A Notation

Symbol Description
n €zt Number of states.
m €zt Number of features.
T €R” on-policy distribution.
n €R” sampling distribution, may be on- or off-policy.
v :RT — R"™ apparent distribution induced by n-regularizing the em-
phatic correction of off-policy u to on-policy 7
n €RY ¢, regularization parameter
nm E€RY {5 regularization parameter for emphasis model in COF-
PAC (the Emphatic algorithm we analyze)
n €RY {5 regularization parameter for value model in COF-
PAC (the Emphatic algorithm we analyze)
p €]0,1] distribution parameter used to express a family of pos-
sible sampling distributions.
d ¢ RIvxm] Feature basis for the value function
W € RImx1] Linear weights for value function, fit using least-
squares regression of V' on ®.
w*(n) € Rmx1 Linear weights for value function, learned using TD.
dw*(n) € R Learned value function
Ve RMx] True value function
IVl eR Error from guessing zeros, equivalent to the threshold
for a vacuous example
lz| €RE ¢3-norm of vector or matrix z, equal to vV Tx
lzllp €RY lo-norm of vector or matrix x under D, equal to

vz T Dx

B Example Details

We provide a more detailed explanation of our examples.

B.1 “Vacuous’ models

Without /5 regularization, our linear model fails with asymptotic error. As this penalizes the /5-norm
of the learned weights, this removes the asymptote and so we can no longer use the existence of an
asymptote as evidence of failure. Instead, we propose a different definition of failure by noting that,

in the limiting case, regularization drives the learned weights to zero (lim,,—, . w*(n) = 0). The

learned value function @ - 0 = 0 has no information about the true value function. We argue that if
the error with any 7 € R™ is never better than this case then the model is vacuous and hence adopt

the threshold error of ||® - 0 — V|| = ||V]| to call a model vacuous. This explains the failure condition
in Equation 8]

B.2 Details of regularization example

This provides numeric details for Example [I]

Example 5. When TD is regularized, there may exist some off-policy distribution at which TD learns
a vacuous model. In notation:

[w () = VIl 2 Jim_[@w () = V]| = 86— V]| = V]| wmeRs  (3)

Details. We use the same setting as in Section 3| We observe that @ = [1,—1]T minimizes the
least-squares error | ®w — V||, and further observe that a sufficient (but not necessary) condition for
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a solution to be vacuous is that @ "w* (1) < 0. Solving:

np — 0.233n — 0.304p? + 0.276p — 0.025

0=1uw"w*n) =
O w1 = 5] Jdp 1 0.9150 — 0,193 1 0.175p — 0016

— pe {0.102636, ...}
(14)

We verify that TD is vacuous at p = 0.102636 by computing the TD error at convergence:
n%(0.148 + 0.744n + n?)
7n%(0.132 + 0.727n + n?)

Since the fraction term in Equation [I3]is obviously improper, we can conclude that our example will
always have at least || V|| error over all 7, and is therefore vacuous. O

IVIIP > VI? (vneR") (15)

1w (n) = VI?|,_; =

We note that the error is not defined at 7 = 0 because this corresponds to a model divergence similar
to our introductory example. In practice, the TD fixed point will still converge to a vacuous solution:

lim [[@w”(n) = VI|* = 0-148/132 | V][* > |[V]]* (16)
i

B.3 Additional simple regularization example

We present a second example where the error is stationary with respect to the regularization parameter.
This is worse than Example [5|because we are able to show that the point the model converges to is
independent of regularization.

Example 6. When TD is regularized, there may exist some off-policy distribution at which the TD
fixed point is independent of the regularization parameter.

Details. We use the same setting as in Section except the value functionis V = [1, 1, 1.05] " and
basis @ selected to have small representation error ||[IIpV — V|| < e

1 0
d = 0 -1
1/2(1.05 +€) —1/2(1.05+¢€)

where € > 0 a7

. We set e = 10~* and write down w*(n) in terms of g, a scalar function of » and p:

= 21 + p)(0.925 — 1.29p) 1 1

* =(A ™= ( . =

wi(n) = (A+nl) 10012 + 47.4p1 + 1.857 — 1.30p2 + 0.927p |1 9(pm) |
(18)

When g(p,n) < 0, the TD solution is vacuous. We show that directly:
[@w* (1) = VI = lg(p.m®* [1,=1]T = [1,=1]T|| = g(n) = 1]| - [V (19)

When g(p,n) < 0, then ||g(p,n) — 1|| > 1 for all  and the TD solution is vacuous. We find
such a solution by noting the numerator has two roots in p, one of which corresponds to a vacuous
solution: ¢(0.715083,7) = 0 (V¥n), and this completes the example! In this setting, when TD updates
follow the sampling distribution p ~ 0.715083, the error of the model at convergence is always ||V ||
regardless of regularization. Our example converges to the same vacuous value regardless 7. O

In Figure[6] we can see that the TD error intersects the 77 — oo line immediately before and after
the singularity. Our counterexample corresponds to the second root (that is, the intersection point
at higher p.) This is because that corresponds to the stationary point between the asymptote that is
crushed and the error on the right that increases. If our simpler derivation proved unsatisfying, we
can also derive this counterexample using this fact:

—0.71
0= LiTwrn) p(p — 0.715083)

= 2
p(p — 0.714303)2 (20)

From this, we can easily see that the counterexample is at p = 0.715083. And this completes the
example! We have discovered some p at which the TD error is always at least ||V||, regardless of
regularization, and so our example learns a vacuous value function.
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Figure 6: We plot TD error against p for our three-state MP with ¢ = 10~%. This shape is similar to
that in [6]]. There is a minima close to 7 (p =~ 0.5), and an asymptote at the singularity (p ~ 0.715).
At different levels of regularization the error function moves between the unregularized case (n = 0)
and the limiting case (1 — 00), as analyzed in Section[3.1] We show that there is some p at which
the error is never below the  — oo line.

B.3.1 Breaking the Deadly Triad and our counterexample.

In light of our counterexample we examine the work of [21]] in which the authors derive a bound for
the regularized TD error under a novel double-projection update rule. We apply our example to their
bound b to show that their method permits vacuous TD solutions and doesn’t quite break the deadly
triad. Starting from Equation [9}

. _ 1 Umax(é)Q
H(I)’LU (77) B V” < b(’f],é.) N E <Umin((b)4amin(D)2'5 '

=1/¢-(38.0n+8.07 x 107°) (22)

IVl + [TpV — vn) e

for & € [0, 1], where oppax and opin denote the largest and smallest singular value respectively.
Theorem 2 from [21]] bounds 7, and therefore also b:

n > arg inf ||® — Cy|| = 0.367(6.86 — 13.7¢ + 6.86£%)~* (23)
n
irgfb(g,n) =13.8=7.86x||V|| (24)

Under our example, their method bounds the error at no more than 7.86 x* ||V||, which is a very
loose bound that permits vacuous solutions. This illustrates the risk of trying to regularize away
singularities, particularly in theoretical work.

Investigating the cause of the loose bounds reveals that the presence of oy, (D)% inE]is largely
responsible. As D is a diagonal matrix encoding the sampling distribution, oy, (D) is the smallest
sampling rate of any state, and so the bound must be at least mL% for any perfectly representable

n-state MP. Unfortunately, this appears to be fundamental limit caused by finding a linear bound to
an error that scales non-linearly, and following their derivation in the appendix does not readily admit
a way to improve this.

B.4 Small-Eta Error

Our simplified example allows us to show this easily.
Example 7. When TD is regularized, the model may diverge around (typically small) values of 7.
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Figure 7: Regularization distorts the emphasis model (left), which induces the value function (right)
to move to a singularity. Unregularized models are shown in red, regularized models in blue.
Regularization can interact with emphasis models to significantly worsen learned value functions.

Details. We set p = 0.9 and solve for det(A +nl) = 0:

0 = 10092 + 47.4py + 1.85n — 1.30p2 + 0.927p (25)
n=0.00482577 VvV 1= —0.45 (26)

Note that the denominator of ¢g(p,n) is proportional to det(A + nI), and so g(0.9, n7)—and the error
at the TD fixed point—can be made arbitrarily large by selecting 7 close to 4.83 x 1073, As this is the
only positive root, the model does not diverge at other values.

B.5 Emphatic approaches and our counterexample

We use an MP with the same transition function as in Figure[Ia] with separate bases ®,,, and ®,, for
the emphasis and value stages respectively. We assume that our interest in all states is uniformly
=1

We begin by setting the off-policy sampling distribution of 1 = [.2 .2 .6], used as the diagonal
matrix D, = diag(p). Thanks to the simple structure of our example, we know the emphasis is

m= 1i~/ -mD; ' oc (5/4,5/4,5/6). We select a basis that allows us to represent this emphasis:

5/4 0
D, = [ 0 —1/i00- 5/4] 27
5012 —1/100-5/12

We deliberately choose ®,,, to have a poor condition number for reasons that will become apparent
later. We can represent ¢ - (5/4,5/4,5/6) exactly for any constant c:

U (17_100) -C:C'(5/475/4,5/6) (28)
Using Equation 5 from [20], we define the matrices:
T _ 0.417 —1.04 x 1073
Cm = @ Dy = {1.04 X103 417 x 10~ (29)
—®T (7 _~DT _ 0.159 1.536 x 1073
Am =@ (I =P ) Dyl = {1.536 x 1073 1.59 x 107° 30)

And we apply these to the formulation in Lemma 3 and compute the emphasis weights as a function
of the regularization w,, : RT — R*:

wr (n) = (AL C A, +nI)7TA ¢l Di (31)

m m
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We can then use this to compute the new apparent distribution v, which is the effective distribution
that the updates to the value model see, and it is equal to the emphasis multiplied by the off-policy
distribution.

v(n) = ®m - wy, (n) - D (32)
Without any regularization, this should be exactly equal to the on-policy distribution.
v(0) =[0.250.250.5] =7 (33)

When we compute this value with a small amount of regularization 7 = 2 x 10~%, we observe that
the apparent distribution drifts far away from the on-policy distribution.

v(2 x 107%) = [0.44 0.06 0.5] (34)

The proximate cause of this is the poor condition number of C, caused by the ﬁ scale factor applied
to the second column of ®,,,. This allows 7 to affect different columns by different (relative) amounts
in the definition of w*(n), which pushes it away from the symmetric solution. See this error shift in
Figure[7a]

So far, we have shown how regularization causes a shift in the apparent distribution that the TD updates
see. To complete the example we show how this moves the fixed point of the value function away
from a stable point into an asymptote where it may grow without bounds. This second phase follows
in the same pattern as the first phase, starting with the desired value function: V' = [1 2.69 1.05] and
a basis that can almost exactly represent the value function:

1 0
b, = 0 —2.69
1/a(e 4 1.05) —1/2(e 4+ 1.05)
e=2x10"*

We use this basis to compute the state-rewards R = (I — yP)V = [-0.43 1.26 — 0.38] and define
the matrices A, and C,, and the solution w};(n):

A, =® (I -+P"D®,

C, =] Do,
wi(n) = (A, Cy ' Ay +nI) A C ' @) DR
We can use this solution to compute the error between the value function and the true values,
|®ywy(n) — V|| First, under the corrected distribution without regularization v(0) = 7

@, w; (0)| p=diag(v(0)) = 0.000865
Then, with regularization in the value function (but not in the emphasis function):
®,w(2 x 1071)| p—_diag(v(0)) = 0.0162

Then, under the apparent distribution v induced by use of regularization in the emphasis function,
without and with regularization:

Py wy, (0)| p=diag(v(2x10-1)) = 418.601

©,wy (2 % 107")| pdiag(u(2x10-1)) = 3.00
It is immediately obvious that the use of regularization in the emphasis function causes the learned
value function to be incorrect. Including a regularizing term in the value estimate is not sufficient to
fix the value function. This completes the example. [

B.5.1 Kolter’s non-expansion condition and our counterexample.

In the construction of COF-PAC, a key assumption made is that both the emphasis and value models
are not subject to runaway TD [20, asm. 4]. Specifically, they make the strong assumption that
Kolter’s relaxed-contraction condition [6} eqn. 10] holds in the emphasis model at p and value model
at v. Kolter’s condition selects a convex subset of distributions under which one-step transition
followed by projection onto ¢ is non-expansive. We illustrate these regions in Figure|8| Even in the
one-dimensional parameterization shown, this condition only holds in a small sub-region of the space
and therefore appears to be a very strong condition. Empirically determining if such a condition holds
(or training models to enforce it) may be possible with TD-DO [, sec 4.1], but it is not clear how
that method interacts with regularization.
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Figure 8: Kolter’s non-expansion condition holds in the shaded region of each graph.

C Applied to multi-layer networks

We also use a variant of our example to study how the deadly triad appears in multi-layer networks.
As illustrated in Figure[TT] we replace each self-loop with two additional states, forming a clique with
the original state. The resultant MP has n = 9 states; we define a deterministic obervation function
0:S — BS. where each state is encoded as the concatenation of the one-hot vector of its subscripts.
The value function is assigned pseudo-randomly in range [—1, 1], and a consistent reward function
is assigned. We select the family of sampling distributions 1 « [4p, 1p, 1p,4p, 1p, 1p,8(1 —
p), 4(1 —p), 4(1 — p)], where the on-policy distribution is at p = 0.5.

We wish to learn the model with a two-layer network with & < n nodes in the inner layer. We define
the network as f(o(s; ;)) = tan~1(o(s; ;) * w1) * wa. The parameters w; € R6*¥, wy € R¥*1 are
trained to convergence using simple TD updates with semi-gradient updates, a fixed learning rate,
and without a target network.

In addition to the example in Figure [5b] we present an additional example in Figure[9} The same
Markov process, at a different off-policy distribution, attains a curve where the non-vacuous region
lies before the divergent region, similar to the second row in Figure[3a] An added observation is that
these two graphs are mutually incompatible — there is no fixed 7 that can simultaneously do better
than vacuity in both, which promotes the idea of testing multiple regularization parameters or using
an adaptive regularization scheme.

C.1 Overparameterization does not solve this problem

Baird’s counterexample [18] shows how, in the linear case, that off-policy divergence can also happen
under overparameterization, as long as some amount of function approximation occurs. It is not
obvious that this conclusion persists in the neural network case, so we include an additional example
showing that the parameterization doesn’t resolve small-7 divergence.

4 LIS L LA L1 I 11 B o M M A1 B MR} 4

1 Ll ol ‘\ TN S T AT 1 r\ Lol | ‘\ TN S T AT
1075 107* 107* 1072 107" 10° 1075 107* 107* 1072 107" 10°
Regularization parameter 7, Regularization parameter 7,

(a) p = 0.31 (Same as Figure (b)p =0.95

Figure 9: The relationship between error and 7 at different off-policy distributions, showing mutually
incompatible regularization behavior. The shaded range indicates the region between the 5th and 95th
percentile of 100 differently-initialized models.
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In Figure[I0|we plot models with 3 to 13 nodes in the hidden layer. For reference, the MDP has 9
states, so some models under-parameterize and some models over-parameterize. We observe that,
in the low-regularization regime, increasing the number of parameters improves the error slightly.
However, increasing the number of parameters in the hidden layer does not change the behavior in
the the small-n divergence region.

C.2 Relationship to modern RL algorithms

It is still not obvious how strongly this instability affects modern RL algorithms, which are also
sensitive to a variety of other failure modes. Unlike our analysis, the sampling distribution changes
during training, and regularization mechanisms are more complex than simple /5 penalities. The
exact relationship between the instabilities we study and RL algorithms is an open problem, but we
offer two pieces of indirect evidence suggesting there is a link.

First, in the offline/batch RL literature, it is well-known that online RL algorithms naively applied can
catastrophically fail if the learned policy is not consistent with the data distribution. This is known
as the distribution shift problem, [9} p. 26] and offline RL algorithms are generally constructed to
explicitly address this. Second, when using experience replay buffers in online RL algorithms, policy
quality generally improves when older transitions are more quickly evicted [3]]. However, there are
multiple factors at work here, and it is not possible to separate out the instability from off-policy
sampling from the remaining factors.

D Markov Processes

We use a three-, five- and nine-state Markov Processes to generate examples for this paper. Here we
give details of the construction of each example. Mathematica code for all examples is included in
the supplementary material.

D.1 Three-state

The construction of the three-state MDP is described in Section [3|and illustrated in Figure[Ta] This
example is used in Examples [T]and 3] For completeness, the transition matrix is:

1 1 1 2
-1 1 2 35)
401 1 2
4 T \HHH‘ \H‘ T \HHH‘ T \HHH‘ T T 11 4 T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T T 11
3
2
1 ol ol el vl i 1
107° 107* 10=2 1072 107! 10° 107° 107* 102 1072 107! 10°
Regularization parameter Regularization parameter
(a)p=0.31 (b) p =0.95

Figure 10: The relationship between 7 and error with different amount of model parameterization
(with 3, 5,7, 9, 11, 13, and 64 nodes in the hidden layer, corresponding to darkening colors.)
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Figure 11: Our three-state counter-example MP is extended to nine states to illustrate how the deadly
triad problem could manifest in multi-layer neural networks. The self-loop in the original example is
replaced with a clique with uniform transitions except as labelled with the original edge weight e.

D.2 Nine-state

This example is used to train neural networks. The construction is based on the three-state example
and the construction is illustrated in Figures[Ib]and[T1] The transition matrix (with omitted zeros) is:

11 1 3 6 1
4 4 4
4 4 4
3 1 1 1 6
4 4 4 (36)
4 4 4
3 3 2 2 2
4 4 4
L 4 4 4]
and the observation function that forces the neural network to approximate is:
M 0 0 1 0 0
01 0100
001 100
100 010
0:S—R=1]0 1 0 0 1 0 (37)
001 010
100 0 0 1
01 00 01
0 0 1 0 0 1]
D.3 Five-state
We use this to generate Figure 3a] The transition matrix is:
4 4 2 0 0
4 4 2 0 0
0 5 0 5 0 (38)
0 0 2 4 4
0 0 2 4 4
We set value function V = [1,1,1.05,1,1]T, v = 0.99, ¢ = 0.05 and set basis:
3 00
110 30 1 0 0
d=—-11 1 1| %[0 0.01 O (39)
310 0 3 L) 0 0.11
1 1 1
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We also parameterize the off-policy distribution as:

D= %diag([p%pq, 2(1 - p),p(1 — q),p(1 — q))) (40)

where p,q € (0,1). We verify that > D = 1 over this domain. The on-policy distribution is
m = 1/12[2, 3,2, 3, 2]. The plots correspond to the off-policy distributions:

1. p—0.77,q — 0.85
2. p—~04,9g— 09
3. p—0.02,g — 0.2
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