoded in that we learn the policy according to the minimal estimate
of the action-value function in the set of functions with bounded empirical Bellman error. In the
model-based algorithm, we estimate the system dynamics with the transformer structure. The policy
is learned pessimistically according to the estimate of the system dynamics in the confidence region
that induces the conservative value function.

Finally, we analyze the suboptimality gaps of our proposed algorithms, which indicate that the pro-
posed algorithms mitigate the curse of many agents. For the model-free algorithm, the suboptimality
gap in Theorem [3]is independent of the number of agents, which is a consequence of the fact that the
generalization bound of the transformer (Theorem [2)) is independent of the number of channels. For
the model-based algorithm, the bound on the suboptimality gap in Theorem [{]is logarithmic in the
number of agents; this follows from the analysis of the MLE of the system dynamics in Proposition [3]
We emphasize that our model-based algorithm is the first provably efficient MARL algorithm that
exploits the permutation equivariance when estimating the dynamics.

Technical Novelties. In Theorem 2] we leverage a PAC-Bayesian framework to derive a generalization
error bound of the transformer. Compared to [9, Theorem 4.6], the result is a significant improvement
in the dependence on the number of channels NV and the depth of neural network L. This result may
be of independent interest for enhancing our theoretical understanding of the attention mechanism and
is applicable to other regression problems related to the transformer. In Proposition 3| we derive the
first estimation uncertainty quantification of the system dynamics with the transformer approximators,
which can be also be used to analyze other RL algorithms with such approximators.

More Related Work. In this paper, we consider the offline RL problem, and the insufficient coverage
lies at the core of this problem. With the global coverage assumption, a number of works have been
proposed from both the model-free [11H15] and model-based [[11}16] perspectives. To weaken the
global coverage assumption, we leverage the “pessimism” principle in the algorithms: the model-
free algorithms impose additional penalty terms on the estimate of the value function [[17, 18] or
regard the function that attains the minimum in the confidence region as the estimate of the value
function [19]; the model-based algorithms estimate the system dynamics by incorporating additional
penalty terms [20] or minimizing in the region around MLE [21]. For the MARL setting, the offline
MARL with the mean-field approximation has been studied in [8}, 22].



The analysis of the MARL algorithm with the transformer approximators requires the generalization
bound of the transformer. The transformer is an element of the group equi/invariant functions,
whose benefit in terms of its generalization capabilities has attracted extensive recent attention.
Generalization bounds have been successively improved by analyzing the cardinality of the “effective”
input field and Lipschitz constants of functions [23] 24]. However, these methods result in loose
generalization bounds when applied to deep neural networks [25]. Zhu, An, and Huang [26]
empirically demonstrated the benefits of the invariance in the model by refining the covering number
of the function class, but a unified theoretical understanding is still lacking. The covering number of
the norm-bounded transformer was shown by [9] to be at most logarithmic in the number of channels.
We show that this can be further improved using a PAC-Bayesian framework. In addition, we refer to
the related concurrent work [27] for a Rademacher complexity-based generalization bound of the
transformer that is independent of the length of the sequence for the tasks such as computer vision.

2 Preliminaries

Notation. Let [n] = {1,...,n}. The i*® entry of the vector z is denoted as x; or [z];. The i*" row
and the i*? column of matrix X are denoted as X, and X ; respectively. The £,,-norm of the vector
z is || z||p. The £, 4-norm of the matrix X € R™*" is defined as || X ||,,, = (> i, ||X;,i||g)1/q, and
the Frobenius norm of X is defined as | X||p = || X||2,2. The total variation distance between two
distributions P and ) on A is defined as TV(P, Q) = sup 4 4 |P(A) — Q(A)|. For a set X, we use
A(X) to denote the set of distributions on X. For two conditional distributions P, Q : X — A(Y),
the do distance between them is defined as doo (P, Q) = 2sup,c» TV(P(- |2), Q(- | z)). Given a
metric space (X, || - ||), for a set A C X, an e-cover of A is a finite set C C X such that for any
a € A, there exists ¢ € C and ||c — a|| < e. The e-covering number of A is the cardinality of the
smallest e-cover, which is denoted as N (A, e, || - ||).

Attention Mechanism and Transformers. The attention mechanism is a technique that mimics
cognitive attention to process multi-channel inputs [28]]. Compared with the Convolutional Neural
Network (CNN), the transformer has been empirically shown to possess outstanding robustness
against occlusions and preserve the global context due to its special relational structure [29]. Assume
we have N query vectors that are in R%@ . These vectors are stacked to form the matrix Q € RV *de,
With Ny key vectors in the matrix K € RNV > and Ny value vectors in the matrix V' € RNv *dv |
the attention mechanism maps the queries @ using the function Att(Q, K, V) = SM(QK ")V, where
SM(-) is the row-wise softmax operator that normalizes each row using the exponential function,
ie., forz € RY, [SM(z)]; = exp(z;)/ 2?21 exp(z;) for i € [d]. The product QK " measures the
similarity between the queries and the keys, which is then passed through the activation function
SM(+). Thus, SM(QK ")V essentially outputs a weighted sum of V' where a value vector has greater
weight if the corresponding query and key are more similar. The self-attention mechanism is defined
as the attention that takes Q = XWg, K = XWg and V = XWy as inputs, where X € RNV xd ig
the input of self-attention, and W, Wi € R¥*9Q and Wy, € R4V are the parameters. Intuitively,
self-attention weighs the inputs with the correlations among N different channels. This mechanism
demonstrates a special pattern of relational reasoning among the channels of X .

In addition, the self-attention mechanism is permutation invariant in the channels in X. This
implies that for any row-wise permutation function (-), which swaps the rows of the input ma-
trix according to a given permutation of [N], we have Att((X)Wq, (X)W, p(X)Wy) =
Y(Att(XWeq, X Wk, XWy)). The permutation equivariance of the self-attention renders it suitable
for inference tasks where the output is equivariant with respect to the ordering of inputs. For example,
in image segmentation, the result should be invariant to the permutation of the objects in the input im-
age [30]. The resultant transformer structure combines the self-attention with multi-layer perceptrons
and composes them to form deep neural networks. It remains permutation equi/invariant with respect
to the order of the channels and has achieved excellent performance in many tasks [31H33].

Offline Cooperative MARL. In this paper, we consider the cooperative MARL problem, where
all agents aim to maximize a common reward function. The corresponding MDP is characterized
by the tuple (Sy, S, A, P*,r,v) and the number of agents is N. The state space S = SV is the

Cartesian product of the state spaces of each agent S, and S = [sy,...,sx] is the state, where
s; € R is the state of the i*" agent. The initial state is Sy. The action space A = AV is the
Cartesian product of the action spaces A of each agent, and A = [ay,...,ax] ' is the action, where
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(a) PReLU(Zfil ¢reLu(x;)) with preru and (b) Self-attention mechanism I\ Att(X, X, X)w.
YReLU as single-hidden layer neural networks.

Figure 1: The blocks with the same color share the same parameters. The left figure shows that
pReLU(EiJ\Ll ¢reru(z;)) first sums the outputs of ¢reru(z;), and it implements the relational
reasoning only through the single-hidden layer network prer,u. In contrast, the self-attention block in
the right figure captures the relationship among channels and then sums the outputs of each channel.

a; € R4 is the action of the i*" agent. The transition kernel is P* : SV x AV — A(SV), and
v € (0, 1) is the discount factor. Without loss of generality, we assume that the reward function r
is deterministic and bounded, i.e., r : SV x AN — [— Riax; Rmax]- We define the the state-value
function VE : SN = [~ Vinax, Vinax]> Where Vipax = Rmax/(1 — ), and the action-value function
QT : SN x AN — [~Vinax, Vinax) of a policy 7 and a transition kernel P as

S0=8] and Qp(S,A)=B7 | 3 +'r(50 4| S1=5. 404,

t=0

VE(S)=E" {thr(ﬁt, Ay)

t=0

respectively. Here, the expectation is taken with respect to the Markov process induced by the
policy A; ~ 7(-|S;) and the transition kernel P. The action-value function Q7. is the unique fixed
point of the operator (77 f)(S, A) = r(S5,A) + vEg p-(. 5.5 (5, 7)| S, A], where the term
in the expectation is defined as f(S,7) = Ej_,(.| 5 f(5, A)]. We further define the visitation

measure of the state and action pair induced the policy 7 and transition kernel P as d%(S, A) =
(1 =7) > 2o ~'dp,, where df, is the distribution of the state and the action at step ¢.

In offline RL, the learner only has access to a pre-collected dataset and cannot interact with the
environment. The dataset D = {(S;, A;, 13, S;)}—, is collected in an i.i.d. manner, i.e., (S;, 4;) is
independently sampled from v € A(S x A), and S; ~ P*(-|S;, 4;). This i.i.d. assumption is made
to simplify our theoretical results; see Appendix [N.2|for extensions to the non i.i.d. case. Given a
policy class 11, our goal is to find an optimal policy that maximizes the state-value function 7% =
argmax ¢y Vi- (So). For any 7 € TI, the suboptimality gap of  is defined as V. (So) — V. (So).

3 Provable Efficiency of Transformer on Relational Reasoning

In this section, we provide the theoretical understanding of the outstanding relational reasoning ability
of transformer. These theoretical results serves as a firm base for adopting set transformer to estimate
the value function and system dynamics in RL algorithms in the following sections.

3.1 Relational Reasoning Superiority of Transformer Over MLP

The transformer neural network combines the self-attention mechanism and the fully-connected
neural network, which includes the MultiLayer Perceptrons (MLP) function class as a subset. On the
inverse direction, we show that permutation invariant MLP can not approximate transformer unless
its width is exponential in the input dimension due to the poor relational reasoning ability of MLP.

Zaheer et al. [10, Theorem 2] showed that all permutation invariant functions take the form
p(Zi\Ll é(z;)) with X = [x1,...,2n5] " € RV*? as the input. Since the single-hidden layer ReL.U
neural network is an universal approximator for continuous functions [34]], we set ¢ : RV*? — RW2
and p : R"2 — R to be single-hidden layer neural networks with ReL U activation functions as shown
in Figure[I(a)] where W5 is the dimension of the intermediate outputs. The widths of the hidden layers
in ¢Rreru and preru are Wi and Wiy respectively. For the formal definition of ¢grer,u and preru,



please refer to Appendix |Al Then the function class with prer,u and ¢reru as width-constrained
ReLU networks is defined as

1€[3]

N
N(W) = {f . RNXd — R ‘ f(X) = pRcLU(Z¢RcLU(xi)) With maxWi S W}
i=1

We would like to use functions in V(W) to approximate the self-attention function class
F={f: RV 5 R| f(X) = I Att(X, X, X )w for some w € [0,1]%}.

Figure shows that PReLU(ZZNﬂ oreru(2;)) first processes each channel with ¢reru, and
the relationship between channels is only reasoned with prer,y. The captured relationship in

PRcLU(Zi\; @reru(x;)) cannot be too complex due to the simple structure of prery. In con-
trast, the self-attention structure shown in Figure [I(b)| first captures the relationship between channels
with the self-attention structure and then weighs the results to derive the final output. Consequently, it
is difficult to approximate the self-attention structure with PReLU(Zﬁ\; dRreLU (x;)) due to its poor
relational reasoning ability. This observation is formally quantified in the following theorem.

Theorem 1. Let W*(&,d, F) be the smallest width of the neural network such that

VfeF,Age N(W) st sup |f(X)fg(X)|§f.
Xe[0,1]Nxd

With sufficient number of channels N, it holds that W* (¢, d, F) = Q(exp (cd)&~/*) for some ¢ > 0.

Theorem|I]shows that the fully-connected neural network cannot approximate the relational reasoning
process in the self-attention mechanism unless the width is exponential in the input dimension. This
exponential lower bound of the width of the fully-connected neural network implies that the relational
reasoning process embedded within the self-attention structure is complicated, and it further motivates
us to explicitly incorporate the self-attention structure in the neural networks in order to reason the
complex relationship among the channels.

3.2 Channel Number-independent Generalization Error Bound

In this section, we derive the generalization error Layer 1 Layer L
bound of transformer. We take X € RV*? a5 the
input of the neural network. In the ith layer, as shown
in Figure[3.2] we combine the self-attention mech-
anism Att(XW3), X, XW,") with the row-wise
FeedForward (rFF) single-hidden layer neural net-
work FF(X, a®, b)) with width m. We combine

Wg ) and Wf(é) to Wéﬁ( for ease of calculation, and

TFE(X,a™, b™M) rFF(X, a™), b(F)

Xi AW X, XWP): | AW, X, X W)
b and a? are the parameters of the first and second

layer of rFF. The output of each layer is normalized Figure 2: Structure of the transformer func-
by the row-wise normalization function IL,o;m(-), tion class, where the row-wise feedforward
which projects each row of the input into the unit function is specified as fully-connected net-
£p-ball (for some p > 1). For the last layer, we derive  works.

the scalar estimate of the action-value function by averaging the outputs of all the channels, and the
“clipping” function ITy () is applied to normalize the output to [V, V']. We note that such structures
are also known as set transformers in [33]]. For the formal definition of the transformer, please refer

to Appendix

We consider a transformer with bounded parameters. For a pair of conjugate numbers p, g € R, i.e.,
1/p+1/q¢ =1and p,q > 1, the transformer function class with bounded parameters is defined as

Fi(B) = (s X5 Wi W a0 ) [of)| < B [0, < B
W

WS . < Box, < By, ||lw|ly < By fori € [L],j € [m], k € [d]},

p.q

where B = [B,, By, Bqx, Bv, By) are the parameters of the function class, and W&, Wi ¥, a*"
and b"*l are the stacked parameters in each layer. We only consider the non-trivial case where



Ba, By, Bok , By, By, are larger than one, otherwise the norms of the outputs decrease exponentially
with growing depth. For ease of notation, we denote Fi¢(B) as Fir when the parameters are clear.

Consider the regression problem where we aim to predict the value of the response variable y € R
from the observation matrix X € RV*4, where (X, y) ~ v, and |y| < V. We derive our estimate
f:RY¥*4 5 R from i.i.d. observations Dyeg = {(X;, ;) }", generated from v. The risk of using
f € Fu(B) as a regressor on sample (X, y) is defined as (f(X) — y)?. Then the excess risk of
functions in the transformer function class Fis can be bounded as in the following proposition.

Proposition 1. Let B = By Bok BBy By, Forall f € Fiy, with probability at least 1 — 6, we have

1 n
B[00 =9)"] = - 30 (F(x0) — )]

1 2 V2 9 9 mdLBn 1
§2Ey[(f(X) y) ]—i—O(n [mL d” log v +log5})
Proposition|[T]is a corollary of Theorem 2] We state it here since the generalization error bound of
transformer may be interesting for other regression problems. We compare our generalization error
bound in Proposition[I] with [9, Theorem 4.6]. For the dependence on the number of agents [V, the
result in [9, Theorem 4.6] shows that the logarithm of the covering number of the transformer function
class is logarithmic in N. Combined with the use of the Dudley integral [35], [9) Theorem 4.6]
implies that the generalization error bound is logarithmic in V. In contrast, our result is independent
of N. This superiority is attributed to our use of the PAC-Bayesian framework, in which we measure
the distance between functions using the KL divergence of the distributions on the function parameter
space. For the transformer structure, the size of the parameter space is independent of the number of
agents [V, which helps us to remove the dependence on N.

Concerning the dependence on the depth L of the neural network, [9, Theorem 4.6] shows that
the logarithm of the covering number of the transformer function class scales exponentially in L.
In contrast, Proposition [T] shows that the generalization bound is polynomial in L. We note that
Proposition[T]does not contradict the exponential dependence shown in 36|37, since we implement
the layer normalization to restrict the range of the output. As a byproduct, Proposition[I|shows that
the invariant of the layer normalization adopted in our paper can greatly reduce the dependence of the
generalization error on the depth of the neural network L. We note that our results can be generalized
to the multi-head attention structure, and the extensions are provided in Appendix [N]

4 Offline Multi-Agent Reinforcement Learning with Set Transformers

In this section, we apply the results in Section [3] to MARL. We implement efficient relational
reasoning via the set transformer to obtain improved suboptimality bounds of the MARL problem. In
particular, we consider the homogeneous MDP, where the transition kernel and the reward function
are invariant to permutations of the agents, i.e., for any row-wise permutation function ¢ (-), we have

P15, 4) = P* (6(5) | 0(8), 6(A))  and  +(5, A) = r((), ()
forall S,5" € S¥ and A € AYN. A key property of the homogeneous MDP is that there exists a

permutation invariant optimal policy, and the corresponding state-value function and the action-value
function are also permutation invariant [22].

Proposition 2. For the cooperative homogeneous MDP, there exists an optimal policy that is
permutation invariant. Also, for any permutation invariant policy 7, the corresponding value function
V5. and action-value function Q. are permutation invariant.

Thus, we restrict our attention to the class of permutation invariant policies II, where 7(A|S) =
w(p(A)|(S)) forall A € A, S € S, m# € II and all permutations . For example, if

n(A|S) = Hf\il p(ai|s;) for some p, then m is permutation invariant. An optimal policy is
any 7 € argmax,. oy V5. (S0).

4.1 Pessimistic Model-Free Offline Reinforcement Learning

In this subsection, we present a model-free algorithm, in which we adopt the transformer to estimate
the action-value function. We also learn a policy based on such an estimate.



4.1.1 Algorithm

We modify the single-agent offline RL algorithm in [19] to be applicable to the multi-agent case
with the transformer approximators, but the analysis is rather different from that in [19]. Given the
dataset D = {(S;, A;,7;,5!)} |, we define the mismatch between two functions f and f on D
for a fixed policy 7 as L(f, f, m; D) = 1 Z(S,A,F,g’)ED(f(‘g’ A) — 7 —~f(S',7))% We adopt the
transformer function class Fi¢(B) in Section to estimate the action-value function and regard
X =[S, A] € RV*4 a5 the input of the neural network. The dimension d = ds + d 4 and each agent
corresponds to a channel in X. The Bellman error of a function f with respect to the policy 7 is

defined as £(f,m; D) = L(f, f,m; D) — inf s 5 L(f, f, ;D).

For a fixed policy 7, we construct the confidence region of the action-value function of 7 by
selecting the functions in Fi¢ with the e-controlled Bellman error. We regard the function attaining
the minimum in the confidence region as the estimate of the action-value function of the policy;
this reflects the terminology “pessimism”. Then the optimal policy is learned by maximizing the
action-value function estimate. The algorithm can be written formally as

# =argmax min f(So,7), where F(me)={f€ Fu(B)|E(f,mD)<e}. (1)

well feF(me)

The motivation for the pessimism originates from the distribution shift, where the induced distribution
of the learned policy is different from the sampling distribution v. Such an issue is severe when
there is no guarantee that the sampling distribution v supports the visitation distribution d}i induced
by the optimal policy 7*. In fact, the algorithm in Eqn. (I) does not require the global coverage
of the sampling distribution v, where the global coverage means that d7%. (S, A)/v(S, A) is upper
bounded by some constant for all (S, A) € S x A and all = € II. Instead, it only requires partial
coverage, and the mismatch between the distribution induced by the optimal policy d7. and the
sampling distribution v is captured by

Cre = max By [(£(5,4) = T £(5, )] /B, [(£(5,4) =T f(5,0)°]. @

We note that Cr,; < max(g i)esx.4 dp- (5, A)/v(S, A), so the suboptimality bound involving C'r,,
in Theorem [3]is tighter than the bound requiring global convergence [38]. Similar coefficients also
appear in many existing works such as [19] and [39].

4.1.2 Bound on the Suboptimality Gap

Before stating the suboptimality bound, We require two assumptions on Fis and the sampling
distribution v. We first state the standard regularity assumption of the transformer function class.

Assumption 1. For any € II, we have inf r¢ ., sup g, B [(f(S, A) — T f(S, A))?] < er and
supyser, Infje 7, E,[(f(S,A) —T™f(S,A))? < exr wheredy = {u| I € Us.t. p=dp.}
is the set of distributions of the state and the action pair induced by any policy w € 11

This assumption, including the realizability and the completeness, states that for any policy 7 € II
there is a function in the transformer function class Fi¢ such that the Bellman error is controlled by
e r, and the transformer function class is approximately closed under the Bellman operator 7" for
any m € II. In addition, we require that the mismatch between the sampling distribution and the
visitation distribution of the optimal policy is bounded.

Assumption 2. For the sampling distribution v, the coefficient Cx,, defined in Eqn. (@) is finite.

We note that similar assumptions also appear in many existing works [[19} 39]].

In the analysis of the algorithm in Eqn. (T)), we first derive a generalization error bound of the estimate
of the Bellman error using the PAC-Bayesian framework [40, 41]].

Theorem 2. Let B = By BgiBoByB.,. Fordll f,f € Fit(B) and all policies = € TI, with
probability at least 1 — §, we have

E[(£(5,4) = T (8. 4))°] = £(f. f.m: D) + L(T" ], . m: D)

2 _
<SE[((5, A)-T7 (5, 4))’] +0(Vr;;x [mL2d2 log @ $log M ] )



For ease of notation, we define e(Fi¢, I1, 6, n) to be n times the second term of the generalization
error bound. We note that the generalization error bound in Theorem [2is independent of the number
of agents, which will help us to remove the dependence on the number of agents in the suboptimality
of the learned policy. The suboptimality gap of the learned policy 7 can be upper bounded as the
following.

Theorem 3. If Assumptions|[l|and[2|hold, and we take € = 3e /2 + 2e(Fy¢, 11, 6,n)/n, then with
probability at least 1 — 0, the suboptimality gap of the policy derived in the algorithm shown in
Eqn. (1) is upper bounded as

C 3 Vmax C f 9 y Woo
VA (S0)— VP*(SO)<O<V f; (v it mI2d2 log mgLBn+log2N(H g/”d )>,

where d = ds +d 4, € = er + 7,7, and B is defined in Propositionl

Theorem [3] shows that the upper bound of the suboptimality gap does not scale with the number
of agents N, which demonstrates that the proposed model-free algorithm breaks the curse of many
agents. We note that the model-free offline/batch MARL with homogeneous agents has been studied
in [8]] and [22]], and the suboptimality upper bounds in [8, Theorem 1] and [22] Theorem 4.1] are also
independent of N. However, these works adopt the mean-field approximation of the original MDP, in
which the influence of all the other agents on a specific agent is only coarsely considered through the
distribution of the state. The approximation error between the action-value function of the mean-field
MDP and that of the original MDP is not analyzed therein. Thus, the independence of NV in their
works comes with the cost of the poor relational reasoning ability and the unspecified approximation
error. In contrast, we analyze the suboptimality gap of the learned policy in the original MDP, and
the interaction among agents is captured by the transformer network.

4.2 Pessimistic Model-based Offline Reinforcement Learning

In this subsection, we present the model-based algorithm, where we adopt the transformer to estimate
the system dynamics and learn the policy based on such an estimate.

4.2.1 Neural Nonlinear Regulator

In this section, we consider the Neural Nonlinear Regulator (NNR), in which we use the trans-
former to estimate the system dynamics. The ground truth transition P*(S’|S, A) is defined
as ' = F*(S,A) + &, where F* is a nonlinear function, € = [e1,...,ex]"is the noise, and
g; ~ N(0,0%14%4) for i € [N] are independent random vectors. We note that the function F*
and the transition kernel P* are equivalent, and we denote the transition kernel corresponding to
the function F as Pr. Since the transition kernel P*(S’ | S, A) is permutation invariant, F'* should
be permutation equivariant, i.e., F*(¢(S),9(A)) = ¢(F*(S A)) for all row-wise permutation
functions ().

We take X = [S, A] € RV* as the input of the network and adopt a similar network structure as the
transformer specified in Section[3.2} However, to predict the next state instead of the action-value
function with the transformer, we remove the average aggregation module in the final layer of the
structure in Section [3.2] Please refer to Appendix [B]for the formal definition. The permutation equiv-
ariance of the proposed transformer structure can be easily proved with the permutation equivariance
of the self-attention mechanism. We consider the transformer function class with bounded parameters,
which is defined as

Mu(B') = { B (X W, W, a8, 055 | [af0)| < Ba o), < By,

W Il < Bare Wi ||y < B fori € [L].j € [m], k € [d]}.

I I

where B’ = [B,, By, Bok, By] is the vector of parameters of the function class. We denote M¢(B’)
as M when the parameters are clear from the context.

4.2.2 Algorithm

Given the offline dataset D = {(S;, A;,7;,S!)}*_,, we first derive the MLE of the system dynamics.
Next, we learn the optimal policy according to the confidence region of the dynamics that are



constructed around the MLE. The term “pessimism” is reflected in the procedure that we choose the
system dynamics that induce the smallest value function, i.e.,

- 1o = _ 2 _
B = argmin — Si— F(S;, A; and 7« =argmax min V3 (Sp), @G

MLE F§Mtf n ; H ! ( )HF 7%61—1 FeMuLe(€) PF( O) ®)
where MMLE(C) = {F S Mtf(Bl) | 1/n . Z?:l TV(PF( | Si, Al), PMLE(' | gi, AZ))Z S C} is the
confidence region, which has a closed-form expression in terms of the difference between F' and

FMLE as stated in in Appendix The transition kernel induced by FMLE is denoted as PMLE. The
parameter ( is used to measure the tolerance of estimation error of the system dynamics, and it is set
according to the parameters of M¢(B’) such that F* belongs to My,g(¢) with high probability.

Similar to the model-free algorithm, the model-based algorithm specified in Eqn. (3) does not require
global coverage. Instead, the mismatch between the distribution induced by the optimal policy d}**
and the sampling distribution v is captured by the constant

C’Mtf:FIél/za(thdzi [TV(Pr(-|S, A),p*(.|5,ﬁ))2]/E,, [TV (Pr(-| S,A),P*(.|5,A))2], )

We note that Caq,, < max(g, 4)eSx.A d5. (S, A)/v(S, A), so the suboptimality bound involving
Cp]_.tf in Theorem [|is tighter than the bound requiring global convergence. Similar coefficients also
appear in many existing works such as [42] and [20].

4.2.3 Analysis of the Maximum Likelihood Estimate

Every F' € MypLg(¢) is near to the MLE in the total variation sense and thus well approximates the
ground truth system dynamics. Therefore, to derive an upper bound of the suboptimality gap of the

learned policy, we first analyze the convergence rate of the MLE PyLg to P*.

Proposition 3. Let B = By Bqk B, By. For the maximum likelihood estimate PMLE in Eqn. @),
the following inequality holds with probability at least 1 — 9,

E, {TV(P*(. | S, A), Pure(-| S, /_1))2} < O(imLde log (N LmdBn) + %log (15)

We define ¢’ (Mg, n) to be n times the total variation bound. Proposition [3| shows that the total
variation estimation error is polynomial in the depth of the neural network L. However, different

from the model-free RL results in Section the estimation error of MLE Py g is logarithmic in
the number of agents N. We note that this logarithm dependency on N comes from the fact that
TV(P*(-1S,A), Pmre(-| S, A)) measures the distance between two transition kernels that involves
the states of IV agents, different from the scalar estimate of the value function in Section[d.1} To prove
the result, we adopt a PAC-Bayesian framework to analyze the convergence rate of MLE, which is
inspired by the analysis of density estimation [43]; more details are presented in Appendix [J]

4.2.4 Bound on the Suboptimality Gap

To analyze the error of the learned model, we make the following realizability assumption.
Assumption 3. The nominal system dynamics belongs to the function class My, i.e., F* € M (B').

In addition, we require that the mismatch between the sampling distribution and the visitation
distribution of the optimal policy is bounded.

Assumption 4. For the sampling distribution v, the coefficient Cn4,, defined in (@) is finite.

We note that these two assumptions are also made in many existing works, e.g., [20, 21].

Theorem 4. I]‘Assumptionsand hold, and we take ( = cye' (Mg, n)/n for some constant ¢; > 0,
then with probability at least 1 — 6, the suboptimality gap of the policy learned in the algorithm in
Eqn. @) is upper bounded as

T a 7 & ‘/Inax 1 > 1 1
VP* (SO) — VP* (SO) < 0] <(:I_—W\/CMtf (nmL2d2 IOg (NLmdBn) + E IOg 5)),

where d = ds + d 4, and B is defined in Proposition
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Figure 3: Average rewards of model-free RL algorithms with their standard deviations for N = 3, 30.

Theorem [ presents an upper bound on the suboptimality gap of the offline model-based RL with
the transformer approximators. The suboptimality gap depends on the number of agents only as
O(v/log N), which shows that the proposed model-based MARL algorithm mitigates the curse of
many agents. This weak dependence on NN originates from measuring the distance between two
system dynamics of N agents in the learning of the dynamics. To the best of our knowledge, there is
no prior work on analyzing the model-based algorithm for the homogeneous MARL, even from the
mean-field approximation perspective. The proof of Theorem [4]leverages novel analysis of the MLE
in Proposition [3] For more details, please refer to Appendix

S Experimental Results

We evaluate the performance of the algorithms on the Multiple Particle Environment (MPE) [44,
45]]. We focus on the cooperative navigation task, where N agents move cooperatively to cover
L landmarks in an environment. Given the positions of the N agents z; € R? (for i € [N])
and the positions of the L landmarks y; € R? (for j € [L]), the agents receive reward r =
_ Zle min, ey [|y; — 4|2 This reward encourages the agents to move closer to the landmarks.
We set the number of agents as N = 3,6, 15, 30 and the number of landmarks as L = N. Here,
we only present the result for N = 3, 30. Please refer to Appendix O for more numerical results.
To collect an offline dataset, we learn a policy in the online setting. Then the offline dataset is
collected from the induced stationary distribution of such a policy. We use MLP, deep sets, Graph
Convolutional Network (GCN) [46], and set transformer to estimate the value function. We note that
the deep sets, GCN, and set transformer are permutation invariant functions. For the implementation
details, please refer to Appendix

Figure [3] shows that the performances of the MLP and deep sets are worse than that of the set
transformer. This is due to the poor relational reasoning abilities of MLP and deep sets, which
corroborates Theorem Figure [3| indicates that when the number of agents N increases, the
superiority of the algorithm with set transformer becomes more pronounced, which is strongly
aligned with our theoretical result in Theorem 3]

6 Concluding remarks

In view of the tremendous empirical successes of cooperative MARL with permutation invariant
agents, it is imperative to develop a firm theoretical understanding of this MARL problem because
it will inspire the design of even more efficient algorithms. In this work, we design and analyze
algorithms that break the curse of many agents and, at the same time, implement efficient relational
reasoning. Our algorithms and analyses serve as a first step towards developing provably efficient
MARL algorithms with permutation invariant approximators. We leave the extension of our results
of the transformer to general permutation invariant approximators as future works.
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Supplementary Materials for

“Relational Reasoning via Set Transformers:
Provable Efficiency and Applications to MARL”

A Formal Definition of the Fully-Connected Networks in Section 3|

For a multi-channel input, the output is the sum of the output of each channel, i.e.,

N

[PreLU)i (X) = Z[¢ReLU]i(Xk,:) for i€ [Ws],
k=1

where X, . is the k' row of X. The fully-connected neural network for each channel is defined as

Wi
[¢RcLU]i(x) = ZcineLU(a;x + bJ) +d; for i€ [WQ],
j=1
where a; € R? and b;, ¢;;,d; € R fori € [Wa],j € [W1] are the parameters of ¢reru. The network
PReLU 1s defined as

W3

preLu(y) = > geReLU(efy + fi) + h,
k=1

where e; € R"2 and f, g, h € R for k € [W3] are the parameters of p.

B Formal Definition of the Transformer Structures in Sections 4.1 and [4.2]

The transformer structure in Section @ In each layer, we combine the self-attention mechanism
with the Row-wise FeedForward (rFF) single-hidden layer neural network. rFF takes X € RV*? ag
the input and outputs a matrix in the same dimension. It applies a single-hidden layer network in a
row-wise manner. For the entry in the i*® row and the k** column of the output, we have

[rFF(X,a,b)]Nc = [rFF(XiT;,a,b)]k for k € [d],i € [N],

where X;. € R? is the i*" row of X. For a d-dimensional vector input, the single-hidden layer
outputs a vector in the same dimension as

[rFF(z,a, b)]k = Z aijeLU(sz:r) for k € [d],

j=1
where 2 € R¢ is the input, m is the width of the network, and a = [a11, @12, .., Gdm] € R%™ and
b= [bi1,b12,-..,bdm) € R¥*™ are the parameters of rFF.

Then for any layer ¢ € [L — 1], the layer output is

Gl = Maor (A (G WS, GP, GPWIY) 4 1FR(GY a0 ,000) ], 1)

tf

where
al:i = [a’(l)v 7a(i)]7
bl:i _ [b(l) . b(l)]’
i 1 7
Wic = Wiiks--- Wi,
[ }

are the stacked parameters of the first ¢ layers of the network, and G’E? is a shorthand for

GE? (X; Wé}i(, Wk, al %), yorm (X)) is the row-wise normalization function, which projects
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each row of X into the £,-ball ( where p > 1). We take GE?) (X) = Iyorm (X) as the input of the
first layer. For the last layer L, we derive the scalar estimate of the action-value function with the
average aggregation among all the channels, i.e.,

gur (X5 WQK7W 1:L’b1:L’w) =1y,

max

1 L 1
<N11NG§£)(X WhE, Wit l'L,bl‘L)w),

where Iy, (x) is the “clipping” function, which is defined as ITy, _(z) = z if |2| < Vijax and
Iy, ( ) = VmaxSign( ) otherwise.

max

The transformer structure in Section |4.2] n For the layer ¢ € [L — 2], we adopt the same neural
network structure in Eqn. (B.I). For the final layer, we implement the structure that

Fo(X; W, Wit al*t 1)
= SM(GYTIWHRGE I G IW 4 FR (G Y, o) o).

C Equivalent Expression for the Model-based RL algorithm in Section 4.2]

The algorithm in Eqn. (3) can be equivalently expressed in two forms.

Transition Function. The algorithm in Eqn. (3) can be expressed with the transition function F’ as

— —_ 2 —
FyLg = argmin — S!— F(S;, A; and 7« =argmax min VA (Sp),
§Mtf ZZ; H 1)||F §€H FeMyre(¢) PF( )

where the “confidence region” Mg (() is the set of all F' € My such that [47]]

o 2
2@ WF FMLEw ||F)_1) .

and ®(-) is the cumulative distribution function of the standard normal distribution.

Transition Probability. The algorithm in Eqn. (3] can also be expressed with the transition probability
P. Since the function F' is equivalent to the transition kernel Pr, the transition kernel class can be
correspondingly defined as

Pu(B') ={P|3F € Myu(B')st. P = Pr}.

Then the algorithm can be expressed as

PMLE:argmax log P(S}|S;,A;) and # =argmax min V2 (Sp),
PEPys ; ( Z| v l) rell  PePumLE(C) P( O)

where the confidence region Py (¢) is defined as

Pure(() = {P € Pt | —

D Proof of Propositions 2]
Proof of Proposition|2] We denote any optimal policy as 7* = argmax, VZ.(Sp). Note that the

optimal policy may be not unique, and any policy that achieves the maximal value function is called
an optimal policy. The corresponding action-value function is denoted as (., which is defined as

Qp-(S,A) =Eg.p-(. 5.4 [r(S, A) +maxQP*(S’ AN]. (D.1)
For any row-wise permutation function #(+), we have
Qp- (¥(S9),¥(A)) = Eysnap(. | $(5).0(A) [ (¥(8),¥(A)) + max Qp. (¥ (5", 1/)(1‘_1'))}

= Egp-(.5.4) |[r(S. 4) + max Qp. (4(5), w(4))) (D2)
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where Eqn. (D.2) follows from the homogeneity of the MDP. Since Q%. is the unique solution of
Eqn. (D.1)), we have Q% (S, A) = Qp- (¥(S),¥(A)) for all 1(-). Thus, the permutation invariant
policy w(S) = argmax 5 Q. (S, A) is the optimal policy.

When the policy 7 is permutation invariant, we can show that the corresponding action-value function

and the value function are permutation invariant following the similar argument as above. Therefore,
we conclude the proof of Proposition 2] O

E Proof of Proposition 1|

Proof of Proposition[l] We note that Proposition |1|is a corollary of Theorem [2| Take f = 0in
Theorem[2] then we recover the result of Proposition|I} Thus, we only provide the proof of Theorem[2]
in Appendix I} O

F Proof of Theorem 1]

Proof of Theorem([I} The functions in N (W) are the fully-connected networks with the ReLU
activation, so they are piece-wise linear functions on [0, 1]V >4, where the number of the linear
pieces are polynomial in the width of the network. In contrast, the self-attention function is convex
on some subset of [0,1]V*?, In the following proof procedures, we specify a line in [0, 1]V >4
where the second derivative of the self-attention function is high enough such that A/(1¥) should be
exponentially wide to approximate the self-attention function on the longest linear piece of that line.

To specify a line in [0, 1]V*9, we set the inputs of all but the first channels to be z, and set the input

of the first channel to be a scaled version of . Fix any x € [0,1]¢ and k € R, we set z; = kz and
zv;=xforalli € {2,...,N}. For X = [z1,...,2n]", w € [0,1]% and a € R, we define
fla, X, w) =T Att(aX,aX,aX)w
€a2k2chm N (N _ 1)ea2krTz
ea’k?zTa + (N _ 1>ea2km7w ed’kz T + (N _ 1)ea21;T7;
eazszx (N _ 1>eu23th
ea’k2zTx + (N _ 1)ea2k$7w e’kz T + (N _ l)eaQITw:| ’

= ak;wTw[

+ akzTw(N — 1)[

where Iy € RY is the vector with all entries being equal to 1. The partial derivatives of f(a, X, w)
with respect to a can be derived as

Of(a, X,w) _ 1 T T etz Ta | nrT L

SR = 20 (k= DT+ ke Twe + Nz w+O(N>, (E.1)
Pfla, X, w) 1 2 T a’(h=1)a"z[o, 2 T 1

— 5z = 2z wk — 1)z zae [2a°(k — 1)z ' + 3] + O(N) (F2)

We set ¢ = 2/3 -1y, k = 1.1, w = x, and define the function g(a) = f(1,X + aX/3,z). Then
Eqn. (EI) and (E2)) show that g(a) is a increasing convex function on [—1, 1].

We can rearrange the weights in the first layer of ¢reru such that the input of the resultant
network is a scalar a € [—1,1]; the width of the resultant network is same as the width of

pReLU(Zﬁvzl ®reru(2;)); the resultant network represents the same function as

h(a) = preLu ( XN: PReLU (:ci + gml) > .

i=1

Since pReLU(ZiI\Ll dRreLU(7;)) can approximate I Att(X, X, X)w, the modified network can
approximate g(a) in terms of the sup-norm on [—1, 1.

Since ReLU is a 2-piece-wise linear function, h(a) is also a piece-wise linear function, whose
number of pieces is denoted as M. Lemma 2.1 of [48] shows that M < 2(2W)? = 8W?2, where
(2W)? follows from two ReL U layers, and the additional factor of 2 follows from that x; and z; for
i €{2,..., N} take different values.
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The pigeonhole principle implies that there is a piece-wise linear segment [u, v] C [—1, 1] whose
length is at least 2/M. On this linear segment, the linear function h(a) approximates g(a) with error
at most . Eqn. (E2) then implies that

inf h'(a) >c1 >0,
a€[—1,1]

where ¢; = Q(d?e®?) for some ¢ > 0. Denote the linear function on a linear piece [u, v] and the
approximation error as h : R — R and e = h — h, respectively. Since h is a linear function, we have

max {e(u),e(v) } Ze(u;&-v)+%(U;U)2 (E3)

and

1
&> 2<max{e(u),e(v)}—e(u—;v>). (F4)
Combining inequalities (F.3) and (E4), we have

C1 i
W > .
= (256‘5)

Thus, we have W = Q(exp(cd)¢~1/4) for some constant ¢ > 0, and this concludes the proof of
Theorem 1] O

G Proof of Theorem 3

Proof of Theorem 5] Recall the definition below Theorem [2]

16mdLBy Box By, B
e(Fue, I1,0,m) = 32V2, {2 o+ 2(m + 1) L2d? log( G ‘V/ QK ””)
IN(TT, 1/m, doc) )}

+2(m + 1)Ld*log B,, + 1og< 5

To simplify the proof, we define

fr. = arginf sup E, [(f(S'JD - T”*f(gafi)ﬂa

fEFis p€dn

2
g = 35_}‘ + Ee(th,H,(s, ’ﬂ)

Our proof can be decomposed into three main procedures.

* Since f. is the best approximation of action-value function of the optimal policy 7*, we
expect that it should belong to the confidence region of the action-value functions F(7*, €)
with high probability.

* For any 7 € Il and any f € F(m,¢), since the empirical Bellman error is bounded
E(f,m; D) < e, we expect that the population Bellman error E, [(f(S, A) — T f(S, A))?]
can be controlled with high probability, which implies that f is a reliable estimate of the
action-value function of 7.

* The suboptimality gap of the learned policy according to the reliable action-value function
estimate can be bounded using the estimation error bound.

We lay out the proof by the three steps as stated in the proof sketch.

Step 1: Show that f*. € F (7™, ¢) with high probability.

From the definition of f}. and Assumption|I] we note that the population Bellman error of f. with
respect to 7* is bounded by € . To bound the empirical Bellman error £(f}., 7*; D) of f}., we need

the generalization error bound of the action-value function with the transformer function class.
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Theorem 2. Let B = By Bok B.ByB,. For all f7f € Fie(B) and all policies m € TI, with
probability at least 1 — 6, we have

Ey[(f(g714) _Tﬂf(§7‘4))2:| _E(f7f77T;D)+E(TW.f~af77T;D)
< %Ey[(f(g, A)-T" (5. 4)’] +0<Viax {mL2d2 log @ +log N(H’l/”’d“)] >

max 6

Proof. See Appendix [[|for a detailed proof. [

We can decompose the empirical Bellman error £(f%., 7*; D) as the sum of the population Bellman
error and the generalization error, where the population Bellman error can be controlled with ¢
according to Assumption [I] and the generalization error can be controlled with Theorem 2} Thus, we
have the following lemma.

Lemma 4. Foranyw € 11, let f} = arginf ;. = sup,cq. Eu[(f(S,A) =T f(S, A))?]. If Assump-
tion[I| holds, the following inequality holds with probability at least 1 — 6,
3 2e(Fis, 11, 6,
J e on)

5(f:77TaD) < 56-7: n

Proof. See Appendix [L.1]for a detailed proof. O

Step 2: For any policy 7 € Il and f € F(7,¢), show E,[(f(S,4) — T7f(S,A))?] < 2¢ +
3er,r + 4e(Fis, 11, 0, n) /n holds with high probability.
To prove the desired result, we relate the population Bellman error E, [(f(S, A) — T™f(S, 4))?]

with £(f, 7; D) through Theorem where we bound the population Bellman error as the difference
between the empirical Bellman error and the generalization error. Thus, we have the following lemma.

Lemma 5. Forany m € land f € Fis, if E(f, 7; D) < € for some e > 0, and Assumptionholds,
the following inequality holds with probability at least 1 — 6,

B [(1(5.4) T (5. A)] < 264 82 5 4 2T 100),

Proof. See Appendix [L.2|for a detailed proof. O

Step 3: Bound the suboptimality gap of the learned policy with the population Bellman error
bound in Step 2.

We define

fﬂ* = argmax f(g()uﬂ—*) and .fﬂ'* = argmin f(g()aﬂ—*)a
FeF(r*.e) FeF(m*.e)

where fﬂ* and f~ are the maximal and minimal value functions in F (7*, ), respectively. Intuitively,
since f¥. € F(n*,¢) and that we learn the policy according to the pessimistic estimation of the
action-value function in F (7, £), we can upper bound the suboptimality gap by the difference between

f7r* and ffr* .
Step 1 shows that with probability at least 1 — 0, f. € F(7*, ). Then we have

. . o By [fr =TT f(S, A)]
> ** — 77* pP*
semax | f(S0,m) 2 fr (S0, m) = V- (So) + T

* = \/E
> VI;T* (SO)_ 17];7
(G.1)

where the equality follows from Lemma and the last inequality follows from Assumption
Similarly, we can prove that

Y
min S0, ) < V5 (So) + ——. G.2
fef(ﬁ,a)f( 0:7) < Vp.(50) 1=~ (G.2)
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Combining inequalities (G.I)) and (G.2)), we have
V- (S0) = VE-(S0)

a . & -~ 2VEF
< So, ) — So, ) +
o fer}l(%r)‘g,a)f( 0,7) ferjrfl%g,a)f( 0,7) 1—x
P < = 2,\/¢
< fae (S0, m) = foe (S0 m) + T2
. R - L 2./¢
= fa (50,7) = VB (S0) + V- (S0) = fae (S0, 7) + T2 (G3)

where the first inequality follows from inequalities (G.I) and (G.2), the second inequality follows
from Eqn. (I). Applying the suboptimality gap decomposition in Lemma [[4]to inequality (G.3), we
have

—{Ea:
_ o 2
~ By [ (5.4) = 77 (3, 0) 4 72

o . . X = =\2 2 EF
+ \/C;“]El, [(Fae (8, A) = T fe(S, )] } T
where the first inequality follows from Lemma|[I4} and the second inequality follows from Jensen’s
inequality and the definition of C'r,,. Combined with the result in step 2, we have
VE(So) — VA (So)

2,/C de(Fye, I1, 0, 2,/
< \/ Frt \/28—1—35;;—&- e(Fie n) + EF
1—7v ’ n 1—7v

<0 ( VCr,(er +er.F) N VCry \/e(]:tb I1,0,n) ) _
1—7v 1—7v n
Therefore, we conclude the proof of Theorem E[ O

H Proof of Theoremd

For ease of notation, we denote the parameters of the neural network as
1:L 1:L 1:L 31:L
QZ[WQK7WV ,a ,b ].
The parameter space is

©(Ba, By, Bok,By) = {9 ’ fa,(fj)| < B, ||b,(f

i W
J 12

<Bb7HWQK <BQK,

I

It

e < By fori € 1] € bk € ).

Then we can denote the functions in My (Bq, By, Bok, Bv) as Fy and the corresponding transition
kernel in Py (By, By, Bok, By) as Py, where 6 € © is the parameter of the function.
From the perspective of the parameter space ©, the algorithm in Eqn. (3) can be equivalently stated as
1 < et
Poe = — > log P(S7|Si, Ay),
ONMLE arpgegix n ; og ( ) | )
# = argmax min V7 (Sp),
Emax it VE (50)
where the confidence region of the dynamics is defined as

P(C) = {P € Pyt %ZTV(P(. | S, Ai), Py (-] SML))? < C}'
=1
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Proof of TheoremH{) For some constant c¢; > 0, we take
1 1 1
(=c ((m + 1)L%d? log (4NLmdBVBQKBaan) + —log 5).
n n
Our proof can be decomposed into three main parts.

* Intuitively, the nominal transition kernel P* should belong to the confidence region of the
system dynamics set P(¢) with high probability.

* For any P € P((¢), we expect that the population squared total variation between P and
P*ie,E,[TV(P(-|S,A), P*(-|S, A))?], can be controlled with high probability, which
implies that any P € P(() is a reliable estimate of the system dynamics.

* The suboptimality gap of the learned policy according to the reliable dynamic estimate can
be bounded in terms of the total variation.
We lay out the proof by the three steps as stated in the proof sketch.
Step 1: Show that P* € P(({) with probability at least 1 — 4.

From the definition of P((), we need to bound the empirical total variation between the nominal
transition kernel and the MLE estimate. Thus, we need an upper bound of the population total

variation between P* and Py and an accompanying generalization error bound. For the population
error, we state the following proposition.

Proposition 3. Let B= By Bgk By By. For the maximum likelihood estimate ]E’MLE in Eqn. @),
the following inequality holds with probability at least 1 — 6,

_ . — 1 - 1 1
E, [Tv(P*(. | S, A), Pae(-| S, A))ﬂ < O(mL2d2 log (NLmdBn) + — log 5).
n n
Proof. See Appendix |J|for a detailed proof. O

Similar to Theorem 2] we can derive the generalization error bound in terms of the total variation
distance.

Proposition 6. For any 0 € O, with probability at least 1 — §, we have

B [TV (P (15, 4). 215, 40)7] - LS 1v(p (15,40, B 15, 40)°

1 _ o
< SEo[TV(P*(-| 8, 4), Po(-| S, 4)’]
1 55 1 1
+0 ;mL d*log(NLmdBy Bok B,Byn) + - log 5):
Proof. See Appendix [K]for a detailed proof. O

With Propositions [3]and [} we have

1« A =
E;TV(P (18, Ai), Py

LS TV (P C180A), P (18040 = BB [TV (P 15,40, By (15, 4)°]
i=1

3 o o
+3E, [TV(P*(. 15, 4), P (| S,A))Q} (H.1)

1 11
< O(E(m +1)L2d? log(4N LmdBy Box BuByn) + — log 5), (H2)
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where the first term in Eqn. (H.T) is bounded with Proposition[6] and the second term in Eqn. (H.T) is
bounded with Proposition 3]

Step 2: Show that for any P € P((), the population total variation between P and P* is
bounded.

For the population total variation between P and P*, we have

1 1 1
< O(ﬁ(m + 1)L%d? log (4NLmdBvBQKBaan) + n log 5)

4 & o o,
+ nETV(P(|S“Az),PéMLE(|S“AZ))

<o), (H3)

where the first inequality follows from Proposition [6]and triangle inequality, and the last inequality
follows from inequality (H.2) and the fact that P € P(().
Step 3: Bound the suboptimality gap of the learned policy with the total variation bound.

With the results in Step 1 and 2, we have that with probability at least 1 —
Vg:(go) — V£ (So) = Vﬁ:(So) — min Vg*(go) + min Vg*(go) — V£ (S0)
PEP(C) PEP(Q)

< VB (o) — Qmin, V2 "(S0) + Jmin VE(So) = V- (So)

< VE (S min V5 (Sp),

< VA () ~ min VE'(5)
where the first inequality follows from the fact that 7 maximizes minpep(¢) V5 ( So), and the last
inequality follows from the fact that P* € P((). Define P = argmin perc) VP "(So). Then we
have

V- (So) — V- (So) < VE(So) = VE (So)
Vmax » o A * o A
S-2 ,Y)QE(S,AM;** [TV(P(- |S,A), P*(-| S,A))],

where the second inequality follows from Lemma[I5] By the Jensen’s inequality, it can be further
bounded as

T o e V;nax
VP* (SO) - VP* (SO) (1 — '7) \/CMtf (S,

Ay~
o 5p0)

where the first inequality follows Jensen’s 1nequahty, and the last inequality follows from inequality
(H.3). Therefore, we conclude the proof of Theorem ] O

[TV(PC1S, ), P15, 4)7]

I Proof of Theorem 2|

Proof of Theorem[2] We adopt a PAC-Bayesian framework to derive the generalization error bound
of the Bellman error of the transformer functions, in which the generalization error is bounded by the
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Kullback—Leibler divergence between the distributions of functions. Recall that the KL divergence
between P and Q is defined as KL(P || Q) = [, log(dP/dQ)dP if P < Q, and +oo otherwise.
We start with preliminary result.

Proposition 7. Let F be the collection of functions of f : R™ — R. For any f € F, we define
p(f) =Ex[f(X)], o*(f) =Ex[(f(X) - Ex[f(X)])?],

where the expectation is taken with respect to a random variable X ~ v on (R"™, B(R™)). Assume
that | f(X) — p(f)| < ba.s. for some constant b € R for all f € F. Then for any 0 < A < 1/(2b),
given a distribution Py on F, with probability at least 1 — 6§, we have

’EQ [Ex ii ] ‘ < XEq[o?()] + {KL(Q | Py) +log ﬂ

for any distribution Q) on F, where X; are i.i.d. samples of v. If the function class F further satisfies
o2(f) < cu(f) for some constant c € R for all f € F, we have

n

Bo[Ex[£(0] - & Y- 16| | < Aol + i [KL@I A 41085

[
with probability at least 1 — §.
Proof. See Appendix [M.1|for a detailed proof. O
Our proof can be decomposed into four main parts.

* We verify that the Bellman error satisfies the conditions in Proposition [/|and apply it to the
Bellman error.

* Since the desired result is a point-wise generalization error bound, we need to control he

fluctuation of both sides of inequality with respect to any pair of functions (f, f) €
ftf X ./T"tf.

» We specify two distributions @) and P, and calculate KL(Q || P).
* We implement a standard covering argument to prove the result that holds for all the policies
in IL.
Step 1: Verify the conditions in Proposition
Let X = (S,A,5") forall f, f € Fis(Ba, By, Bor, By, By,). We define

S, foms X) = (£(S,A) = 7(S, A) =7 f(S',m))* = (T™F(S, A) — #(S, A) —~ [ (5", m))".

Then the term we consider in Theorem [2]can be expressed as

L(f, f,mD) = L(T"f, f,mD) = Zlf,fw )and |I(f, f,m X)| < 4V2,..

Si, A ) we have (S;, 4;,5!) ~ v x P+, ie.,
[ fmX)is

Since (S, A;) is sampled from v, and S} ~ P*(-|
X; ~ v x P*fori € [N]. Then the expectation of I(

VXP*[(f7f? )}
=By [(£(5,4) = T"F(5, ) (£(5, ) + T (3, A) — 27 — 2 /(3 >)}

— B, B [(F(8. )~ TS AN (8, 4) + T8, A) - 20 = 20 (8',) | 3.4 |

23



where the last equality follows from the definition of the Bellman operator. As a consequence, the
variance of [(f, f, m; X) can be bounded by its expectation as

Var(I(f, f, m X))
<E,.p- [(l(f’ f’ﬂ;X))ﬂ

— B, B [(1(5.4) ~ T8 4)* (5. 4) + T 715, 4) - 27— 20 ()" 5,4
<16V2_E, {Ep* {(f(S*, A) - T f(5, A))° ’ S,AH

=16V2 E, . p. [I(f, [, ™ X)], (1.2)

where the last inequality follows from the fact that f and f is bounded by Vinax- Inequality (L2)
shows that I(f, f,m; X) satisfies the condition in Propositionw1th b=4V2,  andc=16V2, . In
the following, we apply Propositionto s f,mX).

For ease of notation, we denote the parameters of the neural network as
0 = Whg, Wit o pbh .

The parameter space is

pq<BQK7

OB By Barc B B,) = {0 |of2] < Ba. 2], < o, WX |

W] < By, llwlly < Bu fori € [L.j € [m). k € [d]}.

We denote the functions in Fi¢(Bg, By, Bok, Bv, Byw) equivalently as fg, where 6 € © is the
parameter of the function.

For a finite policy class II (which is set to be a cover of the original policy class II in Step 4),
Proposition|[7|shows that: Given a distribution P, of (¢,6’) on © x ©, for all distribution Q on © x ©

and any policy 7 € IT, with probability at least 1 — &, we have
‘EQ []Euxp*[ (fo, for,m; X)] Z f97f9/77T;Xi):H

1 2/11
< 16V B [ from 0] + 3 [KL@ P g 2 )

where A < 1/(8V;2

max)

Step 2: Control the fluctuation of both sides of inequality ([.3) introduced by Q.

To derive a generalization error bound for any function pair (0, 6’) in Fis X Fie, we set Q) as the
uniform distribution on a neighborhood area of (,6") , Py as the uniform distribution © x ©, and
control the fluctuation of the left-hand side of inequality due to the averaging according to ().

We define the difference between the functions of different parameter pairs (6,6’) and (,0') as

€(9~7 9~/7 97 6/7X) = l(f§7 fémﬂ—; X) - l(f97 fe’uﬂ—;X)’
To control the fluctuation of the left-hand side of inequality due to the average according to (),
we need to upper bound e(6,6’,6,6’, X) for all X € RV*4, which can be achieved by the following

result.
Proposition 8. For any input X € RN*4, any functions gy (X; Wé}L{, WEL oL bVL w) and
gte (X WQK, le/L, LL pL:L , W) € Fii(Ba, By, Bok, Bv, By,), and two positive conjugate num-
bers p,q € R, we have
’gtf(X WQKaW 1L,b1:L,’lU)—gtf(X WQK7W ~1:L’51:L’w)‘
L

< Zai “(Bi L + K + pi) +|w =D,
i=1
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where
a; = By [BV(l + 4cp,gBox) + d%mBaBb]L_i’
AT ()T
Bi = QprqBVHWgI)( - W(S}( lp.q:

)T = ()T
b= W =W T,

d m p%
-3 () |
k=1
S0 B "
Ba[Z(Z* -1 |
k=1 “j=1
fori e [L].
Proof. See Appendix [M.2]for a detailed proof. O

Motivated by Proposition @, we define the upper bound of the difference of functions in Fi¢ with
different parameters 6 and 6 as

L
i . L . y
A0,0) =" Bu[Bv(1+ 4cp g Bor) + dvmBoBy) {2cp,q3V|Wg}§ ~ WK llp.q
1=1

T =g ] (et -a1) ]
sor 17
e[ (-1, ]} oo

k=1
Then we can upper bound the absolute value of e(6, 6,6, 6", X) as
|e(0,6',0,0', X)|
< |(£3(8. A) = (8, ) = 15, (8',m)” = (a(8, &) = 7(S, ) = 1f (S, )|
(771308, A) = 73, A) = 138", m)° = (T for (3, A) = 7(5, ) = 2f (3", 7))’
< AVimax (A(0,0) + 37A(0,0')), (1.4)

where the first inequality follows from the triangle inequality, and the second inequality follows from
that fy € [—Vinax, Vinax] and r € [—Rpax, Rmax]- For any fixed pair of parameters (6, 6’), using
inequality ([.4), we can upper bound the generalization error for a fixed parameter pair (6, ') by the
left-hand side of inequality (L3) as

E, . p- [I(fo, for, m; X)] Z (fo, for,m X5)

S\H

Zlfg,fe,,wX)H
i=1

3\'*

< 'E(é,é’)NQ |:EV><P* [ (feaf@faﬂ_ X

. 1< - -
+ ‘E(é,é’)NQ |:]EV><P* [6(9, 9/7 07 0/7 X)} - ﬁ Z 6(9, 0/, 6, 0/, Xz):| ‘

=1
1 n
< ‘E(é,él)NQ |:Eu><P_* (U S5 f50om X)) = 52 f@f(;/,W;Xi)”
i=1

+ 8VinaxE (G gy [A(0,60) + 3vA0,0)]. (L.5)
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Similarly, for a fixed parameter pair of parameters(f, §’), the first term in the right-hand side of
inequality ([.3) can be upper bounded as

Egoy~0 []Euxp’* [1(f5. fa W;X)]]
S EUXPT* [l(f97 f@’ , T3 X)] + 4VmaxE(9~7§/)NQ [A(é, 6) + 3’}/A(§/, 9/)] . (16)

Substituting Eqn. (L3) and (L.6) into Eqn. (L3), we derive that : Given a distribution P, of (6, 6’) on

O x ©, for all distribution Q on © x ©, any policy € II and any (6,0') € © x O, with probability
at least 1 — 4, we have,

By [0, foro X)) = % 32 Ufoy fors 3 X0)
=1

< Vinax (64V2 0 A+ 8)E 5 iy [A(0,0) + 3yA(0',6")] + 16V,2 B, - [1(fo, for, 75 X)]
1 2|11
+ Y [KL(Q | Po) + log 5] ;

where A < 1/(8V;2

max

). We take A = 1/(32V2

max

), then

E, . p- [1(fo, for, m X)] — %Zl(fe,few;Xi)
=1

- < 1
< 10VimaxE g gy [A(9,0) + 37A(0, 6)] + 3Euxp [1(fa, for,m; X)]

3V2

2|11
32Vina [KL(Q | Py) + log '5 ']. a7

Step 3: Specify the distributions P, and () on the function class Fi;.

For a fixed parameters pair (6,6’), we set Py as the product of the uniform distribution of each
parameter on the whole space and @ as the product of the uniform distribution of each parameter on
the neighborhood around (6, 6'), i.e

L
Ao ={ V(B B - )11 [ B(O, Bare, |- ) - U(BO, By |- )
R md 2
- (U(B(0, Bas | - ) - U(B(O, By, | g ))) }} , and
L
@ ={U@w.c0n1-12) - TT [UEOEE Gl 1) - VBV T 2.1 1)
i=1
I (U(B(a?ﬁj, Ol 1) - UBOL, ) - q>))] }
j€[m],k€[d]
L
/ T 1(2)T
~{U(B<w sl 1)) T [UBOVERT el 1) - UCEBOVET 2,1 )
i=1
I <U<B<a,gg>/,5;a;j, D) OO0 1) |
j€[m],ke[d]
where B(x, r, || - ||) denotes the ball {y | |ly — «|| < r} in some metric space (X, || - ||), and U(+)
denotes the uniform distribution on some set. For a constant C > 0, we define ¢, = A =

C/[(1+3v)(4L+ 1)n]. Fori € [L], j € [m] and k € [d], we set

e = (20pqByBu) " [By(1+ ey Bar) + dvmByBy]

e = By [By (1 + 4¢, 4 Bok) + dvmB,B,) “T'A

A,

3
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—L+1

S;)k] =d 7 (meB )" 1 [Bv (1 +4c¢pqBork) + d%mBaBb} A,
El(;}cj —d v (mBan)_l [Bv(l +4c¢, 4Boxk) + d%mBaBb]_LHA,

By Proposition [§] we then have

s1Q

E g0 [A0,0) +37A0,6')] < (1.8)

Since the distributions Py and () are the products of the distributions of each parameters, KL(Q || P)

is the sum of the KL-divergences between the distributions of each parameters. For i € [L], the KL
divergence between the distributions of Wk can be upper bounded as

KL(UBEX 55 |- 1) [U(BO, Borc |1 - .0) )

B
_d210g< (Q)K>
QK
4mdBy Box BoB
§2(Li)d210g< mn VAQK b) + d?log B,

where the equality follows from the fact that Wg;( € R4 for all i € [L], in which the logarithm

of the ratio between two £, ,-norm balls is equal to d? times the logarithm of the ratio between the
radiuses.

We note that the product By Bgx BBy By, is defined as B in Theorem |2} I which is adopted to
simplify the result. Similar bounds for the KL divergence of the distributions of parameters W(l)

afc?, b(’j) and w fori € [L], k € [d] and j € [m] can be derived by replacing d? by the dimension of

the parameter. Thus, we have
4mdBvBQKBaBb
A

KL(Q|| Py) < 2(m +1)L*d? log( ) + 2(m + 1) Ld* log B, (1.9)

Substituting inequalities and (L9) into inequality ([7), we derive that for any (6, 0’) € ©2, with
probability at least 1 — ¢

]EI/XPT* I:l(f97f9'77r;X>} - %Zl(f97f9'77r;Xi)
i=1

¢ 1 322 4mdBy Box Ba By
< 10qux + 2Eu><P* [ (fo, for,m; X)] nrlnmx {Q(m T 1)L2d2 10g< maby AQK " >
2|1
+2(m + 1)Ld"log By, +log ” ' (1.10)

Step 4: Cover the policy class II.

Note that inequality only applies to the situation where the policy class is finite. When the
policy class is infinite, we consider the covering of the policy class with respect to doo (-, ). The
e-covering number of the policy class with respect to du(+, -) is denoted as N (II, €, d ), and the
corresponding e-cover is C(II, &, d ), which is defined in Section 2] From the definition of dog (-, -),
we have

doo(m,7') = sup Y _ |w(A]S) — x'(A] )|
SeSs

AcA
1F(S,m) = £(5,7)]| = | D [7(A]S) — «'(A]5)] (S, A)
AcA
< Z!ﬁ(A\E)*W’(AIS)I |f(S,A)
AcA
< Vinaxoo (m, ") (L11)
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T 18, 4) = T 15, D =[E g, s 5.0 /(S m) = (57| 5, 4]
< YVimaxdoo (m, 7). (L.12)

Thus, we can upper bound the difference between {( f, f,m X)and I(f, f,n; X) by doo(m,7’) as
(s, fom X) =1, for's X))

.(Tﬂ/f(g A) — 27 —yf(S, 7" —~f(S, 7T)))2

)

where the inequality follows from the triangle inequality. Combined with inequalities (L1I) and
(L12), it can be further upper bounded as

’l(f,f,?T,X) - l(f,f,ﬂ'/;X)’
S lyvmaxd ( /) : 4Vmax + 2’y‘/maxdoo (7T7 7T/) : 4Vmax
=129V oo (7, 7). (L13)

From the definition of the e-cover and inequality (L.13), for any 7 € II, there exist a policy e
C(I1, e, d ) such that for any f, f € Fis,

[U(f. fom X) = U, for's X)| < 129eV2,, (L14)

Substituting inequality (L.14) into the term involving I( f, fomX ) in inequality (.10, we have that
for all fy, for € Fir and all policy w € II, with probability at least 1 — 4,

1 n
By p-[l(for for, m X)) = = > U(for for, w3 X)
=1
) c 1
< 307Vinax® + 10Vimax— + 5By pe [L(fo, for,m; X)]

2 dmdBy Bok B, B,
3 ‘/Inax|: (m+1)L2d21og( md VAQK a b)

2N (I, e, dso)
—

+ 2(m + 1)Ld* log B,, + log

Setting € = 1/n and C' = 5V},,ax, We obtain the desired result. Therefore, we conclude the proof of
Proposition 2] O

J Proof of Proposition 3|

Proof of Proposition[3] We adopt a Bayesian framework to prove the desired result. The total
variation is first upper bounded through Pinsker’s inequality. Then the derived upper bounded is
further relaxed by the bounds related to the KL divergence. For ease of notation, we denote the
parameters of the neural network as

f = [WQK7 W ’ 1:L7b1:L].

Step 1: Bound the total variation distance with Pinsker’s inequality.

From Pinsker’s inequality, the total variation between two conditional distribution can be bounded as
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Lemma 9 (Lemma 25 in [49]). For any two conditional probability densities P(-| S, A), P'(- ]S, A)
and any distribution v € A(S x A),we have

o . 1. PSS 4
EV[TVP-S,A,P’-S,A 2}<—21 E s 1105 pi. | 54 5 108 2
(P ) (| ))"| <—2log ( E(s a)~v,5'~P(.|5,4) | €XP 0g P’(S’ 15, 4)

Thus, we only need to upper bound the right-hand side of the inequality in Lemma[9] We adopt a
Bayesian framework to relax this upper bound.

Lemma 10 (Lemma 2.1 in [43])). Given a distribution P on ©, for all Q > P on © and all
measurable real-valued function L(0; D) : © x (S x A)" — R, we have

Ep [exp {EQ [L(6; D) — log Ep[e*P)]] — KL(Q|| P)}} <1,

where Ep| -] is the expectation with respect to the underlying distribution of {(S;, A;, SI}™_,, i.e.,
(v x P*)™

By Lemma and the Chernoff inequality, we have that with probability at least 1 — §/2,
. 2
—Eq[logEp[e" )] < —Eq[L(0; D)] + KL(Q|| Qo) +log 5, a0

where Ep| -] is the expectation with respect to the underlying distribution of {(S;, A;, S!)}™ ,, i.e.,
(v x P*)™, and Q and Q are two distributions on O.

Take L(H D) —7 Zl 1 10g<P*(S/ ‘ Sl, A )/P.g( l/ ‘ gi, Ai)), where D = {(51, Ai, Ti, Sz/)}?:l
Then the left-hand side of inequality (J.T) becomes

<

—EQ [log E’D [BL(G;D)H = —]EQ

pM»—‘

NN G T .1

1
nlogE 5 4,5~ x P+ {exp ( — —log

Step 2: Control the fluctuation of the both sides of inequality (J.I)) introduced by Q.

Since PMLE is a random variable, we want to derive an uniform bound for all # € ©. Because the
left-hand side of inequality (J.T) takes the expectation with respect to the distribution @) on ©, which
is chosen as the uniform distribution on the neighborhood around a fixed parameter § € ©, we need
to control the fluctuation of the left-hand side of inequality due to the distribution () around 6.
For any two parameters 6 and 6, we define the logarithm of the ratio between the transition kernels
induced by them as

o P;(5'| S, A)
(6.0:5' 5, 4) =log (15 4
S'— F5(S, 4| S'— Fy(S
1og<exp<” ;‘(2 >||F> /exp<|| ;‘(2 ||F>>
I8 = Fo(8, A)y — || - Fy(S, A)Jy
- 202 ’

To upper bound the absolute value of e(6, 6,58, A), we need to bound the norm of the output of
the neural network.

Proposition 11. For any X € RNX4 any Wy, Wy € R¥*4 g € R™™, b € R and two
positive conjugate numbers p,q € R, we have

H (SM(XWor X )XWy + 1FF(X, a,b)) |

p,o0

d m p11/p
< I X e [Z(Dakubkjnqnf p,oo) } |

k=1 Vj=1
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Proof. See Appendix [M.3|for a detailed proof. O

Proposition shows that || F;(S, A)|lr < VNB* forallg € ©,5 € Sand A € A, where
B* = By + md"/?B,By. As a consequence, we have

N.a! @ A 1 al a1 al < <) <
€(6,0:5', 5, )| < 5 (|IS' = Fo(S, Dl + 8" = F(S, D)) | (S, A) = Fy(S, A
1 o o
< —5(llellr + VNB*) [ Fo(S, A) = F5(S, A (af))

where these two inequalities follow from the triangle inequality. For two parameters 6 and 6, we
define the upper bound of the difference between the dynamic functions induced by them as

For a fixed parameter 6, the left-hand side of inequality (J.1)) can be lower bounded as

[ logEpet )
1 o 1 P* 51/ S,A
=-Eq [n 0g E(5 4,5 wwx P+ [exp <—4e(9,0; S',8,A) - 1 log Pe((S"||5A))>H
" 1. P*S'|S,A)
> ——1ogE,p- -5 1 313 A
Z 5 ogltyxp [exp( 5 og Py(5'] S, A)
n 1 9. G A
vt o .50)]

S
> ZE” [TV(P*(- | S, A), Py(-| 5”,[1))2} —Eq {Z logE, « p+ {exp(—ée(@,é; S, 5,]1))” ,

(J3)

where the first inequality follows from the Cauchy—Schwarz inequality, and the last inequality follows
from Lemma[9] The second term of inequality (I-3) can be bounded as

logE, « p- [exp(—;e(ﬁ,é; S’,S,A))}
<log By p- [exp<;|e<e, 555, A)D]
<logEsun(0,021) [exp(;g(”éﬁ + \/]VB*)A(H, é))}
= VNB'A0.0) +10gBa- 0020 | e 515 Ele3(0.0) )

where the second inequality follows from inequality (I.2). Since Lemma shows that || X||r <
| X |11, we further have

logE, « p- {exp (;e(ﬁ, 6;5', S, A))]

. 1 .
<VNB*A(6,0) + log Ee (0,021 [eXP<M||€ l11A(0, 9))]

N A(6,0
= \/NB*A(H,H) + Ndlog E.nr(0,02) [exp<§;2)|6|)] , J.4)

where the inequality follows from Lemma[T6] The moment generating function of the folded normal
distribution is (see [50])

Eeop (0.0 [exp()\|C|)} = 2exp(02A%/2) [1 — B(—o)\)], 1.5)
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where ®(+) is the cumulative distribution function of (0, 1). From the Taylor expansion of ®(-),
we have

2[1 - ®(—oN)] <1+ \/30')\ J.6)

for small enough X. Since log(1 + x) < z for « > 0, substituting inequalities (T4), (T3] and (I-6)
into inequality (J23), we have
—Eq [log EDeL(é;D)]

> EEV [TV(P*(-|5 A),Py(-| 8, A))z}
_ 72‘ 5 [\/>B*A(9 0) + Nd(A;(f;é) + 210\/§A(9,§)>} J.7)

for small enough A (6, §), which is set to O(1/n) later.
For the scaled right-hand side of inequality (I.T), we have

+{~EalL: D) + KLQ1 Qo) + 103 5

- P*(7/|§i7Ai) 1 & - 4 9
“a 515 A T Eing |y 200 A KL log 2
;ogpe( 184y e ";e(’ 55 5y Ai) | + (@1 Qo) +1log
1o, PSS, Ay 131
<Ezlogp9(7|* A.)+]E5~Q gZ;(II€z||F+\FB) 0,)
=1 ) 19 {1 =

4 2
+ kU@ +10s 3, a3
where the last inequality follows from inequality (I.2)) and the definition of A(#), é) To upper bound

the right-hand side of inequality (I:8), we need to upper bound ||&||r, which can be achieved by
combining the upper bound of the moment generating function of ||€||g

Nd
E[exp(Aellr) | < E|exp(Mle]1)] = <1E8NN(0,02)[exp (/\S)D < 2exp(0®X2/2)) M

and the Chernoff inequality. Thus, with probability at least 1 — /2, we have

1< 2Ndo? 2
- > leille < \/2N2d202 + n" log =. (1.9)
1=1

]

Substituting inequalities (I.7), (I-8) and (I.9) into inequality (I.I), we have that for any 6 € © and
any two distributions () and @, the following inequality holds with probability at least 1 — §

E, [Tv(P*( 15, A), Po(-| S, A))ﬂ 1.10)
1 & P*(5!15;, A, . A%6,6) 1 [3

2Ndo? 2 ~ 4 2
+ <\/2N2d202 + na log 5 + \/NB*)E(;NQ [A0,0)] + -~ {KL(Q | Qo) + log (5} .

For any fixed 0 = [Wl S WEL alE b1E], we set Q as the product of the uniform distribution of
each parameter on the whole space and @ as the product of the uniform distribution of each parameter
on the neighborhood around 6, i.e.,

Qo =U(B(0, By, | - | H[ B0, Barcs |- ) - UB(O, By, |- )

i=1

- (U(B(o,Ba, 1) V(a0 81 1) "] ane
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Q =U(B(w, e, | - | H[ BOVSK e5ks - la)) - UBWD T D1 )

IT (U e l0) - VB0 )]

j€[m],ke[d]

For a constant C' > 0, we define A = C'//(4LnN>/2dB*). Fori € [L], j € [m], and k € [d], we set

—L+1
A,

el = (2Bv) ' [By (1 +4Bgk) + dimB,By]
e = [By(1+4Bgk) + d*mB,B,] " 7A,

— d"%(mB,) ' [By(1+4Bgk) + d*mB,B,] """

A,
A.

akj

e, =d (mB,) "' [By(1+4Bgk) +d*mB,By) """

By Proposition 8] we have

E-

G0 [A2%(0,0)] <

2
[A(0,0)] < ¢ ¢ (J.11)

= aNdpe e = n?N2d2B*?’

Sine @ and Qg are product distributions, KL(Q || Qo) is the sum of the KL-divergences between
each constituent distribution. For the KL-divergence between the distributions of Wk,

4mdBvBQKBaBb

KL(UBOVER ek o)) [ UBO. o, - a))) < 202 — i) tog (2

for i € [L]. Similar bounds for the KL divergence of the distributions of parameters W s a k i b( Y

and w fori € [L], k € [d] and j € [m] can be derived by replacing d? by the dimension of the
parameter. Thus, we have

(J.12)

dmdBy Bok B, B
KL(Q| QO)SQ(m+1)L2d21Og< md VAQK a b>.

Substituting Eqn. (I.TT) and (I.I2) into Eqn. (I.I0), we have that for any § € © and any two
distributions @) and @, the following inequality holds with probability at least 1 — ¢

= P*(S!]S;, A;
< = 1 S Redi A
= ; % Py(51155, Ay)
+0(E 4 Lim 4 np2aiog( WEmAB By BoxBaByn) | 1, 1)
non C n 1)

Take 6 = éMLE, which is the estimate derived in Eqn. @) Since it is the maximum likelihood
estimate, we have

L Zlog P(5;]5i, Ai) <0

nia PéMLE( ;lsi’Al) 7
which proves the desired result. Therefore, this concludes the proof of Proposition 3] [

K Proof of Proposition [6]

Proof of Proposition[6] We adopt the PAC- Bayes framework to prove the desired result. Define
1(0,S,A) = TV(P*(-|S,A), Py(-| S, A))%. Then we have

Va‘r(l(07 57 A)) < E(S’,A)NV [l(aa g7 ‘;1)2] < E(S,A)NV [l(ov S’a A)]a
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which implies that [(6, S, A) satisfies the conditions of Proposition I 7| with b = ¢ = 1. Thus,
Proposition [7]shows that for any distributions () and ¢ on O, the following inequality holds with
probability at least 1 — 9

o 1 <& _ 1 2
‘EQ{ED[ LS, A)] ﬁ;z ”<AEQD[(0,S,A)]+nA KL(Q||Q0)+log5 ,
(K.1)

for 0 < A < 1/2. Since we want to derive the generalization error bound for all § € © uniformly,
we set () as the uniform distribution on the neighborhood of any fixed 6 and )y as the uniform
distribution on ©. To derive the uniform generalization bound for any 6 € ©, we need to control the
fluctuation of inequality (K-1)) induced by Q.

With triangle inequality, for any 6,0 € ©, we have

TV(P*(|S, 4), P4(-| S, A))’
< TV(P*(-|8, A), Py(-| S, A))* + TV (P;(-| 5, A), Py(-| 5, A))?
+ 2TV (P*(-| S, A), Py(-| S, A)) TV (P4(-| 5, A), Ps(-| S, A)) (K.2)
TV(P*(-| 8, A), P;(-| S, 4))
> TV(P*(-| 8, 4), Py(-| 5, 4)° + TV (Py(-| S, A), Py(-| S, 4))”
—2TV(P*(-| 5, A), Py(-| S, A)) TV (P;(-| S, A), Py(-| S, A)). (K.3)

For two parameters 6 and 0, we define the upper bound of the difference between the dynamic
functions induced by them as A(0,0) = max(g 4)esx.a [|[Fo(S, A) — F3(S, A)|r. By Pinsker’s
inequality, we then have

omax TV(R(1S A (P18, A) < max VEL(B;(-|5. 4) || Po(-| 5. 4) /2

= , (K4)

where the first equality follows from the expression of the KL divergence between two Gaussian
random vectors. Substituting inequalities (K.2)), (K:3) and (K34) into the left-hand side of inequal-
ity (KXI), for a fixed 6 € © we have

B 16,5, )] - - Y65, 1) - 2Ol K.5)

Similarly, for the right-hand side of inequality (K-IJ), we have

AEQ o 16,5, )] + 3 [KL(Q| Qo) + Iz

5 (K.6)

Substituting inequalities (K:3) and (K6) into inequality (K-I)), we have that for any distributions Q
and )y on ©

< \Ep[i(6, 5, A)] + % {KL(Q 1 Qo) + log 2} N w.

Ep[i(0, S, ) _fzz 0,5, A,)

Eq [A(@, 9)]

2 K.7

< AEp[l(6, S, A)] + % [KL(Q | Qo) + log ?] + (BA+5)
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holds with probability at least 1 — 4.
For any fixed 6 = [WQK,W ,at plL], we set Q and Q) as

L
Qo = U(B(0, Bu | - | IHUOBWJMMinmmmm

i=1

.@mmﬁuwnﬂmwﬂm*ﬁnm]

L
Q = U(B(w,2. - | H[ T D Toa)) - UBTOT D))
=1
1 (U(Bm;?,si%,i 1) VB {1 1) |
J€[m],k€(d]

For a constant C' > 0, we define A = C/(4LnN'/?). Fori € [L}, j € [m], and k € [d], we set

—1 1 —L+i
ek = (204 By) " [Bv (1 +4cp g Box) + dvmB.By] A,
el = [BV(1 + e, qBQK) +dvmB,B,] A,
fl),w — d7 5 (mBy) " [By (1 +4ey g Bok) + drmB,By] T A,
- 1 —L+i
é‘b k] =d ( ) [Bv(l + 4Cp7qBQK) + dr mBaBb] + A.
By Proposition[8] we then have
~ c
Ej.q[A(0.0)] < —. (K.8)
Following the similar procedure in the proof of Proposition 3} we have
dmdBy Boi B, B
KL(Q || Qo) < 2(m + 1)L%d? log< m VAQK b). (K.9)

Substituting inequalities (K:8) and (K29) into inequality (K77), we derive that for any 6 € ©, with
probability at least 1 — &, the following inequality holds

1 = T C 1 4mdBvBQKBaBb 1 1

< -Ep[(6,5, A — 4 - 1)L?d*1 = log =

<3 D[(,S, )]+O n+n(m+) og( A +nog5
where we take A = 1/2. Therefore, this concludes the proof of Proposition@ O

L Proof of Lemmas in Appendix |G|

L.1 Proof of Lemmal]

Proof of Lemmal] Let g* = arginf rers LUf, fx, 7 ;D). Then the Bellman error of the best
approximation f. can be decomposed as

E(fresmD) = L(fre, [z, 7" D) = L(g", fz-, 7" D)
:‘C(f;*’f:*77r*;p)_L(Tﬂ*f;*af;MW*;D)
+ L(T™ fio, fro, 75 D) — L(g*, fo, 75 D). (L.1)

Note that the terms in inequality (C:T)) can be bounded with their population version and the general-
ization error shown in Theorem 2} With probability at least 1 — §, we have

e(Fi, m*,8,n)
n b

* 3
‘C(f;*?f:*aﬂ*;p) _‘C(Tﬂ— f;*af:*aﬂ*ap) S §5F+ (L2)
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. 11
L(T™ 3o 7 D) — £g", S, 775 D) < CTCILOT), w3

where inequality (C:2) follows from the definition of f7., and inequality (C.3) follows from that

(g* (S, A) = T™ f.(S, A))? > 0. Substituting inequalities (C.2) and (C.3) into inequality (CT), we
have

3 2e(Fis, 11,6
E(f3 7 D) < ey 4 ZTWTLOT),

This concludes the proof of Lemmal[d] O
L.2 Proof of Lemmal3

Proof of Lemma[B] Let h = arginf .z E,[(g(S,A) — T™ f(S, A))?], which is the best approxi-
mation of 7™ f. Then Assumption [I]implies that

E, [(h;(S, A) = T™f(S, A)ﬂ <err. (L.4)
For any f € F(m,¢), the Bellman error of f with respect to the policy 7 can be decomposed as
E(f,TQD) = ‘C(fafaﬂ-7D) — inf E(g,f,?T,D)
gEF e

= L(f, f,m;D) — L(hy, f,m D)
‘C(fa faW;D) 7£(T7Tfa faﬂ—;D) +£(Tﬂfa faﬂ—;D) 7£(h;kr7f77r;’D)' (LS)

Similar to Step 1, we bound the terms in inequality (C:3) with their population version and the
generalization error bound in Theorem 2] With probability at least 1 — 4§, we have

'C(fa faW;D) - ‘C(Tﬂ—f’ faﬂ—;D) Z %Eu [(f(S?A) - Tﬂf(57"4))2:| - w; and
(L.6)
C(T™f, £, D) — £(3, £.w:D) > B, [(n3(5, 4) — 77 4(8, 4))?] -~ AP ILom),
(L.7)

Substituting inequalities (C:6) and (L.7) into inequality (C.3)), we have

] <260, mi) ¢ 1L ER)

< 28(f, D) + 42T L0
n

B, [(£(5,4) - T7 (5, A + 38, [(h5(3, 4) - T £(3, 4))’]
+ 36]—"7]—"7 (L.8)

where inequality (C-8) follows from inequality (C-4). This concludes the proof of Lemma[5] O

M Proofs of Supporting Propositions

M.1 Proof of Proposition|[7]

To prove Proposition[7] we need the variational definition of the Kullback—Leibler divergence.

Theorem 5 (Donsker—Varadhan representation [511]). Let P and Q be distributions on a common
space X. Then

KL(P||Q) = sup {JEP [9(X)] —logEq [eXp (9(X))} }
where G = {g : X - R | Eglexp(g(X))] < oo}

Proof of Proposition[7} Since |f(X) — pu(f)| < bas., f(X) is a bounded random variable. Then by
[52], we have for |A| < 1/(2b),

Ex [exp (A(f(X) = ()| < exp (A202(1)).
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Consequently, set e, (f, A) = A[u(f) — 2 3 f(Xi) — Ao?(f)], then we have

Ex,.. {exp (nsn(ﬁ )\))} =Ex [exp (A(M(f) — f(X)) _ >\202(f))} " <1

forall f € Fand0 < A < 2%)

By Markov’s inequality, we have that for any distribution Py on the function class F, the random
variable €,, induced by random variables {X;}] satisfies

2 4]
Pr <IEP0 [exp (nen(£,0)] = 5) <3 (M.1)
where the probability is taken with respect to the distribution of X; for i € [n].

Setting g(f) = ne,(f, A) in Theorem 5| we have
Eg[nea(f, \)] < KL(Q || Py) + log Ep, [exp (nen(f, )\))]. (M.2)

Combining inequalities (M-1)) and (M:2), with prob at least 1 — $, for 0 < X < -, we have

Bo[ExL/(0] - 1 Y- F(X0)] < ABo[o?(1)] + 5 [KL(@UI 7o)+ 1og 5 .
i=1
for all Q. Similarly, setting ), (f,\) = A[£ " | f(X;) — u(f) — Ao®(f)], we have

n

Eg [% Z (X)) —Ex [f(X)}] < AEq[o®(f)] + % {KL(Q | Po) + log ﬂ ; (M.3)

with probability at least 1 — g. The desired result can be proved using the union bound. When

o?(f) < cu(f) for all f € F, the result follows from substituting this condition into inequality
(M.3). Therefore, we conclude the proof of Proposition[7] O

M.2 Proof of Proposition

Proof of Proposition|8] To prove the desired result, we first analyze the error propagation through
each layer. Then we combine the error propagation of each layer to derive the error bound of the
whole network.

Step 1: Bound the difference of each layer.
For i € [L — 1], we can bound the difference of the output of the (i 4+ 1)* as

H (GSH)(X; I/Vclgzlz‘;rl7 W‘1/;z'+1’ U pliatly GE;H)(X; Wé:lv',(+17 Wé:i+17 Glitt, 51:¢+1))TH

p,00

7 i+1 )T 1 1+1 () +5-(04+1) A2 TN A0 v5-(i+1
< H(SM(GEf)WéK GPGPWIT —sM(GPWEE G G

tf tf

p,o0

(SM(GE?WS;QQGE?T)G@ W‘(/i+1) I rFF(GE?, al ), b(i+1))

T
_ SM(G‘E?Wg;g”@g”)éi?ﬁ/‘(}“) o rFF(éE?, a(i+1)’ B(i+1))>

p,o0

(rFF(GE?, Gt pEHDY _yFF(GE a6, z}(i“))) N (M.4)

p,o0

il

where GE? and éé? are  shorthands for GE?(X;Wé:}(,W‘l/’i,alﬁi,blzi) and

G (x ;Wé};,W&/i,dliﬂf)l”), respectively, and inequality (M4) follows from the triangle
inequality.
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Now we consider the first term in inequality (M.4). For i € [L — 1], with the triangle inequality, we
have

o , o .
(SM(Gg?Wg;;l)Gg;)T)GE?W‘(;H) SM(G )Wz+1)G(Z )GE;)W‘(/1+1)) OL5)

p,o0

~( . T

H (SMEPWEEIGT) WD —sm(GPW GG WD)

p,00
H SM tf)W(z+1 GE?T>G‘§?W‘(}+1) —SM(G‘& W z+1 G( )G )W(z+1))
p,o0

Thus, we need the upper bounds of the two terms in the right-hand side of inequality (M:3)), which
are stated as following.

Proposition 12. For any X, X € RN*Y any Wy, Wor, Wy, Wor € R*¢ and two positive
conjugate numbers p,q € R, if | X [|p,o0, [|X Tlp,00 < Bx, [Wikllp.g < Bor, and [[W) [|p,q <
By, then we have

H (SM(XWQKXT)XWV - SM(XWQKXT)XWV) ! H

p,00

< By (1+4c¢y4B% - Bor)| X" — X |lpocs and
H (SM(XWor X )XWy — SM(XWor X T)XTy) "

P,00
< 2Cp7qB§( By - ||W5K - W5K||P,q + BXHWJ - W\I |p7q-

where cpq = 1ifp < q,and c,, = dY/a=1/? otherwise.

Proof. See Appendix M.3|for a detailed proof. O

Thus, we have

7 i+1) ~(3)T % (i41) ~(9) 17 -6+1) A@) Ty A>0) v5,(6+1
| (SMEIWE GG - sMEPWSDE A

P,

p,q

DT ADT DT 6T
SBV(1+4Cp,qBQK)HGEf) _Ggf) ||p,oo+26p,qBVHWc(g;) _Wé;)
DT 6T
LA T

D¢ (M.6)

where the inequality follows from the fact that the radius of parameters are bounded and the norm of
HG O || + 1s bounded by 1 due to the normalization procedure.

Now we consider the second term in inequality (M.4). For ¢ € [L — 1], we have

i ) ; ~(i . ~ T
(PR, ), 640) < PE(GE0, ) 600))

p,o0

i i i ~ (i . ) T

< ‘ (rFF(GEz)va(Z+1)’b(z+l)) _ rFF(GE?7a(z+1)7b(z+1))>

+ ‘

Thus, we need to upper bound the two terms in the right-hand side of inequality (M.7). These upper
bounds are stated as follows.

p,o0

~ s . . ~ ) s T
(sFF (G, a0, 50 HD) < 1FF (G, a0, 50+0)) (M.7)

P,

Proposition 13. For any X ,X e RV¥d .G € RY™ p b e RIXdm and two positive conjugate
numbers p,q € R, if | X " ||lp.co < Bx, |ak;l, |ax;| < Ba, and ||bijllq, |bk;llg < By for k € [d] and
J € [m], then we have

(:FF(X,a,b) = FF(X,a,) | <dbmBa- By |XT = X7, and

p,00 p,OO’
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H (:FF(X, a,b) — 1FF(X,a,0)) "

p,o0

S&B%EXXﬁmﬂ%>y+&ﬂ%§xg¥w4qué

k=1
Proof. See Appendix M.4]for a detailed proof.

Thus, we have

) oG j S (D) i) T
(rFF (GE?, a,(l-i—l)’ b(z+1)) —tFF (GE?, d(z-ﬁ-l)’ b(“rl)))

p,00

d m _ pp
< dmB BT Gt 5 3 (Sl - ) |
k= j=1
p
cn 3 (S -a )

k=1

=

B = ’—‘

(M.8)

where the inequality follows from the fact that the radius of parameters are bounded and the norm of
Hth)T H is bounded by 1 due to the normalization procedure

Substltutmg inequalities (M.6) and (M.8) into inequality (M.4)), we have

(z+1) Ll yplidl Ll pliil (1) vy, (7Ll pizlia+l ~Lii+l FLlit1y) |
H (G (X WhEH Wkatt al i plitly - UYWL W gl plthy)
p,o0

(+1)T T(i+1)T
+ 26, By |[|WSED T -~ WHEY

m p1d
i+1)T (i+1)T i+1) i+1 P
+ [ty Wf+>,w+B{§j(§]<+ 2;H)}

k=1 “j=1

[BV(1+4CP qBQK) +deB Bb]Hgt ng)TH

lp.a

m

> (2w - i) T
(3 )]

M.9)
Step 2: Combine the error bound of each layer in inequality (M.9)
Repeating inequality (M.9) for i € [L — 1], we derive
L L . I T
H GEf)(X QK?W Lal piE) fGEf)(X WQKawlL 1:L bl.L)) Hpoo
L .
1 —1 )T (1
<3 [Bv(1+4¢y 4 Bok) + dvmBoBy] {2c,, BrIWs = WE lpg
i=1
DT G @T L& "k
T =0 g+ 8] 3 (Y lof) — ) |
k=1 “j=1
I OTANE
{Z(leb — by IIq) ] } (M.10)
k=1

For the output of the neural network, we have

’gtf(X WQKaW ; LL,bl:L w) —gtf(X;Wclg}lé7W11/L ~1:L blL ~

7 w)|

HVmax(NHNGEfL)(X WEE, WL abE b1 yw)

1
- vaax(N]INGEf) (X WEE, WL, alL piit

a )@)
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1 _ 1 L L~
< N}INGEfL)(X Wk, Wik, 1L,b1'L)w—N]INGEfL)(X Wk, WEE, abt bl yw

where the inequality follows from the contraction property of the normalization function. It can be
further upper bounded as

|9tf(X QKaW L L BUE W) — g (X WQK7W bl plL u?)}
< HGEfL) (X; WQK7W b By — G(L)(X WQK’WIL AL By H

oo

<6’ - G ”Hpm ol + G, - o =l

p,0

< Bu|| G =GP, o+ llw =, (M.11)

where first inequality follows from Holder’s inequality, and the second inequality follows from
Lemma[[7]with v = p, v = g and p = .

Combining inequalities and (M.TT)), we have
|gtf X WQK7W 1L7b1:L7 ) gtf(X WQK7W ’~1:L761:L’w)}

5 1 L—1 7 (1
< Jw — @]y + Z By [Bv (1 +4cpqBok) + dvmB,By) {ch,qanwg;: ~ WK Iy

i=1
d m S 1
i T (3 P P
ST B S (Sl -a) |+ [Z(an ) |}
k=1 j=1
This concludes the proof. O

M.3  Proof of Proposition[12]

Proof of Proposition|[I2] Let T € [N] and x] be the 7" row of X. For the first inequality, we have

H (SM(XWor X )XWy — SM(XWor X T)XWy) "

p,00

= max [SM(z] Wor X )XWy — SM(2] Wor X )XWy |,

TG

< max [SM(z] Wor X )XWy — SM(z] Wor X )XWy |,
TE

+ ISM (2] Wor X X Wy — SM(2] Wor X DX Wy |,
= max HWV (XT = XT)(SM(z] Wor X 1)) H
P

]
p

+ HWV XT(SM(2] WorXT) — SM(E] Wor X 1))

where the inequality follows from the triangle inequality. We further upper bounded it as

H (SM(XWor X )XWy — SM(XWQKXT)XWV)TH

p,00

poo - [SM(z Wor X 1) = SM(Z; Wor X 1)

< max Wy (X7 = X T)[lpoe + Wy X T|
< Tnel[aj\)f(] 2||W\—/r||p,q ) HXTHP,OO ) ||$IWQKXT - fIWQKXTHoo

W g 1T = X T lpyoo, (M.12)

where the first inequality follows from Lemma[T7 with u = oo and v = 1, and the last inequality
follows from LemmaI8]and Lemma[T9] Now we consider the second term of inequality (M.12)), and
we have

lef WorX T =] Wor X lo
< o] Wor X" — 2l WorX oo + llz; Wor X T = & Wor X e
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= (X = X)Wgkar|| o + | XWgrar — Wordn)||
<NXT = X M poo WGk llg + 11X T lpoo - W (27 — Z4) g

where the last inequality follows from Lemma|[[7]with u = p, v = ¢ and p = co. We then bound the
¢4 norm with the £, norm as

|z Wor X — 2 Wor X e (M.13)
< e [IXT = X oo  IWGgellp + 1K lpe - W (@r = 7)1l
< e[ I1XT = X oo 1Wiclpa - el + 1X T lpoo - WGl - iz = Z+1,]

p,00 ° ||W5K|

< pa [IXT = X lpoo - IWicllpg - 1X oo + 1K) pa IXT = X,

where ¢, o = 1ifp < g,and ¢, 4 = dl/4=1/P otherwise, the first inequality follows from Lemma
and the second inequality follows from Lemma[I7]with v = ¢ and v = p.
Substituting inequality (M.13) into inequality (M.12), we obtain

[SM(z] Wor X )XWy — SM(2] Wor X )XWy |,

< W Il (14 265,01 X7 pa(1X T llpoo + 1X o) )IXT = X7 e

|p,oo : HWC—QFK
as desired.

For the second inequality, we have
H (SM(XWor X )XWy — SM(XWor X T)XTWy) H
p,00

= mex [SM (2] Wor X ") X Wy — SM(z] Wor X )XWy |,
TE

max [SM(z] Wor X )XWy — SM(z] Wor X )XWy ||,
TE

+ [[SM (2] Wor X )XWy — SM(2] Wor X )XWy ||,

= m%\),(} HWJXT (SM@IWQKXT) - SM(f;rWQKXT))TH
TE p

IN

| Wy X T = Wy X T)SM(a] Wor X )T,
where the inequality follows from the triangle inequality. It can be further upper bounded as

H (SM(XWor X )XWy — SM(X Wk X T)XTWy) " (M.14)

p,o0
< max WY X T lpoo - [ISM(2] Wi X T) — SM(2z] Wor X 7)1
TE
HW =W)X T - ISM (2] Wor X D]l
< max 2IWY X lpoo - o] Wor X T — ] Wor X Tleo + |(Wy = Wy )X T||
TE ’

< max 2Wy llpg - 1X Tllpioo - 12l Wor X T — 2] Wor X oo + [|[Wy = Wy llpg - IXT|

p,00’

where the first inequality follows from Lemma [I7) with v = oo and v = 1, the second inequality
follows from Lemma([T9] and the last inequality follows from Lemma[T8] Now we consider the first
term of inequality and have

2] Wor X T — 2! Wor X T |lo
<X lpoo - S Wor — 2] Wokllg
< p gl X T poo - 12 Wor — 2] Wakll,
< pgllX Mlpoo - WSk — Wik
< Cp,q”XTHf;,oo : HW(§K - Wc—ng

|p7q ) erHp

lp.gs M.15)
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where ¢, , = 1if p < ¢, and ¢, , = d'/97 /P otherwise, the first and third inequalities follows from
Lemma|[T7] and the second inequality follows from Lemma [I6]

Combining Eqn. (M.T4) and (M.T5), we have
[SM(z] Wor X )XWy — SM(z] Wor X )XWy |,
< 20p7q||XT||2,oo : HW\—/r”nq ’ HWEK - WJKHp,q + ||WX—/|— - W\—/I—Hp,q : ||XTHP,OO
This concludes the proof. O
M.4  Proof of Proposition[13]
Proof of Proposition[I3] LetT € [N] and x| be the 7" row of X. For the first inequality, we have
(xFF(X, a,b) — 1FF(X, a, b))TH

p,00

— FF(2,,a,b) — rFF(%,,a,b
Tng%llr (x7,a,b) — tFF(Z7,a,b)|,

— max [Z ’ 3" ai; [ReLU(b ) —ReLU(ijjT)]‘p} "

TE[N]
k=1 j=1
which follows from the definition of the rFF network. It can be upper bounded as

H (tFF(X, a,b) — 1FF(X, a,b)) "

p,o0

P %
<5 [ (S -]
d m p %
< ma {Z (Z sl - 10wl - - — lelp) ]

k=1 Nj=1
{Z(Zam ||bk7||q) } HXT_XTH;),OO7
k=1

where the first inequality follows from the fact that ReLU(-) is 1-Lipschitz, the second inequality
follows from Holder’s inequality, and the last inequality follows from the definition of ¢, o norm.

For the second inequality, we have

(xFF(X,a,b) — 1FF(X,a,b)) "

p,o0

= FF ) 7b —1FF T7~a6
i [xFF (a7, a.8) = FP(zr,a.D),

10

d m

~ p
- ReLU(b x,) — ap;ReLU(b} 2,
sy | 5| et e

IN

TE[N]

max [Z’ZaijeLU(bk]xT) akJReLU(bijT) }P
k=1 gj=1

~ P »
+[§ ‘ZaijeLU(b;j:cT)—aijeLU(b;ij) ]
k=1 j=1

where the inequality follows from triangle inequality. Using the Lipschitz property of the ReLU
function, it can be upper bounded as

(tFF(X,a,b) — 1FF(X,a,b)) "

p,00
d

< max [Z (Zmy — | b,wx7|> r - {Z (Zlam [ leﬂ

k=1 k=

S
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=

NE

p
laws — g - gl - mnp) ]

<[

k

d
[0
m p %
|: (Z|ak] _akj ||bk7]|Q> :| HXTHp,oo

k=1

=1

[Z(Z% s =t | 1

k=1

1

) b2
g - by — bkj|q~||xT||p) ]

.
Il

Mﬁs

[

where the first inequality follows from the fact that ReLU(-) is 1-Lipschitz, the second inequality
follows from Hélder’s inequality, and the last inequality follows from the definition of ¢,  norm.
This concludes the proof. O

M.5 Proof of Proposition[11]

Proof of Proposition|[I1] With triangle inequality, we have

.
’ (SM(XWorXT)XWy +rFF (X, a,0))

P,

< H (SM(XWQKXT)XWV)T (M.16)

(rFF(X, a, b))T

Let 7 € [N] and 2] be the 71 row of X. Then the first term in the right-hand side of Eqn. (M.16) is

P, P,

.
H(SM(XWQKXT)XWV) = mas (SM(xIWQKXT)XWV)
p,o0 p
< Helﬁzf/( HWVXTHPOO ”SM( TWQKXT)HI
<Y llpa - 1X oo, (M.17)

where the first inequality follows from Lemma[I7 with u = oo and v = 1, and the last inequality
follows from Lemma [T8] The second term in the right-hand side of inequality (M.16) is

‘ (rFF(X,a,b))T = Tngl%\}f(] (rFF(IT,a,b))T
p,00 p
d m . D 1/p
= ‘Pel?]\}f(] _l; (;aijeLU(bijT)) :|
d
< ma [2 (Dam ol e 1) ]
d LY
= [ (Showl sl 1) ] ot
k=1 \j=1

where the inequality follows from Holder’s inequality and that ReLU(-) is 1-Lipchitz. Combining
inequalities (M:17) and (M.18)), we prove the desired result. O

M.6 Technical Lemmas

Lemma 14 (Lemma 1 in [15]). For any policy 7 € 11 and any function f : S x A — R, we have
Eay. [£(S, A) —r<s A) - 168 m]
1—

f(So,m) — VB (So) = (M.19)
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Lemma 15 (Lemma 10 in [42]). For any two transition kernels P and P’ and any policy w € 11, we
have

[VE(So) = VE(So)|

IN

1 T (Q T (J
G‘E(&A)wg [Esiepi15.0VE(S) —Espi 5,40 VE (S ’

Vmax ~ = - / — —
< Ao B A [TV(P(-15,4), P'(-] 5, 4))].

Lemma 16. Forany x € R? and 0 < p < q, ||z, < ||z]|, < dY/P~V9||z|,.

Proof of Lemmal(l8] ||z||, < ||z||, simply follows from Holder’s inequality. For the right inequality,
when ¢ < oo, we have

d 1/p d y p/a, d 1-p/q] /P
Il = (Z x) < [(Z (Il ) (Z 1”“‘“) = a/r e,
i=1 i=1 i=1
where the inequality follows from Holder’s inequality. When ¢ = oo, |||, < d'/P(|z||s- O

Lemma 17. Given any two conjugate numbers u,v € [1, 0], i.e., % + % =1,and1 < p < o, for
any A € R"*¢ and x € R¢, we have

.
[Az]lp < [Allpullzlle  and || Azfl, <[JA"|upllz]l

Proof of Lemmal(I7] To prove the first inequality, we write A = [a; ... a.], where a; € R" fori € [c].
Then we have

[Azl, =

c
E aiT;
i=1

where inequality (a) comes from the triangle inequality, and inequality (b) comes from Holder’s
inequality.

(a) & (b)
< Y lzilllailly < Al
P =1

To prove the second inequality, we write A = [a] ...a, ] T, where a; € R¢ fori € [r]. Then we have

T (C) T
1Az][f = " lafa” <Y aillfllz ]2 = [AIL ],
i=1 i=1

for 1 < p < oo, where inequality (¢) follows from Holder’s inequality. When p = oo, we have

|4zl = max|a 2| < max [laillull]lo = [|Alloo,ullz]lo-
i€[r] i€[r]
O
Lemma 18. Given any two conjugate numbers p,q € [1, ), i.e., % + % =1, forany A € R"*¢ and

B € Re*% e have

|AB

[p.0o < 1 Allp.qll Bllp,oo-

Proof of Lemmal(I§] To prove the result, we write B = [by, . .., bg], where b; € R* for i € [d].

AB||, 0o = max||Ab;||, < max||A bill, = ||A Blly. 00,
148 lp,c0 = max | Abill, < max|[Allp.qllbilly = | Allp.qll Bllp,
where the inequality follows from Lemma [I7] O

Lemma 19. For any =,y € R?, we have

[SM(z) — SM(y)[l1 < 2[lz — ylloo-
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Proof of Lemma([I9) The Jacobian matrix of the softmax function is
dSM(x)

dx
The ¢1 ; norm of the Jacobian matrix can be bounded as

= diag(SM(x)) — SM(x)SM(x) .

e

[SM(@)], (Ti=s — [SM(x)]j)‘

—2 i [SM(x)]z(l - [sM@)],)

<2. (M.20)
Then the ¢;-norm of the difference between SM(z) and SM(y) can be bounded as

dSM(z
[SM(z) — SM(y H/ )|z tat(1—t)y(y — x)dt
1
1
dSM(z
SA dZ( )‘zztw—i-(l—t)y(y_x) 1dt
1
dSM(z)
< — _ — x| 0odt
A i e S

1
< / 2y — |t
0

=2[ly — 2o,

where the first inequality follows from triangle inequality, the second inequality follows from
Lemma [T7) by setting p = 1, w = 1 and v = oo, and the last inequality follows from inequality
(M:20). This concludes the proof. O

N Some Extensions

N.1 Extension to Multi-Head Attention

Our results in Theorem [2]can be extended to the neural network with multi-head attention, which is
defined as

F(X, Wok, Wy) = SM(XWorX )XWy,

h
MHA (X, Wiz, Wi, WEM) =" f(X, Wok.i, Wv.i)Wo.i,

i=1

where Wi € R4 Wy, € R % W, € RW*4 fori € [h]. Note that we only need to reprove
the results in Proposmons @ and@for the multi-head attention.

Proposition 20. For any X, X € RN and any W ; € R¥¥4 Wy, € ROG Wo; € Ri*4 for
i € [h] and two positive conjugate numbers p,q € R, if || X " [|p.00, | X " [lp.c0 < Bx,
B, Wy illp.q < By, and ||W illp.q < Bo fori € [h], then we have

.
Wok.i

|(MHACY, Wik, Wi, WE") — MHACE, Whie, Wi wis™) T |

p,o0

<hBo - BV(1 + 4Cp7qB§( : BQK)HXT - XT”p,OO'

Proof of Proposition[20} For the difference between the outputs of the multi-head attention with
different inputs, we have

H (MHA(X, W, Wik, W5") — MHA(X, WQK,W&:h,Wé‘h))TH

p,o0
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-

N
Il
_

. T
(f(X, Wok,i, Wv,i)Wo.,i — (X, Wk i, Wv,z')Wo,i))

P,

™M=

< ||WOl

~ T
|p,q - H(f(KWQK,i,Wv,i)—f(X,WQK,i,WV,i)> Hp

=1

||WOz

™M=

Il (1 20018 Tl - IS il (1K T e

1

1K o) JIXT = Xl oo

3

where the first inequality follows from triangle inequality, the second inequality follows from
Lemma|T8] and the last inequality follows from Proposition[12] O

Proposition 21. For any X € RN*Y and any Wor, Wor: € R Wy, Wy, €
Rdx%,WOmWOJ € Rixd for i € [h] and two positive conjugate numbers p,q € R, if
X7 lpo < Bx, W\I,i|p7qa||Win||p,q < By, and HWO,i ||W(;,i||p7q < Bo fori € [h],

then we have

H(MHA(X WAL, Wi WE") — MHA (X, Whi, Wit wim) T

h
< ZBV : BX||(WO,i - WO,i)THp,q + Bo - BX”W\L - W\Ii”%q
i=1
+2¢p¢B% - By - BOHWC—QFK,i - WC—QFKL p.a

P,

Proof of Proposition|21] For the difference between the outputs of the multi-head attention with
different parameters, we have

H (MHA(X, W, Wikt WE") — MHA(X, WQK,WW,Wgh))TH

p,00
‘ (Zf (X, Wor.i, Wv.)Wo.i — Zf X, WQKwWVz)WOz))T
i=1 P,
‘ (Zf X WQK“WVZ)WO’L Zf X WQKwWVz)WO z))T
i=1 P,
h
+ H(Z F(X, Wors Wv.i)Wo.i — Z F(X, Wok,i, WV,i)WO,i))T
i=1 i—1 p,oo

h
<> |k W) [Wou = Wo)],,

h

2

i=1

. . T
(f(X7 Wok.i: Wyvi) — f(X, Wok.i, sz))

: HWg,inﬂv (N.1)

p,o0

where the first inequality follows from triangle inequality, and the second inequality follows from
Lemmal[I8

For the first term in inequality (N.I), let 7 € [NV] and ] be the 7*" row of X, then we have

H(f(X, WQK,mWV,iDTH = maX ||SM< TWQKZXT)XWVlH

p,00 TE[N

< g I [0 T W T)

< W, - 11X ] (N.2)

p,00’
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where the first inequality follows from Lemma([I7} For the second term in inequality (N.IJ), recall
Proposition[T2] then we have

. . T
H (f(X7 Work,i, Wv,i) — f(X, Wok.i, WVz))

p,00

< 20pq

XT”?),oo : HW\-l/—,i”p,q . ”WC}—K,i - Wc}—K,in,q + HWX-l/—,z - Wx-l/—,i”p,q . ||XT||p7OO
(N.3)

The desired result follows by substituting inequalities (N.2)) and (N.3) into inequality (N.I). This
concludes the proof. O

Proposition 22. For any X € RN*, and any Wok; € R¥4 Wy, € R¥*E Wo,; € RA*4 for
i € [h] and two positive conjugate numbers p,q € R, we have

h
. . T
| amace wege Wt W) | < STIWE a9

’ i=1

X Mlp,oo

P7Q|

Proof of Proposition22] For the ), -norm of the multi-head attention, we have

H(MHA(X WQK,WW,Wgh))TH

p,00

< (f(X, Work.i, WV,i)WO,i)T

p,o0

~.
>l Mv
—

< ||WOz

P H(f(Xa WQK,i>WV,i))T

p,o0
=1

Z ||WOz

i=1

=

I~ I1X T llp.co

p,q HWVz

where the first inequality follows from triangle inequality, the second inequality follows from
Lemma|T§] and the final inequality follows from inequality (M.17) in Proposition[TT] O

N.2 Extension to Non-i.i.d. Sampling

The dataset D is collected in an i.i.d. manner in the main paper. In this this section, we extend
our result to the non-i.i.d. case. Specifically, we collect the dataset D' = {(S;, As, )} by
implementing a policy 7, i.e., the action is taken as A; ~ my(-|S;), and the sequence of states
is updated as Syy1 ~ P*(-|Si, A;) for t € [n]. We assume that the initial state Sy is generated
according to a distribution g, i.e., the initial state-action pair is distributed as (Sp, Ag) ~ go7o.
We denote the statéongry distribution on the state-action pair of the Markov chain induced by the
policy mg as qP* (S, A). Note that the initial distribution g7y may not equal to the stationary
distribution ¢7".. To distinguish these two different cases, we will use P, -, and Pq;o* to denote the

probability dlstr1but1ons with respect to the Markov chains with initial state distributed as gg7o and
g7 respectively.

In such setting, we define the mismatch between two functions f and f on D for a fixed policy 7 as
L'f f,mD)=1 ?;Ol(f(gt, Ay) — 7 — vf(Siy1,7))?, then the Bellman error of a function f
with respect to the policy  is defined as &'(f, m;D') = L'(f, f,m;D’) —inf7 L'(f, f.mD).
The corresponding model-free algorithm can be written as

#' =argmax min f(So,w), where F'(me)={f€ Fu(B)|E(f,mD)<e}. (N4

mell fe}—/(ﬂ'vs)

In the dataset D collected by implementing policy 7, the mismatch between the distribution induced
by the optimal policy d7. and the stationary distribution g7 is captured by

O_th(ﬂ-o) - frn%_-}i]EdP* [(f(S,A) - TW f(gv‘i)) ]/qui [( ( ) Tﬂ f( A)) ]7 (NS)
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where Fis is the transformer function class defined in Section 4.1}

To analyze the concentration behavior of the action-value function estimate under such sampling
method, we need to define additional quantities to describe how fast the Markov chain approximates
its stationary distribution. For a Markov chain with finite state space €2 and transition probability
matrix P, we label the eigenvalues of P in decreasing order: 1 = \; > ... > )‘\QI > —1. Define
A* = max{|A| : Aisaneigenvalue of P and \ # 1}. The absolute spectral gap of P is defined as
1 — X\*. The notion of the absolute spectral gap and our following results can also be generalized
to the Markov chain with infinite state space by treating of transition kernel P as an operator of a
Hilbert space. For two distributions p and ¢ on €2, we define

N(p.q) = /Q j—§<x>p<dx>.

Inspired by the ubiquitous change-of-measure technique, we will use N (qo, q) to capture the differ-
ence between the non-stationary Markov chain with initial distribution gy and the stationary Markov
chain with stationary distribution q.

To analyze the algorithm in Eqn. (N.4), we first derive a generalization error bound of the estimate of
the Bellman error using the PAC-Bayesian framework.

Proposition 23. Consider the dataset D’ collected by implementing a policy my. Let B =
By Bok ByByB,y,. Forall f, f € Fi:(B) and all policies € 11, with probability at least 1 — §, we
have

B, [(£(5. ) - T (35, 4)) } L, Fom D)+ (T, Jom D)
C e
<O =g [(5(5. 0T (5. )]
; B 0, ¢p n, dso
—i—O((IVmCK‘) [mL2d2 log m‘c/lifn +log N (gomo, g )/;/(H’ 1/n.d )]) (N.6)

where 1 — ) is the absolute spectral gap of the Markov chain {(S;, A;)}$2, induced by the policy o,
and 0 < C < /19 is an absolute constant.

For ease of notation, we define &(Fi¢, II, mp, d,n) to be (1 — A)n times the second term of the
generalization error bound in (N.6). We note that Proposition [23]is a generalization of Theorem
When the dataset D consists of i.i.d. samples drawn according to u, the dataset D can be treated as a
Markov chain with A = 0, and N (u, ) = 1. In this case, our result in Propositionparticularizes
to the result in Theorem [2]up to a constant.

Before stating the suboptimality bound, we require two additional assumptions on the function class
and the policy 7y. We first state the standard regularity assumption of the transformer function class.
We assume that the collected dataset D’ provides a good coverage of the optimal policy.

Assumption 5. For the policy T, the coefficient C’ (o) defined in Eqn. (N.J) is finite.

Correspondingly, we slightly adjust the approximate realizability and complete assumption as follows:

Assumption 6. For any € II, we have inf fe 7, SUp ¢ o, E,[(f(S,A) — T™f(S,A))?] <&’z and

sup ez, inf 7o 7 Eomo [(F(S,A)=T™f(S,A)?| < e 5 where qu = {p| I € M s.t. p=qh.}
is the set of stationary distributions of the state and the action pair induced by any policy m € 11.

Then the suboptimality gap of the learned policy can be upper bounded as follows.

Theorem 6. If Assumptions [5| and [6] hold, and we take ¢ = [2 + C + (2 — C)Nez/2 +
2¢(Fit, I, mp,0,m)/[(1 — A)n], then with probability at least 1 — 0, the suboptimality gap of the
policy derived in the algorithm shown in Eqn. (N.4) is upper bounded as

VB (So)— Vi (50) <O | 2T
P (80) = Vp-(S0) < D))
max 7TO ™0
oo 1if \/mL2d2 o m‘iLBnJrlog 2N(q07ro,qp*)(J5\/’(H,1/n,doo)>’
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where d = ds +da, € =¢x + 6}_—7]_-, B is defined in Proposition 0 < C < e'19 is an absolute
constant, and 1 — X is the absolute spectral gap of the Markov chain {(S;, A;)}22, induced by the
policy m.

We note that Theorem [6]is a generalization of Theorem[3] Sampling in an i.i.d. manner according
to 1 can be regarded as a Markov chain with A = 0, and N (u, 1) = 1. In this case, our result in
Theorem [f] particularizes to the result in Theorem 3]

Proof of Theorem[6] The proof follows along similar lines as that of Theorem 3] Recall the definition
below Proposition[23] i.e.,

dLB N TOVN(IT, 1/, doe
é("rtf) Ha 70, 67 ’I’L) O ‘/n?lax |:7’TLL2d2 IOg mv r + log (qOﬂb’ i )j(;[( /n ) ’

where C’ > 0 is an absolute constant. To simplify the proof, we define

fi. = arginf sup E, {(f(g’, A) - Tﬂ*f(ga A))Q]a

fEFee nEM
B 2—|—C+(2—C))\€, 2¢(Fig, I, 0, 0,m)
B 2 7 1-MNn

where 0 < C' < €!/10 is an absolute constant.

Our proof can be decomposed into three main parts.

* Since f}. is the best approximation of action-value function of the optimal policy 7*, we
expect that it should belong to the confidence region of the action-value functions F'(7*, ¢)
with high probability. We show this in Step 1.

* Forany 7 € II and any f € F'(m,¢), since the empirical Bellman error is bounded
E'(f,mD') < e, we expect that the population Bellman error Egm [(f(S,A) —
T™f(S, A))?] can be controlled with high probability, which implies that f is a reliable
estimate of the action-value function of m. We show this in Step 2.

* The suboptimality gap of the learned policy according to the reliable action-value function
estimate can be bounded using the estimation error bound. We do this in Step 3.

We lay out the proof by the three steps as stated in the above proof sketch.

Step 1: Show that f*. € F'(7*, ¢) with high probability.

From the definition of f. and Assumption [l we note that the population Bellman error of f. with
respect to 7 is bounded by £’z. To bound the empirical Bellman error £'(f., 7*; D’) of fi., we
utilize the generalization error bound of the action-value function with the transformer function class.

Proposition 23. Consider the dataset D’ collected by implementing a policy my. Let B =
By Bok BuByB,y,. Forall f, f € Fi;(B) and all policies € 11, with probability at least 1 — §, we
have

B, [(£5, >T”f(5‘21>)} L, o D) + LT fom D)
A

c+(2-0)
BN (118 2775, 4]
Vn%ax 2 32 mdLBn N(qoﬂ-Ov q}i'o* )N(Ha 1/”7 doo)
+O ((:[—)\)TL [mL d log Vmax =+ IOg 5 :| ) s (N6)

where 1 — X is the absolute spectral gap of the Markov chain {(S;, A;)}$2, induced by the policy o,
and 0 < C < /19 is an absolute constant.

Proof. See Appendix for a detailed proof. O
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We can decompose the empirical Bellman error £'(f%., 7*; D’) as the sum of the population Bellman
error and the generalization error, where the populat10n Bellman error can be controlled with /-
according to Assumption[6] and the generalization error can be controlled with Proposition 23] Thus,
we have the following lemma.

Lemma 24. For any 7 € 11, let fr = arginf .z sup,c,. E.[(f(S,A) — T f(S,A))%. If
Assumption[6] holds, the following inequality holds with probabzllty at least 1-—46,
24C+(2-C)\ , n 2¢(Fie, I, 70, 6, n)

!/ * 'D/ <
g(fﬂ"ﬂ-’ )_ 2 Er (1—/\)TL

Proof. The proof is same as the proof of Lemma [4] except using the concentration inequality in
Proposition[23]

Step 2: For any policy 7 € ITand f € F'(7,¢), show E = [(f(S,A) — T (S, A))? is small
with high probability.
To prove the desired result, we relate the population Bellman error Erq [(f(S, A) — 77 f(S, 4))?]

with &'( f, 7; D’) using Proposition[23] where we bound the population Bellman error as the difference
between the empirical Bellman error and the generalization error. Thus, we have the following lemma.

Lemma 25. Forany m € Il and f € Fy, if E'(f, ;D) < € for some € > 0, and Assumption [6]
holds, the following inequality holds with probability at least 1 — 6,

B,z [(£(5,4) = T7 (5, 4))°]
2 24C+2-0O) 4é(Fig, I, mo, 0,m)
Seoan "t Eootn FFt e-oi- N

Proof. The proof is same as the proof of Lemma [5] except using the cencentration inequality in
Proposition 23] O

Step 3: Bound the suboptimality gap of the learned policy with the population Bellman error
bound in Step 2.

We define
f,,* = argmax f(Sy, %),
feEF/ (m* )
fre = argmin f(So, "),
fEF!(m*,¢e)

Following the same procedures in step 3 of the proof of Theorem[3] we can show that

- - A . = . = L 2,/€"
VB (So) — VE(So) < fre (S0, ) — VB (So) + V& (So) — fr (So, ) + 17; (N.7)

Applying the suboptimality gap decomposition in Lemma[I4]to inequality (N.7), we have

V5 (S0) — Vi (S0)
< 1i (B [fr- (8, 4) = T [ (5, A)]

B [ (5, 4) = T Fon(8.4)] ) + 2EE

1—v
= 1i’7{\/c-/7:tf(w0)]Eqm [(f” ( ) T f” (S A))z}




where the first inequality follows from Lemma|[I4} and the second inequality follows from Jensen’s
inequality and the definition of C’z (7). Combined with the result in Step 2, we have

C’ftf o) 2+C+(2-C)A A6(Feg, T, w0, 6,m)  2\EF
@-C 17> @-O)1-AN 77T 2O - 2 1~

< O(\/C%fyf(ﬂo)(&}:"‘&ff;:}- m \/ ftf,H 7T0,(5 TL))
- n

T 20-N (-

Therefore, we conclude the proof of Theorem@ O

N.3 Proofs of Supporting Propositions in Section
N.3.1 Proof of Proposition 23]

Proof of Proposition 23] Similar to the proof of Theorem 2} we adopt a PAC-Bayesian framework to
derive our desired generalization error bound. We first state a preliminary result.

Proposition 26. Let {X;};>1 be a Markov chain with state space ), stationary distribution g, initial
distribution X1 ~ qq, and absolute spectral gap 1 — \. Set F be the collection of functions of
f:Q — R Forany f € F, we define

o(f) =Eq[f(X)], o*(f) = Vary(f(X)),

where the expectation is taken with respect to the stationary distribution q. Let Q) be the distribution
of the random function f. Assume that |f(X)) — q(f)| < ¢ almost surely with respect to Q) for some
constant ¢ > 0. Then we have that with probability at least 1 — 0, the following inequality holds.

C+(2-0)A 5 10c 2N (qo, q)
‘ { *Zf H TEQ[J (f)]‘f'm KL(QHPO)—HogT )
(N.8)
where C' is an absolute constant such that 0 < C < e1/10.
Proof. See Appendix [N.3.2] O

Our proof can be decomposed into two main parts.

* We verify that the Bellman error satisfies the conditions in Proposition[26|and apply it to the
Bellman error.

* We adopt the similar procedure in the proof of Theorem [2]to control the fluctuation of both
sides in inequality (N.8)) and calculate KL(Q|| ).

Step 1: Verify the conditions in Proposition

We consider the Markov chain formed by {(S;, A;, S;41, Asy 1) }$24. Note that this Markov chain
shares the same absolute spectral gap with the Markov chain {(S;, A;)}$2, when S and A are finite.

Let X; = (S;, Ay, S¢y1, Avyy) forall f, f € Fig(Ba, By, Box, By, Bu). We define
U(f, Foms Xo) = (£(Se A) = 7(Se, Ap) = 4 (S, 7))
- (wa(§t71‘_1t) — (S, Ay) — 7f(§t+177r))2~

Then the term we consider in Theorem [2]can be expressed as

S\H

L'(f, fmD) = LT f, f,m D) Z (f, fom; Xo) and |U(f, f,m; X)| < 4V2,.
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Then the expectation of I(f,f,m; X) with respect to the stationary distribution
(St Aty Str1, Ar1) ~ gt X P* x mo is

Eq;(i X P*xmo [l/(f’ f’ T Xt)}
= Eyro e | (F(S0s A) = T F(S0, A0)) (£ (S A) + T7 (S0, A1) = 27 = 29[ (Si41, 7)) |

—E,r {Ep* [(£(S1. 40) T (S0 A0) (F(50. A0) + T (S0, A1)
- 2= /(i) [ 514

=By [ (F(50, A) = T"F(S1, A1), (N9)

where the last equality follows from the definition of the Bellman operator. As a consequence, the
variance of I’(f, f,m; X) can be bounded by its expectation as

Var,zo s per, (U'(f, f1 X))
<o ey [ (U0 o X))
- {EP* ((F(50 A0 = T (50, ) (£(51, A) + T 7 (5, A)
-2 20/ (8, m)* | 5.4 |
V2B o [(F(5 A) = T F(50, A)’] (N.10)

where the last inequality follows from the fact that f and f is bounded by Vi ax. Eq. (N.9) shows that
U(f, f ,m; X;) satisfies the condition in Proposition 26| with ¢ = 4V,2__. Applying Propos1t1onland

max-*

inequality (N-I0) to I/(f, f, 7; X;), we have with probability at least 1 — 4,

'EQ {qul [(F(St, A0) = T [(S1, A0)°] -~ Zz (f, fm X»H

C+2-0)A g 1 f(S, A
< %m w0 [ (£(S1,A0) = T (50, A0))7]
40V 2N {goo, ¢p)
e | KL(QU ) + log 2RI b

where 0 < C' < €'/19 is an absolute constant.
Step 2: Control the fluctuation of both sides in inequality (N.11) and calculate KL(Q|| P)

To control the fluctuation of both sides in inequality (N.T1)) and calculate KL(Q|| Fp), we take the
same procedure in the steps 2, 3 and 4 in the proof of Theorem[2] We derive the uniform convergence

result that for all f, f € Fit(B) and all policies 7 € TI, with probability at least 1 — §, we have

[y [(£(5.4) = T77(S, 4)) ] L(f fom D) + LT f, fom D)
(s

C+(2-0)
<OEE=ONg (15 27705, )]
2 LB N ps II,1/n,d
+O ‘/max mL2d2log md n +10g (qoﬂ—O?qP )N( ) /TL, ) )
(1 - )‘)n max 1)
Therefore, we conclude the proof of Proposition 23] O

N.3.2 Proof of Proposition 26|

Proof of Proposition[26] The proof consists of two main steps. First, we assume that the initial
state is distributed as the stationary distribution ¢ and derive the results under this stationary setting.
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Second, we extend the result to the non-stationary Markov chain, i.e., the initial state is not distributed
as q but qq.

Step 1: Derive a concentration bound when the initial state’s distribution is the stationary
distribution

Under the stationary setting, we make use of the following concentration results in [S3].

Proposition 27 (Theorem 1 in [53]). Suppose {X;}i>1 is a stationary Markov chain with invariant
distribution q and non-zero absolute spectral gap 1 — X\ > 0, and f; : © — [—c, +(| is a sequence of
functions with q(f;) = 0. Let 0> = 1/nY i, q(f?). Then for any 0 < t < (1 — X)/5¢, we have

no? no?\t?
< o te 1 ).
q[exp< g fi( Zﬂ_exp(CQ (e 1 tc)+1—)\—5ct>
Set fi(X;) = f(Xi) — q(f) = g(X;). Proposition[27]shows that for 0 < ¢ < (1 — A\)n/(5¢),

2 t )\ 2t2
q{exp( Zg )} = o [n;(ect/n_l_;) +n(1f)\af 5(:15/71)}7 (N.12)

where 02 = 02(f). We define

o? ct Ao ?t?
,X ( ct/n 1 — 7) ’
n(f,X7) Zg { n +n(1—/\—5ct/n)
By inequality (N.12)) and Markov’s inequality, we have that for any distribution Py on the function

class F, the random variable ¢,,( f, X7') induced by the Markov chain { X}, satisfies

2 §
P, (Ef~Po [exp (en(f, XT)) > 5]) < -, (N.13)

2

where the probability is taken with respect to the Markov chain with initial distribution q.
Setting g(f) = £, (f, X7") in Theorem[5] we have

EQ [gn(fv Xin)] < KL(Q”PO) + log ]EPO |:6Xp (gn(fv Xin))] . (N14)
Substituting inequality (N.13) into inequality (N.14), we have that with probability at least 1 — §/2

t oy ct Ao2t? 9

— N | BY (et/n 1 2 < 2

Q[n;g(xz) [02 (et =1 n)+n(1A5Ct/n)” < KL(QIIPy) + log 5
(N.15)

Set t/n = (1 — \)/(10¢). Since €* — 1 — z < az? for all z € [0, log 2a], the left-hand side of
inequality (N.T3) can be upper bounded as

Bo 1 i_ilgm)}

e _q_ <t M 1 1oy 2
[0215 (e t ! n) + n(l—XA— 5ct/n)}EQ[02<f)] + tKL(QHPO) * t log )
n t2 At? 1 1. 2
5O g Bl ]+ {KL@QUR) + § log 5
_C+(2-0)A 5 10¢

KL(Q)P) +1og %,

where the C' in the second inequality is a constant that C' < e(1=2)/10 < ¢1/10 the equality follows
from substituting the value of ¢ into the second inequality, and the expectation in Eg[o?(f)] is taken
with respect to the distribution () on the set of function class F. From symmetry, we can show that the

52



with probability (taken with respect to the Markov chain initialized with the stationary distribution) at
least 1 — &

'EQ E ,z_;g(Xi)} ’ = WEQ[U?UH + % KL(Q|Poy) + log§ ,  (N.16)

where 0 < C' < ¢'/19 is an absolute constant.
Step 2: Extend inequality (N.I6) to an arbitrarily initialized Markov chain.

To extend the results to an arbitrarily initialized Markov chain, we make use of the following result
in [54].

Proposition 28 (Proposition 3.15 in [54]). Let {X;}S2, be a time homogeneous Markov chain with
state space ), and stationary distribution q. Suppose that g : 0" — R is a real-valued measurable
function. Then

1/2
an(g(Xla"' 7Xn) > t) < N(Qan)l/2 : [Pq(g(Xla 7Xn) > t):| )

where qq is any distribution on (), and Py, and Py are the probability measures with respect to the
Markov chains with initial state X1 ~ qo and X1 ~ q respectively.

Combining Proposition [2§]and inequality (N.16)), we have that with probability (taken with respect to
the arbitrarily initialized Markov chain) at least 1 — §

‘EQ [:L ;g(Xi)} ‘ < WEQ[UW” + % [KL(QPo) + log 21\7(6(120,(1)].

(N.17)
This concludes the proof of Proposition [26] [

O Experiments

Although the main aim of this paper is primarily theoretical, we provide some experiments of the
model-free algorithms to illustrate the superiority of the transformer in homogeneous MARL.

0.1 Simulation Environment

In the experiments, we evaluate the performance of the algorithms on the MPE [44} 45]]. We focus on
the cooperative navigation task, where N agents move cooperatively to cover L landmarks in the
environment. Given N agent positions z; € R? for i € [N] and L landmark positions y; € R? for
Jj € [L], the agents receive the reward
L
T=— min ||y; — xi|2.
j=1i€[N] 1y ill

This reward encourages the agents to move closer to the landmarks. We set the number of agents as
N = 3,6,15, 30 and the number of landmarks as L = N. To collect an offline dataset, we learn a
policy in the online setting, and the dataset is collected from the induced stationary distribution of
such policy.

In the training process, we use the Titan RTX and Intel(R) Core(TM) i7-6900K CPU @ 3.20GHz to
train the neural networks. The size of the offline dataset is 60000 x 25, where we simulate 60000
episodes and implement 25 steps in each episode. The learning rate is set to 10~3. The batch size is
1024. The discount factor is v = 0.95.

0.2 Simulation Results

We respectively adopt the MLP, deep sets, GCN [46] and set transformer to estimate the value
function. We note that the deep sets, GCN, and set transformer are permutation invariant functions.
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Figure 4: The average rewards of the model-free RL algorithms with their standard deviations.

We use the code in in [[L0] for the implementation of the deep sets and set transformer. To implement
the model-free algorithm specified in Eqn. (), we optimize the policy and the action-value function
in an alternating fashion. In addition, instead of imposing the hard constraint on the Bellman error
E(f,m; D), we added a Lagrangian multiplier to account for this inequality constraint.

In Figure [ we plot the performances of the model-free RL algorithms that adopt different neural
networks to estimate the action-value function. When the number of agents are small, as shown
in Figure the performances of different neural networks are similar. As shown in Theorem [T}
relational reasoning abilities of the deep sets and the MLP are worse than that of the set transformer.
As a consequence, when the number of agents increases, as shown in Figures A(b)]to f(d)] the
superiority of the algorithm that adopts the set transformer to estimate the action-value function
becomes obvious. This strongly corroborates our theoretical results in Theorems [T]and 3]
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