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We also attach the code for producing: Table 1, Fig. 1 and Fig. 2.

9.1 Orthogonal random projections

The orthogonal random projections mechanism ([15]) is the Monte Carlo method, where samples
ω1, ..., ωM , marginally distributed as N (0d, Id) (thus maintaining unbiasedness of the overall mech-
anism), are conditioned to form an orthogonal ensemble when M ≤ d, otherwise samples are
partitioned into d× d independent orthogonal blocks. Orthogonal random projections can be easily
constructed form th iid projections via the Gram-Schmidt orthogonalization algorithm (see: [16]).

9.2 Proof of Theorem 3.1

Proof. We rewrite (1) for f (·)
GE and deduce that

E
(
f
(1)
GE(ω,x)f

(2)
GE(ω,y)

)
= (2π)−d/2D2

∫
Rd

exp(−∥ω∥2/2 + 2A∥ω∥2 +Bω⊤(x+ sy)

+ C(∥x∥2 + ∥y∥2))dω (16)

where we rewrite expectation as an integral and use definitions of f (1)
GE(ω,x), f

(2)
GE(ω,y) and pGE(ω).

Next, we move out constant terms from the integral and put ω into an elementwise square of
difference: ∫

Rd

exp(−∥ω∥2/2 + 2A∥ω∥2 +Bω⊤(x+ sy) + C(∥x∥2 + ∥y∥2))dω

= exp

(
B2

2(1− 4A)
∥x+ sy∥2 + C(∥x∥2 + ∥y∥2)

)
×
∫
Rd

exp

(
−1

2
(1− 4A)

[
ω − B

1− 4A
(x+ sy)

]2)
dω (17)

where by [·]2 we denote an elementwise square of the input vector. Next, we use an identity:∫
Rd

exp

(
−α

2
[ω − β]

2

)
dω = (2π)d/2

(√
α
)−d

. (18)

where α ∈ C, Re (α) > 0 (α = 1− 4A in (9.2)) and β ∈ Cd (β = (B/(1− 4A))(x+ sy) in (9.2)).
When both α and β are real, (18) is correct since it is integral of the scaled multivariate Gaussian
density. Since both the left and the right hand side in (18) are analytic functions of α and β when
Re (α) > 0, by the identity theorem [56] we conclude that (18) holds when α and β are complex and
Re (α) > 0. Applying (18) to (17), we deduce that∫

Rd

exp

(
−1

2
(1− 4A)

[
ω − B

1− 4A
(x+ sy)

]2)
dω = (2π)d/2

(√
1− 4A

)−d

. (19)

Combining (16, 17, 19) together, we conclude that

E
(
f
(1)
GE(ω,x)f

(2)
GE(ω,y)

)
= D2

(√
1− 4A

)−d

exp

(
B2

2(1− 4A)
∥x+ sy∥2 + C(∥x∥2 + ∥y∥2)

)
.

The right hand side of (9.2) is K(x,y) if the following conditions are satisfied in addition to
Re (1− 4A) > 0:

D2 = (
√
1− 4A)d, sB2 = (1− 4A),

B2

2(1− 4A)
+ C = −1

2
. (20)
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(20) is satisfied when (5) takes place. The final thing to mention is that Re (·) is a linear operation,
and therefore, if (20) is satisfied,

ERe
(
f
(1)
GE(ω,x)f

(2)
GE(ω,y)

)
= Re

(
E
(
f
(1)
GE(ω,x)f

(2)
GE(ω,y)

))
= Re (K(x,y)) = K(x,y).

It’s possible to use other complex roots in (5) rather than just principal roots. However, in the proof
of Theorem 3.2, we will only use (20) and, therefore, the variance is the same when other complex
roots are used. We opt for principal roots for simplicity.

9.3 Proof of Theorem 3.2

Proof. We first use VarZ = EZ2 − (EZ)2 which holds for any random variable Z, e.g.
Re
(
f
(1)
GE(ω,x)f

(2)
GE(ω,y)

)
:

VarpGE
Re
(
f
(1)
GE(ω,x)f

(2)
GE(ω,y)

)
= ERe

(
f
(1)
GE(ω,x)f

(2)
GE(ω,y)

)2
−
(
ERe

(
f
(1)
GE(ω,x)f

(2)
GE(ω,y)

))2
(21)

The second term transforms into
(
ERe

(
f
(1)
GE(ω,x)f

(2)
GE(ω,y)

))2
= K(x,y)2. As for the first term,

we use Re (z) = 1
2 (z + z) and get:

ERe
(
f
(1)
GE(ω,x)f

(2)
GE(ω,y)

)2
=

1

4
E
(
f
(1)
GE(ω,x)f

(2)
GE(ω,y) + f

(1)
GE(ω,x)f

(2)
GE(ω,y)

)2
(22)

We unfold the square of the sum:

E
(
f
(1)
GE(ω,x)f

(2)
GE(ω,y) + f

(1)
GE(ω,x)f

(2)
GE(ω,y)

)2
= E

(
f
(1)
GE(ω,x)

2f
(2)
GE(ω,y)

2

+ 2|f (1)
GE(ω,x)|

2|f (2)
GE(ω,y)|

2 + f
(1)
GE(ω,x)

2f
(2)
GE(ω,y)

2

)
(23)

Further, we observe that, again:

f
(1)
GE(ω,x)

2f
(2)
GE(ω,y)

2 + f
(1)
GE(ω,x)

2f
(2)
GE(ω,y)

2 = 2Re
(
f
(1)
GE(ω,x)

2f
(2)
GE(ω,y)

2
)
. (24)

We use that in (23) and also put expectation inside the sum and Re (·) due to linearity:

E
(
2Re

(
f
(1)
GE(ω,x)

2f
(2)
GE(ω,y)

2
)
+ 2|f (1)

GE(ω,x)|
2|f (2)

GE(ω,y)|
2
)

= 2Re
(
E
(
f
(1)
GE(ω,x)

2f
(2)
GE(ω,y)

2
))

+ 2E
(
|f (1)

GE(ω,x)|
2|f (2)

GE(ω,y)|
2
)

(25)

Denote f
(1)
GE and f

(2)
GE with parameters A,B,C,D as f (1)

A,B,C,D, f
(2)
A,B,C,D. Then according to (4),

f
(1)
GE(ω,x)

2 = f
(1)
2A,2B,2C,D2(ω,x), f

(2)
GE(ω,x)

2 = f
(2)
2A,2B,2C,D2(ω,y), (26)

|f (1)
GE(ω,x)|

2 = f
(1)
2Re(A),2Re(B),2Re(C),|D|2(ω,x), (27)

|f (2)
GE(ω,y)|

2 = f
(2)
2Re(A),2Re(B),2Re(C),|D|2(ω,y). (28)

By substituting A,B,C,D → 2A, 2B, 2C,D2 into (9.2) (it’s possible since Re (1− 4(2A)) > 0,
we compute the first expectation in (25) as:

E
(
f
(1)
2A,2B,2C,D2(ω,x)f

(2)
2A,2B,2C,D2(ω,y)

)
= D4

(√
1− 8A

)−d

× exp

(
4B2

2(1− 8A)
∥x+ sy∥2 + 2C(∥x∥2 + ∥y∥2)

)
.
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Next, we express B,C,D through A, s using (5):

E
(
f
(1)
2A,2B,2C,D2(ω,x)f

(2)
2A,2B,2C,D2(ω,y)

)
=

(√
(1− 4A)2

1− 8A

)d

× exp

(
4s(1− 4A)

2(1− 8A)
∥x+ sy∥2 − (s+ 1)(∥x∥2 + ∥y∥2)

)
= α1 exp

(
α2∥x+ sy∥2 − (s+ 1)

(
∥x∥2 + ∥y∥2

))
, (29)

By substituting A,B,C,D → 2Re (A) , 2Re (B) , 2Re (C) , |D|2 into (9.2) (it’s possible since
Re (1− 8A) > 0 and, hence, Re (1− 8Re (A)) > 0), we can compute the second expectation in
(25):

E
(
f
(1)
2Re(A),2Re(B),2Re(C),|D|2(ω,x)f

(2)
2Re(A),2Re(B),2Re(C),|D|2(ω,y)

)
= |D|4

(√
1− 8Re (A)

)−d

· exp
(

(B +B)2

2(1− 8Re (A))
∥x+ sy∥2 + 2Re (C) (∥x∥2 + ∥y∥2)

)
.

Next, we observe that |D|4 = D2D2, (B +B)2 = B2 +B2 +2|B2| and use (5) to express B,C,D
through A and C:

E
(
f
(1)
2Re(A),2Re(B),2Re(C),|D|2(ω,x)f

(2)
2Re(A),2Re(B),2Re(C),|D|2(ω,y)

)
=

(
(1− 4A)(1− 4A)

1− 8Re (A)

)d/2

× exp

(
s(2− 8Re (A)) + 2|1− 4A|

2(1− 8Re (A))
∥x+ sy∥2 − (s+ 1)(∥x∥2 + ∥y∥2)

)
= α3 exp

(
α4∥x+ sy∥2 − (s+ 1)

(
∥x∥2 + ∥y∥2

))
(30)

where in the last transition we also take into account that (1−4A)(1− 4A) = 1−8Re (A)+16|A|2.
(21, 22, 23, 24, 25, 26-28, 29, 30) taken together result in (6).

9.4 Proof of Theorem 3.3

Proof. When A is real and s = +1, variance (6) has a form:

VarpGE

(
f
(1)
GE(ω,x)f

(2)
GE(ω,y)

)
=

(
1− 4A√
1− 8A

)d

· exp
(
2(1− 4A)

1− 8A
∥x+ y∥2 − 2(∥x∥2 + ∥y∥2)

)
−K(x,y)2

= 2−d

(
ρ+ 1
√
ρ

)d

exp
(
(1 + ρ) ∥x+ y∥2 − 2(∥x∥2 + ∥y∥2)

)
−K(x,y)2

where we change the variable ρ = 1
1−8A ∈ (0,+∞). We see that the minimum of variance with

respect to ρ ∈ (0,+∞) coincides with the minimum of the logarithm of the first term:

g(ρ) = −d log 2 + d log(ρ+ 1)− d

2
log ρ+ (1 + ρ)∥x+ y∥2 − 2(∥x∥2 + ∥y∥2).

All stationary points ρ∗ can be found by setting its derivative to zero:

g′(ρ∗) =
d

ρ∗ + 1
− d

2ρ∗
+ ∥x+ y∥2 = 0.

Multiply by 2ρ∗(ρ∗ + 1) > 0 and obtain an equivalent quadratic equation:

d(ρ∗ − 1) + 2ρ∗(ρ∗ + 1)∥x+ y∥2 = 0;

2∥x+ y∥2(ρ∗)2 + (2∥x+ y∥2 + d)ρ∗ − d = 0;

ρ∗1,2 =
1

4∥x+ y∥2
(
±
√
(2∥x+ y∥2 + d)2 + 8d∥x+ y∥2 − 2∥x+ y∥2 − d

)
. (31)

18



The root ρ∗2 of the quadratic equation with “−” sign in place of “±” (31) is a negative number. Since
∥x+ y∥2 > 0, we conclude that the only stationary point is the positive root ρ∗ = ρ∗1 > 0 with “+”
sign in place of “±”.

g′(ρ) is a continuous function with g′(ρ) → −∞ as ρ → +0 and g′(ρ) → ∥x + y∥2 > 0 as
ρ → +∞. There is only one ρ∗ such that g′(ρ∗) = 0, and therefore for all ρ < ρ∗, g′(ρ) < 0 and for
all ρ > ρ∗, g′(ρ) < 0. Hence, ρ∗ is a global minimum of g(ρ).

Since g′(1) = ∥x+ y∥2 > 0, we also point out that ρ∗ < 1.

9.5 Proof of Theorem 3.4

Proof. First, we use VarZ = EZ2 − (EZ)2 which holds for any random variable Z, e.g.
Re (fpois(ω,x)fpois(ω,y)):

Varppois (fpois(ω,x)fpois(ω,y)) = E
(
fpois(ω,x)

2fpois(ω,y)
2
)
− (E (fpois(ω,x)fpois(ω,y)))

2
.

(32)
We know that (E (fpois(ω,x)fpois(ω,y)))

2
= K(x,y)2. Since ω1, . . . , ωd are independent,

fpois(ω,x)
2fpois(ω,y)

2 can be decomposed into a product of d independent random variables:

fpois(ω,x)
2fpois(ω,y)

2 = exp(2λd− ∥x∥2 − ∥y∥2)
d∏

l=1

(xlyl)
2ωlλ−2ωl .

Its expectation is therefore a product of d independent expectations:

E
(
fpois(ω,x)

2fpois(ω,y)
2
)
= exp(2λd− ∥x∥2 − ∥y∥2)

d∏
l=1

E(xlyl)
2ωlλ−2ωl .

We compute each expectation in the product. First, we rewrite it as a sum:

E(xlyl)
2ωlλ−2ωl =

∞∑
k=0

pk(xlyl)
2kλ−2k = e−λ

∞∑
k=0

λk

k!
(xiyi)

2kλ−2k = e−λ
∞∑
k=0

(x2
l y

2
l λ

−1)k

k!
.

The last sum is a Taylor expansion of exp
(

x2
l y

2
l

λ

)
. So we have:

E
(
fpois(ω,x)

2fpois(ω,y)
2
)
= exp

(
λd+ λ−1

d∑
l=1

x2
l y

2
l − ∥x∥2 − ∥y∥2

)
.

Taking it together with (32) results in (11).

9.6 Proof of Theorem 3.5

Proof. The proof is similar to Theorem 3.4. First, we use VarZ = EZ2 − (EZ)2 which holds for
any random variable Z, e.g. Re (fgeom(ω,x)fgeom(ω,y)):

Varpgeom (fgeom(ω,x)fpois(ω,y)) = E
(
fgeom(ω,x)

2fgeom(ω,y)
2
)
−(E (fgeom(ω,x)fgeom(ω,y)))

2
.

(33)
We know that (E (fpois(ω,x)fpois(ω,y)))

2
= K(x,y)2. Since ω1, . . . , ωd are independent,

fpois(ω,x)
2fpois(ω,y)

2 can be decomposed into a product of d independent random variables:

fgeom(ω,x)
2fgeom(ω,y)

2 = p−2d exp(−∥x∥2 − ∥y∥2)
d∏

l=1

(ωl!)
−2((1− p)−1xlyl)

2ωl .

Its expectation is therefore a product of d independent expectations:

E
(
fgeom(ω,x)

2fgeom(ω,y)
2
)
= p−2d exp(−∥x∥2 − ∥y∥2)

d∏
l=1

E(ωl!)
−2((1− p)−1xlyl)

2ωl .
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We compute each expectation in the product. First, we rewrite it as a sum:

E(ωl!)
−2((1− p)−1xlyl)

2ωl =

∞∑
k=0

pk(k!)
−2((1− p)−1xlyl)

2k

= p

∞∑
k=0

(k!)−2((1− p)−1/2xlyl)
2k.

The last sum is a Taylor expansion of I0(2(1− p)−1/2xlyl) = I0(2(1− p)−1/2|xlyl|) (I0 is an even
function). So we have:

E
(
fgeom(ω,x)

2fgeom(ω,y)
2
)
= p−d exp(−∥x∥2 − ∥y∥2)

d∏
l=1

I0(2(1− p)−
1
2 |xlyl|).

Taking it together with (33) results in (13).

We take absolute values |xlyl| instead of just xlyl because the average of x
(i)
l and y

(j)
l would

converge to zero due to different signs and wouldn’t produce any meaningful statistic.

9.7 Proof of Theorem 4.1

We prove here a much more general result from which Theorem 4.1 follows.
Theorem 9.1. Consider a random variable X of the form: X = g(ω⊤z, ∥ω∥) for some fixed
z ∈ Rd and: g : R× R≥0 → R, where ω is sampled from the isotropic distribution Ω(d) with the
corresponding distribution of ∥ω∥ denoted as Ω̃(d). Assume furthermore that for every y ∈ R≥0,
function gy : R → R, defined as gy(x) = g(x, y), satisfies: gy(x) =

∑∞
k=0 ak(y)x

k for some
a0(y), a1(y), ... ≥ 0. Take two unbiased estimators of K = E[X], defined for M ≤ d as:

K̂ iid
M =

1

M

M∑
m=1

g((ωiid
m )⊤z, ∥ωm∥), K̂ort

M =
1

M

M∑
m=1

g((ωort
m )⊤z, ∥ωm∥) (34)

for ωiid
1 , ..., ωiid

M
iid∼ Ω(d) and the orthogonal ensemble ωort

1 , ..., ωort
M ∼ Ω(d) (the orthogonal ensem-

ble can be constructed since Ω(d) is isotropic). Then:

Var(K̂ort
M ) ≤ Var(K̂ iid

M )− (1− 1

M
)

2

d+ 2
F 2(z), (35)

where F (z)
def
= Eu∼Unif(0,Sd−1)Ex∼Ω̃(d)

[
g̃(xu⊤z, x)

]
, Unif(0,Sd−1) is the uniform probabilistic

distribution on the (d− 1)-dimensional unit sphere in Rd and g̃(a, b)
def
= g(a,b)+g(−a,b)

2 − g(0, b).

If we define g as: g(a, b) = D2 exp(2Ab2+Ba+2C(∥x∥2+∥y∥2)) for A,B,C ∈ R (see: Sec. 3.1),
take Ω = N (0d, Id) and z = x+ y then K̂ iid

M and K̂ort
M from Theorem 9.1 become the estimators

of the Gaussian kernel applying M generalized exponential random features that are either i.i.d or
constructed from the orthogonal ensembles. Further, since Ω(d) is isotropic, F 2(z) only depends on
the norm of ∥z∥ and can be denoted F 2(z) = C(∥z∥). Therefore, as a corollary we obtain Theorem
4.1.

Proof. We start by factorizing the variance of K iid
M and Kort

M by conditioning on the lengths of the
used random samples. We have:

Var(K iid
M ) =

∫
R×...×R

Var
(
K iidm | {∥ωiid

1 ∥ = x1, ..., ∥ωiid
m ∥ = xM}

) M∏
m=1

P(xm) · dx1 · ... · dxM ,

(36)
and similarly:

Var(Kort
M ) =

∫
R×...×R

Var
(
Kort

M | {∥ωort
1 ∥ = x1, ..., ∥ωort

M ∥ = xM}
) M∏
m=1

P(xm) · dx1 · ... · dxM ,

(37)
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where P is the pdf function for the distribution Ω̃(d) of the lengths of samples taken from Ω(d). We
use the fact that in both scenarios: iid samples and an orthogonal ensemble, the lengths of vectors ωi

are sampled from the same distribution Ω̃, independently from their directions and from each other.
Therefore we have:

Var(K iid
M )−Var(Kort

M ) =

∫
R×...×R

T (x1, ..., xM )

M∏
m=1

P(xm) · dx1 · ... · dxM , (38)

where

T (x1, ..., xM ) = Var
(
K iid

M | {∥ωiid
1 ∥ = x1, ..., ∥ωiid

M ∥ = xM}
)
−

Var
(
Kort

M | {∥ωort
1 ∥ = x1, ..., ∥ωort

M ∥ = xM}
) (39)

Since the lengths of the samples are chosen independently from their directions, we conclude that:

Var
(
K iid

m | {∥ωiid
1 ∥ = x1, ..., ∥ωiid

m ∥ = xM}
)
= Var

(
1

M

M∑
m=1

X iid
m

)
(40)

and

Var
(
Kort

M | {∥ωort
1 ∥ = x1, ..., ∥ωort

M ∥ = xm}
)
= Var

(
1

M

M∑
m=1

Xort
m

)
, (41)

where X iid
m = gxm((uiid

m )⊤z) and Xort
m = gxm((uort

m )⊤z), {uiid
1 , ...,uiid

M } are iid samples from the
unit-sphere in Rd and {uort

1 , ...,uort
M } is an orthogonal ensemble of samples taken from the unit

sphere in Rd.

Thus we have:

T (x1, ..., xM ) = Var(
1

M

M∑
m=1

X iid
m )−Var(

1

M

M∑
m=1

Xort
m ) (42)

By the similar analysis as in the proof of Theorem 5 in [15], we obtain for (g1, ..., gd) ∼ N (0, Id):

T (x1, ..., xM ) ≥ 2

(d+ 2)
· 2

M2

∑
1≤i<j≤M

∞∑
t,u=1

a2t(xi)a2u(xj)∥z∥2t+2uE[∥ω∥2t]E[∥ω∥2u]·

E[g2t1 ]E[g2u2 ]

E[
√
g21 + ...+ g2d

2t
]E[
√
g21 + ...+ g2d

2u
]
=

2

d+ 2
· 2

M2

∑
1≤i<j≤M( ∞∑

t=1

a2t(xi)∥z∥2t ·
E[∥ω∥2t] · E[g2t1 ]

E[
√

g21 + ...+ g2d
2t
]

)
·

( ∞∑
t=1

a2t(xj)∥z∥2t ·
E[∥ω∥2t] · E[g2t2 ]

E[
√
g21 + ...+ g2d

2t
]

)

=
2

d+ 2
· 2

M2

∑
1≤i<j≤M

Fxi
(z)Fxj

(z),

(43)

where Fx(z)
def
= E[g̃(xu⊤z, x)], g̃(a, b) def

= g(a,b)+g(−a,b)
2 − g(0, b) and u ∼ Unif(Sd−1) is taken

uniformly at random from the unit (d− 1)-dimensional sphere in Rd.

We conclude that:

Var(K iid
M )−Var(Kord

M ) =
4

M2(d+ 2)

∫
R×...×R

∑
1≤i<j≤M

Fxi
(z)Fxj

(z)

M∏
i=1

P(xi) · dx1 · ... · dxM

=
4

M2(d+ 2)

(
M

2

)∫
R×R

Fx(z)Fy(z)P(x)P(y)dxdy = (1− 1

M
)

2

d+ 2
F 2(z),

(44)

where F (z) = Eu∼Unif(0,Sd−1)Ex∼Ω̃(d)

[
g̃(u⊤z, x)

]
. That completes the proof.
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9.8 Proof of Theorem 4.2

Proof. To prove the first part of the theorem, we use the following Hoeffding’s inequality:

Lemma 9.1 (Hoeffding’s Inequality). Let X1, ..., XM be M independent random variables (not
necessarily identically distributed) with zero mean. Assume furthermore that: −ai ≤ Xi ≤ bi for
ai,bi ≥ 0 for i = 1, ...,M . Then the following is true for any a > 0:

P[|
M∑
i=1

Xi| > a] ≤ 2 · exp

(
− a2∑N

i=1(ai + bi)2

)
(45)

Note first that we have:

0 ≤ Z = exp

(
−
∥∥∥∥√−Aω − B

2
√
−A

x

∥∥∥∥2 − B2

4A
∥x∥2 + C∥x∥2

)
·

exp

(
−
∥∥∥∥√−Aω − B

2
√
−A

y

∥∥∥∥2 − B2

4A
∥y∥22 + C∥y∥22

)
≤ exp

(
−∥x∥2 + ∥y∥2

4A

)
,

(46)

where the last inequality follows from taking: B =
√
1− 4A, C = −1.

Denote: M(x,y) = exp(−∥x∥2+∥y∥2

4A )(1 − 4A)
d
2 . Define: Y = Z − E[Z]. Note that: E[Y ] = 0.

Furthermore, from Inequality 46, we get: 0−K(x,y) ≤ Y ≤ M(x,y)−K(x,y). Thus we have:
−a ≤ Y ≤ b for a = K(x,y), b = M(x,y)−K(x,y). The following is true:

P[|K̂ iid
M (x,y)−K(x,y)| ≥ ϵ] = P

[
Y1 + ...+ YM

M
≥ ϵ

]
= P[|Y1 + ...+ YM | ≥ Mϵ], (47)

where Y1, . . . , YM are independent copies of Y . We complete the proof of the first part of the theorem
by applying Hoeffding’s Inequality for: Xi = Yi, ai = a, bi = b (i = 1, ...,M ) and a = Mϵ.

The second part of the theorem follows directly from the exact same method as applied in the proof
of Theorem 4.1 (e.g. we condition on the lengths of the sampled vectors ωi), combined again with
the analysis from Theorem 5 in [15], but this time for higher moments. Note that critically, Legendre
Transform is well-defined since the corresponding random variables are bounded. The nonnegativity
of the Legendre Transform for the inputs from statement of the theorem follows from the standard
properties of the Legendre Transform for the inputs x > EX , where X is the corresponding random
variable.

9.9 Proof of Theorem 4.3

Proof. The proof is similar to the proof of Claim 1 from [45]. Note that in the regular attention
mechanism, queries and keys are renormalized by the multiplicative factor: 1

d
1
4

. Thus denote:

x = q

d
1
4

and y = k

d
1
4

. Note that: ∥x∥, ∥y∥ ≤ R

d
1
4

. Consider vector z = [x⊤,y⊤]⊤ ∈ R2d. Note that:

∥z∥2 ≤
√
2 R

d
1
4

. By the analogous analysis as in Claim 1, we cover the ball B(0,
√
2 R

d
1
4
) ⊆ R2d with

the ϵ-net of at most T = ( 4ρr )2d balls of radius r for ρ =
√
2 R

d
1
4

. If Lf denotes the Lipschitz constant
of f , the straightforward calculations lead to:

E[L2
f ] ≤ max

x,y
M̂2(x,y)max

x,y

(
2∥x∥2 + 2∥y∥2 + 4E[∥ω∥22]

)
, (48)

where M̂(x,y) = exp(−∥x∥2
2+∥y∥2

2

2 )M(x,y), M(x,y) is defined as in the proof above and ω ∼
N (0d, Id) (the extra multiplicative term next before M(x,y) is needed since now we work with the
softmax-kernel which is the rescaled variant of the Gaussian kernel, see: discussion in the paper).
Thus we have: E[L2

f ] ≤ γ2, where: γ = 2(1− 4A)
d
2

√
exp(− 3R2

A
√
d
)(R

2√
d
+ d2). Using Theorem 4.2,

we also notice that we can get analogous inequality as Inequality (6) from the proof of Claim 1 in
[45], but for: D = 4M(1− 4A)−

d
2 maxx,y exp(

3(∥x∥2
2+∥y∥2

2)
2A ) = 4M(1− 4A)−

d
2 exp( 3R2

A
√
d
). Thus

substituting: (a) σp with γ, (b) D with 4M exp( 3R2

A
√
d
), (c) d with 2d and (d) diam(M) with ρ in the

statement of Claim 1, we obtain Theorem 4.3.
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Figure 5: Version of Figure 2 with positive-valued and arbitrary-valued RFs on one plot.

9.10 Additional experimental details

We use NumPy [28] and the free version of Google Colaboratory for running the first two experiments.
For the Transformer experiments, we use a TPU cluster and JAX [6] implementation.

9.10.1 Comparing variance of different RFs

We use Brent method [7] with 100 iterations for minimization of p in GeomRF(+) and two L-BFGS-B
[65] routines of 50 iterations to minimize A in GERF for s = −1 and +1 respectively. We reuse
these configurations in the non-parametric classification experiment.

We sample pairs of sets {x(i)}1≤i≤L, {y(j)}1≤j≤L, where L = 1024, 5 times. On each pair of sets,
we compute the variance of approximating K(x(i),y(j)) for all pairs of x(i) and y(j). Also, on
each pair of sets of {x(i)}1≤i≤L, {y(j)}1≤j≤L, we compute statistics (8,12,14) and then use them to
optimize parameters of the corresponding method. The means and standard deviations are reported
for averaging over all pairs of x(i) and y(j), over all 5 samples.

For a fair comparison, for real-valued RF mechanisms, we compute the variance assuming that M = 2
(the variance is divided by 2), since complex RF mechanisms effectively use real and imaginary part
of the number.

Figure 5 is where we put both positive-valued and arbitrary-valued RFs on one plot for comparison.
We observe that GERFs and OPRFs have the same log-variance which is explainable since GERFs
extend OPRFs.

9.10.2 Non-parametric classification

Experimental details. We randomly split the raw dataset into 90% which is used for training,
5% for tuning σ and 5% for testing. These splits are fixed for all compared methods. σ is tuned
on a log-uniform grid of 10 values from 10−2 to 102. For each σ and each method, we average
accuracy for 50 seeds used to draw RFs both during validation and testing (for the best σ only). As
for the previous experiment, we use M for real-valued RFs and M/2 for complex-valued for a fair
comparison. We use orthogonal ω’s for all GERF-descendant methods.

We use ϵ = 10−8 when making input features positive in PoisRF+ and GeomRF+. c is inferred from
the train set, and we clamp validation/test input features to be at least ϵ to guarantee that they are
positive without leaking test data into c.

Numerical optimization of parameters in GERF, GeomRF(+) is performed in the same way as
described in Appendix 9.10.1.

Standard deviations. Table 3 reports standard deviations of the test accuracies reported in the main
text.
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Ablation over M . Table 4 is an ablation over the number of (real-valued) random features M . We
see that OPRF consistently outperforms the baselines (TrigRF, PosRF) and also outperforms or is
competitive with other methods proposed in the paper. Further, OPRF shows the best performance
among positive-valued random features (PosRF, OPRF, PoisRF+, GeomRF+) in all settings. As
for the choice of M , we see that performance increases as M grows which is expected. Hence, in
practice, a good strategy is to select M as big as the compute budget permits which would alleviate
an expensive grid search over M .

Comparison of variances. Table 5 shows average log-variances computed using analytic formulas
(8,12,14) for pairs of x,y where x comes from the train set and y from the test set. We observe that
OPRF has the smallest variance with the same value only for GERF (which can be explained since
GERF extends OPRF but it’s complex-valued, hence we need to use 2 times less features for the
comparable amount of computation). The smallest variance for OPRF can be explained by the input
data distribution due to which OPRF’s variance is smaller in average than other variances.

Effect of orthogonal RFs. Table 6 compares using non-orthogonal and orthogonal variants of TrigRF,
PosRF, GERF and OPRF. We observe that the orthogonal variant either doesn’t harm, or improves
the result in most cases. Further, two positive-valued random features (PosRF and OPRF) benefit
from orthogonality when averaged over all benchmarks.

Kernel ridge regression. We run an additional experiment with kernel ridge regression (KRR) [37]
instead of kernel regression for predicting logits r∗. In KRR, r∗ is predicted as the result of linear
ridge regression on

x̂(i) = (f (1)(ω(1),o(i)), . . . , f (1)(ω(M),o(i))) ∈ RM

if RFs are real-valued and

x̂(i) = (Re
(
f (1)(ω(1),o(i))

)
, Im

(
f (1)(ω(1),o(i))

)
, . . . ,

Re
(
f (1)(ω(M/2),o(i))

)
, Im

(
f (1)(ω(M/2),o(i))

)
) ∈ RM

if RFs are complex-valued. Similarly, ŷ∗ is defined as

ŷ∗ = (f (1)(ω(1),o∗), . . . , f (1)(ω(M),o∗)) ∈ RM

if RFs are real-valued and

ŷ∗ = (Re
(
f (1)(ω(1),o∗)

)
,−Im

(
f (1)(ω(1),o∗)

)
, . . . ,

Re
(
f (1)(ω(M/2),o∗)

)
,−Im

(
f (1)(ω(M/2),o∗)

)
) ∈ RM

if RFs are complex-valued. Next, r∗ is predicted as

(r∗)⊤ = (ŷ∗)⊤

(
ϕIM +

L∑
i=1

x̂(i)(x̂(i))⊤

)−1 L∑
i=1

x̂(i)(r(i))⊤

where ϕ > 0 is a hyperparameter.

We tune ϕ on a log-uniform grid of 10 values from 10−2 to 102. For each ϕ and each method, we
average accuracy for 50 seeds used to draw RFs both during validation and testing (for the best ϕ
only). In the rest, the setup is the same as with kernel classification. Result accuracies and their
standard deviations are reported in Tables 7 and 8 respectively. We observe that, again, OPRF shows
the best average performance which is also slightly better than for the kernel regression model (58.1
against 57.8, Table 1).

9.10.3 Text

We pretrained on two publicly available datasets (see: Table 10). Following the original BERT
training, we mask 15% of tokens in these two datasets, and train to predict the mask. We used the
exact same hyperparameter-setup for all the baselines (FAVOR+ [15], ELU [31], ReLU [15]) and
FAVOR++. The hyperparameters for pretraining are shown in Table 9. We finetuned on GLUE task,
warm-starting with the weights of the pretrained model. The setup is analogous to the one from the
original BERT paper.
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Table 3: Non-parametric classification, standard deviations.
Dataset TrigRF PosRF GERF PoisRF GeomRF OPRF PoisRF+ GeomRF+

abalone < 0.05 2.1 1.9 1.8 1.3 1.7 2.9 2.9
banknote < 0.05 3.7 4.3 2.1 3.0 3.4 5.9 7.7
car < 0.05 3.0 2.5 0.0 < 0.05 3.0 < 0.05 1.5
yeast < 0.05 3.2 5.0 6.0 3.4 4.9 < 0.05 2.4
cmc < 0.05 4.0 3.9 4.3 3.4 3.8 5.3 5.2
nursery < 0.05 6.3 3.2 7.2 7.3 6.3 5.6 8.2
wifi < 0.05 6.2 4.1 2.8 2.0 4.1 13.1 9.8
chess < 0.05 1.3 1.2 1.8 2.0 1.2 1.7 1.9

Table 4: Non-parametric classification, ablation over M , average accuracy over all tasks.
M TrigRF PosRF GERF PoisRF GeomRF OPRF PoisRF+ GeomRF+

16 35.5 46.9 47.4 49.0 49.1 48.5 41.3 43.2
32 35.5 50.5 51.2 52.2 52.6 51.8 44.1 46.5
64 35.5 51.3 54.0 54.2 55.2 55.4 47.0 50.0
128 35.5 54.3 56.1 55.5 56.8 57.8 49.9 52.3
256 35.5 55.6 58.1 56.5 57.8 59.7 51.9 55.0

9.10.4 Speech

Our applied Conformer-Transducer models consisted of l = 17 conformer layers. Each attention
layer used h = 4 heads. The embedding dimensionality was p = 256. Dimensions were split equally
among heads, leading to dQK = 64 dimensions per query/key. Input sequences were of length
L ∼ 500. We applied padding mechanism for all tested variants. The model provides transcribed
speech (see also: Table: 11).

9.10.5 Vision

The vision experiments follow Section 4 in the MAE paper, where we use a ViT-Large (Table: 15)
and the same setup for training from scratch (Table: 14) and fine-tuning (Table: 13) as for the MAE
baseline trained with regular softmax attention (Table: 12). Note that the fine-tuning setup has a
shorter schedule which tests the adaptability of low-rank attention variants to the regular softmax
attention.

The ablations over sequence lengths are conducted by training from scratch and use ViT-tiny model
(Table: 16). Different sequence lengths are derived by adjusting the input size and the patch size
which results in different number of patches (Table: 17). Different patch sizes require different sizes
of projection layers before converting to tokens with latent representations of the same dimesionality.

9.11 Long Range Arena

In Long range arena, [54] propose a a diverse set of datasets for evaluating the performance of
efficient transformer on long sequence tasks. In Table 18 we report the performance of FAVOR++ on
three very diverse datasets (ListOps, Text Retrieval, Image Classification). We follow the exact same
setup as [54]. We find very similar trend as our previous experiments i.e. FAVOR++ almost always
improves the performance of performer showing the significance of designing the kernel for variance
reduction.
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Table 5: Non-parametric classification, average log-variance over all tasks.
TrigRF PosRF GERF PoisRF GeomRF OPRF PoisRF+ GeomRF+

−0.8 −0.0 −20.5 −0.7 −7.0 −20.5 36.2 −16.7

Table 6: Non-parametric classification, accuracy with non-orthogonal RFs / orthogonal RFs.
Dataset TrigRF PosRF GERF OPRF

abalone 12.0 / 12.0 15.5 / 16.0 17.7 / 17.0 16.7 / 17.1
banknote 66.2 / 66.2 83.9 / 83.4 93.2 / 92.4 92.3 / 92.6
car 66.3 / 66.3 68.9 / 69.2 70.5 / 70.9 69.9 / 69.5
yeast 29.7 / 29.7 34.6 / 34.4 42.8 / 42.9 42.1 / 44.4
cmc 46.6 / 46.6 44.7 / 45.1 47.4 / 47.8 47.3 / 46.3
nursery 31.3 / 31.3 73.2 / 77.4 63.8 / 63.8 75.8 / 78.9
wifi 15.2 / 15.2 84.6 / 88.8 93.0 / 93.3 92.1 / 93.3
chess 16.5 / 16.5 19.6 / 20.2 20.4 / 20.4 20.4 / 20.2

Average 35.5 / 35.5 53.1 / 54.3 56.1 / 56.1 57.1 / 57.8

Table 7: Kernel ridge regression, accuracy.
Dataset TrigRF PosRF GERF PoisRF GeomRF OPRF PoisRF+ GeomRF+ L

abalone 10.1 21.4 21.9 23.2 25.1 21.8 16.3 13.6 3758
banknote 38.7 99.1 99.8 100.0 100.0 99.7 90.8 99.2 1233
car 36.1 70.7 70.8 34.0 39.0 70.5 62.7 67.4 1554
yeast 15.9 49.2 51.8 39.4 52.2 52.6 5.6 20.8 1334
cmc 34.1 46.6 47.3 44.9 49.4 47.8 37.2 40.8 1324
nursery 27.5 58.5 57.4 30.0 31.0 57.7 41.0 46.6 11664
wifi 13.7 97.2 98.1 92.7 97.1 97.3 36.1 81.6 1799
chess 11.0 17.2 16.9 12.5 13.7 17.4 12.7 16.3 25249

Average 23.4 57.5 58.0 47.1 50.9 58.1 37.8 48.3 N/A

Table 8: Kernel ridge regression, standard deviation.
Dataset TrigRF PosRF GERF PoisRF GeomRF OPRF PoisRF+ GeomRF+

abalone 3.1 1.8 1.8 2.1 1.8 1.6 3.2 3.4
banknote 4.9 1.1 0.6 0.2 0.2 0.7 4.0 1.2
car 5.3 3.3 4.4 5.8 6.2 4.2 8.1 3.5
yeast 3.7 4.0 3.6 6.9 3.9 3.6 10.2 9.6
cmc 5.5 3.3 4.2 4.6 4.2 3.6 6.5 4.9
nursery 2.0 3.4 3.1 2.7 3.0 2.8 5.4 6.7
wifi 5.2 1.9 1.1 2.9 1.4 1.3 4.0 7.6
chess 0.8 1.7 1.3 1.6 1.2 1.4 3.8 2.6
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Table 9: Hyperparameters for the base models for pre-training for the baselines (FAVOR+ [15], ELU
[31] and ReLU [15]) and FAVOR++.

Parameter Value

# of heads 12
# of hidden layers 12
Hidden layer size 768
# of tokens 512
Batch size 256
M 256
Pretrain Steps 1M
Loss MLM
Activation layer gelu
Dropout prob 0.1
Attention dropout prob 0.1
Optimizer Adam
Learning rate 10−4

Compute resources 8× 8 TPUv3

Table 10: Dataset used for pre training.
Dataset # tokens Avg. doc len.

Books [66] 1.0B 37K
Wikipedia 3.1B 592

Table 11: Hyperparameters for trained Speech models.
Parameter Value

# of heads 4
# of hidden layers 17
Hidden layer size 256
# of tokens 512
Batch size 256
Activation layer gelu
Dropout prob 0.1
Optimizer Adam
Learning rate 10−4

Compute resources 8× 8 TPUv3

Table 12: Hyperparameters for Vision pre-training setting.
Parameter Value

Batch size 4096
Optimizer AdamW
Base Learning rate 1.5e−4

Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.95
Learning rate schedule cosine decay
Warm up epochs 40
Augmentation RandomResizedCrop
Compute resources 8× 8 TPUv3
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Table 13: Hyperparameters for Vision End-to-End fine-tuning setting.
Parameter Value

Batch size 1024
Optimizer AdamW
Base Learning rate 1e−3

Layer-wise lr decay 0.75
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Learning rate schedule cosine decay
Warm up epochs 5
Training epochs 50
Augmentation RandomAug (9, 0.5)
Label smoothing 0.1
Mixup 0.8
CutMix 1.0
Droppath 0.1
Compute resources 8× 8 TPUv3

Table 14: Hyperparameters for Vision - training from scratch setting.
Parameter Value

Batch size 4096
Optimizer AdamW
Base Learning rate 1e−4

Layer-wise lr decay 0.75
Weight decay 0.3
Optimizer momentum β1, β2 = 0.9, 0.999
Learning rate schedule cosine decay
Warm up epochs 20
Training epochs 200
Augmentation RandomAug (9, 0.5)
Label smoothing 0.1
Mixup 0.8
CutMix 1.0
Droppath 0.2
Exp moving avg 0.9999
Compute resources 8× 8 TPUv3

Table 15: Hyperparameters for Vision model - ViT Large.
Parameter Value

# of heads 16
# of layers 24
Hidden layer size 1024

Table 16: Hyperparameters for Vision model - ViT tiny.
Parameter Value

# of heads 3
# of layers 12
Hidden layer size 192

Table 17: ViT sequence length (# patches) and image input mapping.
Patches Image input size

8x8 224
16x16 224
32x32 224
40x40 240
44x44 220
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Table 18: Experimental results on the LRA benchmark. The best model is in boldface and the second
best is underlined. Accuracy scores for all baseline models are from [54] (Table 6 in Appendix E.1).
Here, L refers to the sequence length, K refers to the size of a local window and B ≪ L is a model
specific parameter.

Model Complexity ListOps Retrieval Image
2K 4K 1K

Softmax Transformer [55] O(L2) 36.38 57.46 42.44
Synthesizer [52] O(L2) 36.50 54.67 41.61
Sinkhorn [53] O((L/B)2) 34.20 53.83 41.23
Sparse Transformer [10] O(L

√
L) 35.78 59.59 44.24

Reformer [32] O(L logL) 36.30 53.40 38.07
Local Attention [43] O(LK) 15.95 53.39 41.46
Longformer [2] O(LK) 36.03 56.89 42.22
Linformer [58] O(L) 35.49 52.27 38.56
BigBird [64] O(LK) 37.08 59.29 40.83
LinearElu [31] O(L) 17.15 53.09 42.34
Performer [15] O(L) 36.00 53.82 42.77

FAVOR++ O(L) 42.65 60.40 39.47
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