
A Implementation details

Algorithm 3 shows the extension of tabular Recursive Q-learning to the neural network setting by
using the additional techniques introduced by DQN. The algorithm performs two steps per sample:
the first computes v and pushes the required values to the replay buffer, and the second samples the
replay buffer and updates the neural network via the mean squared error.

For sampling trajectories, we sampled actions with the standard ε-greedy policy. We matched the
hyperparameters for (deep) Recursive Q-learning and (deep) Q-learning on each example, with the
discount factor set to λ = 1 for the latter. The experiments were run on a server with 12 CPU cores
and no GPU.

Hyperparameters.

Cloud

Parameter Value
Test samples 100

Learning rate α 0.02
Exploration rate ε 0.1
Quantize amount 0.001

Spelunking

Parameter Value
Test samples 100

Learning rate α 0.2
Exploration rate ε 0.1

Palindrome

Parameter Value
Test samples 100

Initial ε 1
Final ε 0.1

Final ε timestep 30k
Buffer size 20k

Buffer warm up 1k
Batch size N 256

Update frequency C 500
Hidden layers 2

Hidden dimension 128
Activation function tanh

Learning rate 0.0005
Optimizer Adam

B Discussion on discounting

There are multiple choices for discounting in RMDPs. The most straightforward choice is that
discounting by λ is equivalent to stopping the entire process with probability 1 − λ. We call this
step-wise discounting. One can transform this type of discounting into a total reward model satisfying
Assumption 1 by adding a special exit (the exit-lane) which leads to the special exit in the box above
with no reward. Unfortunately, step-wise discounting induces a multi-exit RMDP and policies may
depend on the stack. This type of discounting is further discussed in Appendix F. An alternative
choice for discounting in single-exit RMDPs is that discounting by λ is equivalent to stopping
the current box—by leaving out of its only exit—with probability 1 − λ. We call this box-wise
discounting, which does not add any exits. With this type of discounting, the discount factor can be
incorporated into Recursive Q-learning by simply multiplying the terms maxa′∈A(S′)Q(s′, a′) and
maxa′∈A(sexit)Q(sexit, a

′) in Algorithm 2 by λ. However, box-wise discounting does not necessarily
ensure properness for all single-exit RMDPs and discount factors λ < 1. Instead, the discount factor
must be sufficiently small. Note that box-wise and step-wise discounting schemes are equivalent
in MDPs (RMDPs with no recursive calls). Our results subsume these settings by considering total
reward under the properness assumption.

C Exponential Succinctness of Hierchical MDPs (Proof from Section 1)

Lemma 1. Hierarchical MDPs are exponentially more succinct than finite-state MDPs.

Proof. This proof is adapted from a similar result on the (non-stochastic) recursive state machines
from [2]. Consider a collection of hierarchical, deterministic MDPs M1,M2, . . . ,Mn. The MDP M1

upon taking an action a gives a reward of 1 and terminates, while it gives a reward of 0 for any other
action and moves to a sink. Each MDP Mi (for i > 1) upon an action a calls the MDP Mi−1 twice
in sequence and then accepts with a reward of 1, and for other actions it makes a transition to a sink

15

Algorithm 3: Deep Recursive Q-learning (DQN-style)
1 Buffer size N , update frequency C
2 Initialize network parameters θ
3 Set target network parameters θ− ← θ
4 Initialize empty replay buffer
5 while not converged do
6 v ← 0
7 stack← ∅
8 Sample trajectory τ ∼ {(s, a, r, s′), ...}
9 for s, a, r, s′ in τ do

// Push update to replay buffer
10 if entered box then
11 {sexit1 , . . . , sexitn} ← getExits(s′)
12 v′ ← [maxa′∈A(sexit1)Q(sexit1 , v, a

′; θ), . . . ,maxa′∈A(sexitn)Q(sexitn , v, a
′; θ)]

13 v′min ← min(v′)
14 v′ ← v′ − v′min
15 buffer.add(entered box, (s, v, a, r, s′, v′), v′min)
16 stack.push(v)
17 v ← v′

18 else if exited box then
19 {sexit1 , . . . , sexitn} ← getExits(s)
20 Set k such that s′ = sexitk
21 buffer.add(exited box, (s, v, a, r, s′, v), v(k))
22 v ← stack.pop()
23 else
24 buffer.add(normal, (s, v a, r, s′, v), ⊥)
25 end

// Update network
26 Sample minibatch {typej , (sj , vj , aj , rj , s

′
j , v
′
j), auxj}Nj=1 of size N from replay buffer

27 for j = 1, . . . , N do

28 targj ←


rj + maxa′∈A(s′j)

Q(s′j , v
′
j , a
′
j ; θ
−) + auxj typej = entered box

rj + auxj typej = exited box
rj + maxa∈A(s′j)

Q(s′j , v
′
j , a
′
j ; θ
−) typej = normal

29 end
30 L = 1

N

∑N
j=1(Q(sj , vj , aj)− targj)

2

31 Update θ with respect to loss L with gradient descent
32 Set θ− ← θ every C steps
33 end
34 end
35 return θ

without providing any reward. This MDP Mn has the property that the optimal value is 2n − 1 and
the optimal policy corresponds to choosing 2n − 1 a’s in succession. This environment can only be
expressed by a finite-state MDP with at least 2n − 1 states.

D Proof of Theorem 1

Theorem 1 (Undecidability of the Strategy Existence Problem). Given a proper RMDP and a thresh-
old D, deciding whether there exists a strategy with expected value greater than D is undecidable.

Proof. We make use of the existing results for the probabilistic finite automata (PFAs) model.
PFAs are essentially finite automata where nondeterminism is replaced by probabilistic transitions.
Specially, when a letter is read, the next state is selected by chance with a fixed probability distribution

16

(that depends on the current state and letter only) instead of the controller selecting the new state. A
word is accepted by a PFA if the probability of reaching the special accept state after reading this
word is higher than a given fixed threshold λ ∈ [0, 1]. Madani, Hanks, and Condon [27] showed
undecidability of checking the non-emptiness for λ = 1/2 and a leaky PFA that is a PFA in which at
each step we stop the run (or, equivalently, move to a non-accepting state with a self loop) with a
fixed probability γ.

As shown in [15], RMDPs can simulate probabilistic finite automata. We adapt this to show how
proper RMDPs can simulate leaky PFAs. Such a RMDP has a single component consisting of a
box corresponding to each input letter. The number of exits of this component is the number of
states in the PFA plus one additional exit-lane exit. One of these exits corresponds to the special
accepting state of the PFA. There is a single entry of this component which is the only non-trivial
choice point for the controller. Each input letter has a corresponding action that leads to the box
corresponding to this letter with probability 1− γ and with probability γ to the exit-lane exit. There
is a special start action that leads to the exit corresponding to the initial state of the PFA. Once a
box corresponding to a letter, a, is exited the probabilistic transitions corresponding to the effect of
reading a in the PFA takes place by transitioning to the exit of the component corresponding to the
new state of the simulated PFA. An exit-lane exit of any box is connected directly to the exit-lane
exit of the component it is in and the reward for such transitions is 0. Note that all that that happens
once exit-lane is reached is that the whole content of the stack is popped which results in terminating
without modifying the accumulated reward so far. Note that this RMDP is proper, because in each
step there is a fixed γ chance of entering the exit-lane and terminating (once the whole stack is
popped), so the expected number of steps taken by any strategy is finite.

We claim that the controller has a strategy that terminates at the accepting exit (with empty stack
content) with probability ≥ 1

2 iff there exists a word accepted by a leaky PFA (and so its language is
non-empty) with the same probability ≥ 1

2 . The strategy would pick the letter of the input word in
reverse by calling the corresponding box and once done select the special start action. It is easy to
see that the behavior of the leaky PFA (including stopping with probability γ) is mimicked precisely.

Now, one can easily encode termination objective using rewards: assign reward of 1 to the final single
transition just before the RMDP reaches the accepting exit with an empty stack content and reward of
0 to all other transitions. This shows that the the strategy existence problem for the expected total
reward objectives is at least as hard as the strategy existence problem for termination objective which
we showed to be as hard as non-emptiness of the language accepted by a leaky PFA; an undecidable
problem.

Note that the above proof carries over to a discounted setting, so the strategy existence problem in
such a setting is also undecidable.

E Proof of Theorem 3

Theorem 3 (Fixed Point). If y is a fixed point of OPTrecur and x is a fixed point of OPTcont, then
y(〈∅〉, q) = x(0, q). Moreover, any policy optimal from (0, q) is also optimal from (〈∅〉, q).

Proof. We first show that the fixed point y of OPTrecur is unique and y(〈κ〉, q) = ETotalM (〈κ〉, q).

The values ETotalM (〈κ〉, q) are indeed a fixed point of OPTrecur. Consider any state 〈κ〉, q. We
proceed over all possible cases for the type of q.

If q=(b, en) ∈ Call then ETotalM (〈κ〉, q) = ETotalM (〈κ, b〉, en), and if q ∈ Ex, (b, q) ∈
Ret(b), κ=〈κ′, b〉 then ETotalM (〈κ〉, q) = ETotalM (〈κ′〉, (b, q)), both by definition of MDP [[M]].
Similarly, if q ∈ Ex then ETotalM (〈∅〉, q) = 0 as we immediately terminate. Finally, if q is any other
type of vertex, then

ETotalM (〈κ〉, q) = max
a∈A(q)

{
r(q, a)+

∑
q′∈Q

p(q′|q, a)ETotalM (〈κ〉, q′)
}
,

because the best one can do while at (〈κ〉, q) is to pick an action that maximizes the one-step reward
plus the weighted average of the expected total reward from the successor state.

17

On the other hand, any strategy that picks any such an action achieves ETotalM (〈κ〉, q). Let us denote
such a strategy by σ. This works because σ is guaranteed to terminate within a finite number of steps,
K, when starting at any (〈∅〉, q) due to Assumption 1. Note that the time to exit the current box when
at any (〈κ〉, q) is also at mostK. This is because when starting at (〈κ〉, q) and at (〈∅〉, q) the transition
structure of the model looks the same until an exit of the current box is reached. (Specifically, a
mapping of (〈κκ′〉, q) to (〈κ′〉, q) for every κ′ and q is an isomorphism.) As a result, we get an upper
bound of K · |κ| for the expected time to terminate from (〈κ〉, q) for any κ and q.

Note now that, for any ε > 0, the probability of terminating when starting at (〈κ〉, q) after K · |κ|/ε
steps is at most ε, because otherwise the expected termination time would not ≤ K · |κ|. This gives
us a bound of K · |κ| · rmax for the expected total reward from (〈κ〉, q), because in each transition
we can get at most rmax. In such a setting, the results from [32] imply that σ is optimal.

If there was another fixed point such that at least one coordinate is higher than ETotalM , then a
strategy constructed as above would obtain more than the supremum over all possible strategies of the
expected total reward when starting at that state; a contradiction. On the other hand, if there was any
other smaller fixed point than ETotalM , then by using repeatedly using choices made by the strategy
σ defined above we would converge at ETotalM , but on the other we should never be able to improve
based on the assumption that this is a fixed point; a contradiction. (For more details see the end of the
proof of Theorem 5 in Appendix G).

Now suppose that there exists a fixed point point y of OPTrecur and a fixed point x of OPTcont such
that y(〈∅〉, q) 6= x(0, q). We now show how to reconstruct a fixed point y′(〈κ〉, q) of OPTrecur that
corresponds exactly to the fixed point x(v, q). This would lead to a contradiction as we just showed
that OPTrecur has a unique fixed point.

This will be done by a recursive parallel fixed point reconstruction process below. Let the current call
stack be 〈κ〉 and valuation of the exits be v. We start the process at κ = ∅ and v = 0. We assign the
values as follows.

y′(〈κ〉, q) =


make recursive call for κ := κb and v := (x(v, q′))q′∈Retb q = (b, en) ∈ Call
v(q) q ∈ Ex

max
a∈A(q)

{
r(q, a)+

∑
q′∈Q

p(q′|q, a)x(v, q′)
}

otherwise.

It is clear that the value of all the states are the same in y′ and x, so the optimal strategies would be
the same as well.

F PAC Learnability for RMDPs with Discounting and the Milder
Restrictions from Section 2

In this section, we start with defining discounted rewards with the usual semantics. We then provide
PAC learning results for RMDPs with discounted rewards (instead of the requirements on the expected
decline of the stack size and the expected rewards) (Section F.2), and then extend these results to the
undiscounted case (Section F.3).

F.1 Discounted Rewards

In the discounted setting, the objective in a RMDP M is to find a strategy σ ∈ ΣM that maximizes
the discounted reward EDisct(λ)Mσ (s), which is defined as

EDisct(λ)Mσ (s) = lim
N→∞

EMσ (s)

 ∑
1≤i≤N

λi−1r(Xi−1, Yi)

 ,

for some discount factor 0 ≤ λ < 1. The optimal (discounted) value EDisct(λ)M∗ (s) is then defined
as

EDisct(λ)M∗ (s) = sup
σ∈ΣM

EDisct(λ)Mσ (s).

We say that σ is discounted optimal if EDisct(λ)M∗ (s) = EDisct(λ)Mσ (s) for every s ∈ S.

18

F.2 PAC Learning for RMDPs with Discounted Rewards

Lemma 2. Let M be an RMDP with diameter d, M ′ be an RMDP that differs from M only by
using a different transition function δM ′ ε-close to δM , and let σ an ε-proper strategy. Then
|EDisct(λ)Mσ (s)− EDisct(λ)M

′

σ (s)| ≤ εd
(1−λ)2 .

Proof. We can simply estimate

|EDisct(λ)Mσ (s)− EDisct(λ)M
′

σ (s)| ≤
∑∞
i=1 λ

i−1|EMσ (s)r(Xi−1, Yi)− EM ′σ (s)r(Xi−1, Yi)|
≤
∑∞
i=1 dλ

i−1(1− (1− ε)i) = d
1−λ −

(1−ε)d
1−λ+λε

= εd
(1−λ)(1−λ+λε) ≤

εd
(1−λ)2 ,

where the first inequality is by triangulation, while the second is estimating the chance, that the
difference between δ and δ′ has been realized within the first i steps by 1− (1− ε)i. This bounds the
sum of the different probabilities of taking a transition; the difference in the rewards is in this case
bounded by the diameter d.

As the estimation from the previous lemma survives a supremum operation over all ε-proper strategies
we get the following corollary.

Corollary 1. For an ε′-proper RMDP M with diameter d, and an M ′ that differs from M only
by using a different transition function δM ′ ε-close to δM for ε ≤ ε′, then |EDisct(λ)M (s) −
EDisct(λ)M

′
(s)| ≤ εd

(1−λ)2 .

Corollary 2. Consequently, it suffices to learn the transition function δM of an ε′-proper RMDP

– with precision ε′′ = min
{
ε′, ε(1−λ)2

d

}
to obtain (efficient) PAC learnability if we can

(efficiently) evaluate the approximate RMDP M ′ obtained, or

– with precision ε′′ = 1
2 min

{
ε′, ε(1−λ)2

d

}
if we can (efficiently) approximately evaluate M ′

with precision ε′′

with probability δ.

But this is a standard condition that does not differ much from MDPs and provides the following
theorem.

Theorem 8. Taking as input 1
ε′ ,

1
ε ,

1
δ , d, n, we can construct with probability ≥ δ, for an ε′-proper

RMDP M with n states and diameter d, EDisct(λ)M (s) with precision ε. If the evaluation (ap-
proximation) of an RMDP M ′ that differs from M only in using δM ′ instead of δM with precision
min

{
ε′, ε(1−λ)2

d

}
(1
2 min

{
ε′, ε(1−λ)2

d

}
) is tractable in the parameters above, then we can efficiently

PAC learn 1
2 min

{
ε′, ε(1−λ)2

d

}
.

Naturally, the discounted value for a given RMDP can be approximated by unraveling sufficiently
deeply.

Corollary 3. For every ε′-proper RMDP, EDisct(λ)M (s) is PAC-learnable.

F.3 PAC Learning for RMDPs with Undiscounted Rewards

We now generalize this result to the undiscounted case we refer to in the paper. The first step is a
reduction, which shows that the discounted case can be viewed as a special case of the undiscounted
case by encoding the discounted payoffs by using an adjusted RMDP. We then continue to adjust the
resulting RMDP further to add costs to “stopping” the RMDP in accordance with the level we are in.

This will then turn into a cost estimation, whereby the exit lane is entered to overestimate the effect
of changing the strategy. For this to be estimated with a low cost, we use the knowledge that the
expected number of steps till termination is finite.

19

F.3.1 From Discounting to Stopping

In MDPs, discounting can be simulated by stopping in each step with a chance of 1 − λ, while
continuing with a chance of λ. In RMDPs, there is no equivalent of stopping immediately, as we will
first have to move down the stack. However, this can be simulated by adding a special exit to each
component and block: from this exit of a block, we always continue with a reward of 0 to the special
exit of the component, and thus have a cost-free direct way to termination, albeit it takes as many
steps as the stack is high.

Once equipped with such an exit lane without rewards, we can use a reduction similar to the standard
stopping reduction for MDPs: we simply go with probability 1−λ to the special exit of the component,
and continue with a probability of λ, i.e., all former probabilities are multiplied by λ.

F.3.2 Adding Rewards to the Exit Lane

In order to connect the construction with the parameters from Section 2, we first consider the effect
of changing the rewards on the exit lane.

If we change the rewards of all transitions that lead to the special exit from 0 to an upper bound b ≥ 0
or a lower bound −b ≤ 0 for the maximal or minimal expected reward for any strategy for any state
with empty stack for any RMDP M ′ ε-close to M , then the collected reward when moving down the
exit lane with rewards can serve as an over- or underrepresentation of the remaining reward for any
strategy.

In turn the over- and underestimations for a stack of hight h are over- and underestimations for the
remaining rewards after h steps.

F.3.3 Connecting our Parameters with Discounting

To see that the parameters we have provided generalize the case of discounting, note that, for an
RMDP with discounting, one can choose b = d

1−λ , co = 1 + 1
1−λ , and µ = 1− λ.

To justify the choice of b = d
1−λ , we observe that the expected sum of the weight-discounted number

of steps is at most 1
1−λ , such that the absolute value of the rewards collected is at most the diameter

times this number.

To justify the choice for co and µ, we first define and estimate a different value for M+ (and M−):
we define the value of a state as

1. the height of the stack plus 1
1−λ if the RMDP is still running and we are not on the exit lane,

2. the height of the stack if we are on the exit lane, and
3. 0 if the RMDP has terminated.

In the first case, the expected value of the state will drop by at least 1− λ: this is because it can only
increase by 1 when the exit lane is not entered (which happens with a likelihood of λ), and goes down
by 1 + 1

1−λ if the exit lane is entered (with a likelihood of 1− λ), which leads to an expected value
that is at least 2(1− λ) smaller.

In the second case, the value is always reduced by 1.

Thus, whenever the RMDP has not terminated after k steps, the expected value of this sum is reduced
by (at least) min{1, 2(1− λ)}, and therefore by at least 1− λ.

Consequently, the expected value of this sum is bounded by co − µ ·
∑k
i=1 p

M ′σ
run (k), and it in turn

bounds the stack height.

F.3.4 Wrapping up the Proof

Theorem 2. For every ε-proper RMDP with parameters co, µ, and b, ETotalM(s) is PAC-learnable.

To wrap this up to show Theorem 2, we can estimate the effect of moving to a different position due
to a change of a strategy by moving to the exit lane with either reward b (for overestimation) or −b
(for underestimation).

20

Thus, if we refer to an (arbitrary but fixed) RMDP M ′ ε-close to M , and to the over- and under
approximation of with exit lanes with rewards b and −b and a likelihood to transition to the exit lane
of ε as M+ and M−, respectively, we have

ETotalM
+

σ

(
(〈∅〉, q)

)
≥ ETotalM

′

σ

(
(〈∅〉, q)

)
≥ ETotalM

−

σ

(
(〈∅〉, q)

)
for all strategies σ, and thus

ETotalM
+(

(〈∅〉, q)
)
≥ ETotalM

′(
(〈∅〉, q)

)
≥ ETotalM

−(
(〈∅〉, q)

)
.

In order to estimate ETotalM
+

σ (s) − ETotalM
−

σ (s), we first observe that the expected stack height
must be converging to 0 for Mσ by our assumption that it is bounded by co − µ

∑k
i−1 p

Mσ
run (k) by our

assumption. (Note that, for convergence, it is enough to assume termination in expected finite time.
The stronger assumption is used for to establish PAC learnability.)

For a given ε′ > 0 we therefore pick a k such that, after k′ ≥ k steps, the expected stack height
is lower than ε′

b . E.g., we can choose k such that kµ ε
′

b ≥ co holds, such that the falling sequence

pMσ
run (k) cannot be above ε′

b for k steps. This is satisfied for k =
⌈
cob
µε′

⌉
.

We then pick ε = ε′

k2b .

In this case, the likelihood of moving onto the exit lane before step k is lower than ε′

kc , and the
difference in rewards along the exit lane in this case below kc, leaving a contribution to the difference
of below ε′.

When entering the exit lane on or after step k, the expected stack height is below ε′

b , leading to a
contribution to the expected distance between the rewards for M+ and M− below ε′.

Together, this provides

ETotalM
+

σ

(
(〈∅〉, q)

)
− ETotalM

−

σ

(
(〈∅〉, q)

)
≤ 2ε′ .

This shows that the expected value converges. We still need to show that we can approximate it to up
to 4ε′ with a likelihood of at least 1− δ.

For this, we can estimate ETotalM
+

σ

(
(〈∅〉, q)

)
and ETotalM

−

σ

(
(〈∅〉, q)

)
by cutting the runs after step

k, then the error in the expected value is at most ε′.

Estimating ETotalMσ
(
(〈∅〉, q)

)
by cutting the runs after k steps leads to a value in between. Using

triangulation, this entails that it estimates the value of ETotalMσ
(
(〈∅〉, q)

)
.

But this can be unravelled into a finite MDP, and hence be PAC learned up to precision ε′ with
likelihood at least 1− δ with standard techniques.

G Reinforcement Learning for Single-Exit RMDPs

Theorem 5 (Unique Fixed Point). The vector consisting of ETotalM (q) values is the unique fixed
point of F . Moreover, a solution of these equations provide optimal stackless strategies.

Proof of Theorem 5. The proof proceeds over several lemmas.

Lemma 3. ETotalM (q) is a fixed point of F .

Proof. Let us consider any vertex v.

If v is an entry port, i.e., q = (b, en) ∈ Call, ex = ExY (b) then once the box b is entered, by
Assumption 1, we will be almost surely reach the unique exit ex′ of b no matter which action will
be picked inside of b. Therefore, to maximize the total reward it suffices to focus solely first on
maximizing the reward while inside b before ex′ is reached no matter what the current call stack

21

is. The maximal reward possible to obtain is equal to ETotalM (en) by definition. Once the exit
is reached, it suffices to maximize the reward from the exit port (b, ex′), which is at most equal
to ETotalM ((b, ex′)). It is easy to see that these two strategies can be combined into a single
strategy from q that can get arbitrarily close to the maximum possible value of ETotalM (en) +

ETotalM ((b, ex′)). So this all together shows that ETotalM (q) = ETotalM (en) + ETotalM ((b, ex′))
holds.

If v is any other non-exit vertex, then the best we can do is to pick any action available at v that
maximizes expected reward from the successor vertex plus the one step reward for picking this action
at v. Once the successor node is reached, we can then switch to the best possible strategy from that
node. This shows that the value of maxa∈A(q)

{
r(q, a)+

∑
q′∈Q

p(q′|q, a)x(q′)
}

is not only achievable

but also the most one can expect to get when starting at v.

Lemma 4. For any fixed point x̄ of F , there exists a stackless strategy σ(x̄) such that ETotalMσ(x̄)(q) =

x̄(q) for every q.

Proof. This strategy σ(x) will simply pick

σ(x̄)(〈κ〉, q) = arg max
a∈A(q)

{
r(q, a) +

∑
q′∈Q

p(q′|q, a)x(q′)
}

from any vertex q and the call stack κ. This works, because as argued in Theorem 3 a mapping of
(〈κκ′〉, q) to (〈κ′〉, q) for all κ′ and q gives us two isomorphic models until the exit of the top box
in κ is reached and so the optimal strategy for (〈∅〉, q) works for (〈κ〉, q) as well. In other words,
the best thing to do at (〈κ〉, q) is to try to maximize the reward before exiting the current box which
happens with probability 1 and the same holds for (〈∅〉, q). In order to maximize this reward, the call
stack being κ or ∅ makes no difference as the transitions only depend on the current component.

Now, we can observe that x̄∗(q) = ETotalM (q) is the largest fixed point of F . If there was x̄ such
that x̄∗(q) < x̄(q) for some q then we could pick σ(x̄) as our strategy and get the reward of x̄(q)

from q due to Lemma 4. However, just by definition, x̄∗(q) = ETotalM (q) = supσ ETotalM (q) is
the largest possible reward obtainable from q as all strategies σ are considered; a contradiction.

Note that once a stackless strategy σ is fixed then F (x̄) becomes equal to Aσx̄+ b̄σ , where b̄σ is the
one-step transitions rewards obtained using σ and Aσ is a transition matrix derived from σ. Note that
all entries of Aσ are non-negative. We will refer to F as Fσ in such a case and exploit this fact later
in various proofs. Note that we can interpret Fσ(x̄) as the expected total reward of using σ for each
vertex once and then obtaining reward x̄.

Lemma 5. For any proper 1-exit RMDP and stackless strategy σ, we have that ETotalMσ =∑∞
i=1A

i
σbσ .

Proof. Notice that

Fσ(x̄) = Aσx̄+ bσ

F 2
σ (x̄) = Aσ(Aσx̄+ bσ) + bσ = A2

σx̄+ (Aσ + I)bσ

F 3
σ (x̄) = AσF

2
σ (x̄) + bσ = A3

σx̄+ (A2
σ +Aσ + I)bσ

...

F kσ (x̄) = Akσx̄+
(k∑
i=0

Aiσ

)
bσ.

Let 1 and 0 be vectors consisting only of 1s and 0s, respectively. As in [15], we can show that
the expected number of steps taken before termination while using σ can be computed by iterating
ȳi+1 = Aσ(ȳi) +1 when starting at ȳ0 = 0. Intuitively, ȳi+1 will correspond to the expected number
of steps taken before termination when we assume the call and return from a box to be executed in

22

parallel in a single step. The crucial assumption made in [15] that all rewards are positive (and equal
to 1) in true in this case.

This shows that limk→∞ F kσ (0) = Akσ0+
(∑k

i=0A
i
σ

)
1 is finite. Therefore, we have that limi→∞Aiσ

is an 0 matrix, because otherwise that sum
∑k
i=0A

i
σ would not be finite as a sum of all non-negative

matrices.

Now, one can see that limk→∞ F kσ (x̄) = limk→∞Akσx̄+
(∑k

i=0A
i
σ

)
bσ = limk→∞

(∑k
i=0A

i
σ

)
bσ

converges absolutely, because
(∑k

i=0A
i
σ

)
|bσ| ≤

(∑k
i=0A

i
σ

)
rmax ≤ Krmax, where K is the

expected number of steps taken by any strategy as guaranteed by Assumption 1. It is clear that this
limit limk→∞ F kσ (x̄) is a fixed point of Fσ, because Fσ(limk→∞ F kσ (x̄)) = limk→∞ F k+1

σ (x̄) =

limk→∞ F kσ (x̄). As we already showed ETotalMσ is a fixed point of Fσ. It is clear that Fσ cannot
have any other fixed point because, for arbitrary x̄, we have limk→∞ F kσ (x̄) = Aiσbσ which is fixed
in terms of x̄. This shows that ETotalMσ =

∑∞
i=1A

i
σbσ has to hold.

We are ready to show that no other than x̄∗ = ETotalM fixed point of F exists. Suppose there is
one and let us denote it by x̄. As we just showed x̄ ≤ x̄∗ and x̄(q) < x̄∗(q) for some q (because
otherwise x̄∗ = x̄).

Let us denote σ(x̄∗) by σ∗ and consider Fσ∗(x̄). If any coordinates of Fσ∗(x̄) is larger than x̄ then
we can improve the expected total reward by using σ∗ once and then follow the strategy that gives us
expected total reward of x̄. A contradiction with the assumption that x̄ is a fixed point of F .

So we have Fσ∗(x̄) ≤ x̄ and by iterating this we get that F kσ∗(x̄) ≤ x̄ for every k. In the previous
Lemma we showed that ETotalM = limk→∞ F kσ∗(x̄) ≤ x̄ < ETotalM ; a contraction.

Theorem 7 (Efficient PAC Learning for 1-Exit RMDPs). For every ε-proper 1-exit RMDP with
diameter rmax and the expected time to terminate ≤ K, ETotalM(s) is efficiently PAC-learnable.

Proof. Let us denote the ε-proper 1-exit RMDP by M and its optimal total reward stackless strategy
by σ∗. As we know that every strategy is ε-proper then so is σ∗. This means that for all M ′ that that
are ε-close toM the expected time to terminate when using σ∗ is also ≤ K. Recall that ε-closeness
means that

∑
q∈S,a∈A,r∈S |δM(q, a)(r)− δM′(q, a)(r)| ≤ ε, and where the support of δM ′(q, a) is

a subset of the support of δM (q, a) for all q ∈ S and a ∈ A.

Lemma 6. If stackless σ is ε-proper, then ‖ETotalMσ − ETotalM
′

σ ‖∞ ≤ 2εK2rmax.

Proof. As shown in Lemma 5, the optimal total rewards in M satisfy x̄ = Aσx̄ + bσ and in M ′
statisfy x̄′ = A′σx̄

′ + bσ. Moreover, x̄ and x̄′ are the sole fixed points of these equations. To avoid
clutter, we will write A, A′ and b̄ instead of Aσ, A′σ and b̄σ. We know that ‖A−A′‖1 ≤ 2ε and let
E = A′ −A.

When we try to converge at x̄′ by iterating x̄′i+1 = A′x̄′i + b′ when starting at x̄′0 = x̄, we obtain the
following:

x̄′1 = A′x̄0 + b̄ = (A′ −A)x̄+Ax̄+ b̄ = (A′ −A)x̄+ x̄ = E x̄+ x̄0

x̄′2 = A′x̄1 + b̄ = A′(E x̄+ x̄0) + b̄ = A′E x̄+A′x̄0 + b̄ = A′E x̄+ x̄1

x̄′3 = A′x̄2 + b̄ = A′(A′E x̄+ x̄1) + b̄ = (A′)2E x̄+A′x̄1 + b̄ = (A′)2E x̄+ x̄2

...

x̄′k+1 = (A′)kE x̄+ x̄k

and thus x̄′ − x̄ = (limk→∞ x̄′k+1)− x̄0 = (limk→∞
∑k
i=0A

′iE x̄+ x̄0)− x̄0 = (
∑∞
i=0A

′i)E x̄.

Note that the time to terminate in M and M ′ from each vertex is equal to (
∑∞
i=0A

i)1 and
(
∑∞
i=0A

′i)1, respectively. We know that all of these values are ≤ K. We know that the ab-
solute value of each entry of x̄ is at most Krmax, as the most we can get in each step is rmax

23

during the expected number of ≤ K steps. So ‖E x̄‖∞ ≤ 2εKrmax1, and so ‖(
∑∞
i=0A

′i)E x̄‖∞ ≤
‖2εKrmax(

∑∞
i=0A

′i)1‖∞ ≤ 2εK2rmax as required.

We observe that the estimate in Lemma 6 holds when we take the supremum over all stackless
ε-proper strategies. This is because for any two functions f and g such that f(σ) − g(σ) ≤ ε for
every stackless σ and σ′ = arg maxσ f(σ) we get supσ f(σ)− supσ g(σ) ≤ f(σ′)− g(σ′) ≤ ε. In
other words, Lemma 6 implies that ‖ETotalM − ETotalM

′
‖∞ ≤ 2εK2rmax.

We can now choose ε′ = ε
2εK2rmax

, and learn δM up to precision ε′ with probability ≥ δ by the usual
sampling techniques as done for finite MDPs.

We then obtain 1-exit RMDPM ′, which we can solve efficiently and exactly using linear programming
similarly to what was done in [15]. First, let us create a variable tq for every q ∈ Q. The linear
program is then as follows.

Minimize
∑
q

tq subject to:

tq ≥ ten + t(b,ex′) if q = (b, en) ∈ Call, ex = ExY (b)

tq ≥ r(q, a) +
∑
q′∈Q

p(q′|q, a)tq′ otherwise, for every possible a ∈ A

One can easily show that any optimal solution gives us a fixed point of F which we know has to
be equal to ETotalM

′
. This is because if all inequalities for a variable tq are non-strict then we can

decrease the value of tq to the maximum of their right hand sides and still get a valid solution. As
linear programs can be solved in polynomial time, and ETotalM

′
is ε-close to ETotalM , we obtain an

efficient PAC learning algorithm.

24

