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Abstract

Shapley value is a popular approach for measuring the influence of individual fea-
tures. While Shapley feature attribution is built upon desiderata from game theory,
some of its constraints may be less natural in certain machine learning settings,
leading to unintuitive model interpretation. In particular, the Shapley value uses
the same weight for all marginal contributions—i.e. it gives the same importance
when a large number of other features are given versus when a small number of
other features are given. This property can be problematic if larger feature sets are
more or less informative than smaller feature sets. Our work performs a rigorous
analysis of the potential limitations of Shapley feature attribution. We identify
simple settings where the Shapley value is mathematically suboptimal by assigning
larger attributions for less influential features. Motivated by this observation, we
propose WeightedSHAP, which generalizes the Shapley value and learns which
marginal contributions to focus directly from data. On several real-world datasets,
we demonstrate that the influential features identified by WeightedSHAP are better
able to recapitulate the model’s predictions compared to the features identified by
the Shapley value.

1 Introduction

Explaining how a feature impacts a model prediction is a crucial question in machine learning
(ML) as it provides a deeper understanding of how the model behaves and what insights have
been extracted from data. In many real-world applications, it has been increasingly common to
deploy complicated models such as a deep neural network model or a random forest to achieve high
predictability. However, it often comes with a cost of unintuitive interpretations, and it naturally calls
for a principled and practical attribution method. The goal of this work is to quantify the contribution
of individual features to a particular prediction, also known as the attribution problem.

Lundberg and Lee [2017] proposed a model-agnostic attribution method, SHapley Additive exPlana-
tions (SHAP), based on the Shapley value from economics. Supported by theoretical properties that
the Shapley value satisfies, SHAP has been a popular method in the attribution literature [Janzing
et al., 2020, Sundararajan and Najmi, 2020]. For instance, Frye et al. [2020] and Aas et al. [2021]
developed the SHAP algorithms for dependent features, and Heskes et al. [2020] and Wang et al.
[2021] proposed a rigorous framework in causal inference settings. One of the practical problems to
use SHAP is the heavy computational costs, and there have been works on improving computational
efficiency [Covert and Lee, 2021, Lundberg et al., 2020, Jethani et al., 2021a]. In addition, SHAP has
been deployed to various applied scientific research [Lundberg et al., 2018, Janizek et al., 2021, Qiu
et al., 2022].

The Shapley value, a mathematical basis of SHAP, is a simple average of the marginal contributions
that quantify the average change in a coalition function when a feature of interest is added from a
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subset of features with a given coalition size. There are different version of the marginal contributions
by the coalition size, and the Shapley value takes a uniform weight to summarize the influence of a
feature. This uniform weight arises due to the efficiency axiom of the Shapley value, which requires
the sum of attributions to equal the original model prediction, but it is often problematic because
some may be more informative than others. As we will show in Section 3, the Shapley value is not
optimal to sort features in order of influence on a model prediction.

Our contributions. While SHAP is widely used for feature attribution, its limitations are still not
rigorously understood. We first show the suboptimality of the Shapley value through an analysis
of the marginal contributions. We identify a key limitation of the Shapley value in that it assigns
uniform weights to marginal contributions in computing the attribution score. We show that this can
lead to attribution mistakes when different marginal contributions have different signal and noise.
Motivated by this analysis, we propose WeightedSHAP, a generalization of the Shapley value which is
more flexible. WeightedSHAP uses a weighted average of marginal contributions where the weights
can be learned from the data. On several real-world datasets, our experiments demonstrate that
WeightedSHAP is better able to identify influential features that recapitulate a model’s prediction
compared to a standard SHAP. WeightedSHAP is a simple modification of SHAP and is easy to adapt
from existing SHAP implementations.

1.1 Related works

Model interpretation There are mainly two types of model interpretation depending on the quantity
to be accounted for; global and local interpretations. The global interpretation is to explain the impact
of a feature on a prediction model across the entire dataset [Lipovetsky and Conklin, 2001, Breiman,
2001, Owen, 2014, Broto et al., 2020, Zhao and Hastie, 2021, Bénard et al., 2022]. For instance, for
a decision tree model, Breiman et al. [2017] measures the total decrease of node impurity at node
split by a feature of interest as an impact. In contrast, the local interpretation is to explain the impact
of a feature on a particular prediction value [Lundberg and Lee, 2017, Chen et al., 2018, Janzing
et al., 2020, Lundberg et al., 2020, Heskes et al., 2020, Jethani et al., 2021a]. For a deep neural
network model, a gradient-based method uses the gradient evaluated at a particular input sample as an
impact [Simonyan et al., 2013, Sundararajan et al., 2017, Ancona et al., 2017, Selvaraju et al., 2017,
Adebayo et al., 2018]. Our work studies the local interpretation problem with a focus on a marginal
contribution-based method, which we review in Section 2. The marginal contribution-based method
is potentially advantageous over a gradient-based method as it does not require the differentiability of
a prediction model.

Shapley value and its extension The Shapley value, introduced as a fair division method from
economics [Shapley, 1953a], has been deployed in various ML problems. One leading application
is data valuation, where the main goal is to quantify the impact of individual data points in model
training. Ghorbani and Zou [2019] and Jia et al. [2019] propose to use the Shapley value for
measuring the individual data value, and this concept has been extended to handle the randomness of
data [Ghorbani et al., 2020, Kwon et al., 2021]. As for the other applications of the Shapley value,
model explainability [Ghorbani and Zou, 2020], model valuation [Rozemberczki and Sarkar, 2021],
federated learning [Liu et al., 2021], and multi-agent reinforcement learning [Li et al., 2021] have
been studied. We refer to Rozemberczki et al. [2022] for a complementary literature review of ML
applications of the Shapley value.

The relaxation of the Shapley axioms has been one of the central topics in cooperative game theory
[Shapley, 1953b, Banzhaf III, 1964, Kalai and Samet, 1987, Weber, 1988]. Recently, Kwon and Zou
[2021] propose to relax the efficiency axiom in the data valuation problem, showing promising results
in the low-quality data detection task. Given that Shapley axioms are often not readily applicable to
ML problems, relaxing them has the potential to capture a better notion of significance. In this work,
we explore the benefits of relaxation of the efficiency axiom on the attribution problem.

2 Preliminaries

We review the marginal contribution and the Shapley value in the context of an attribution problem.
We first introduce some notations. For d ∈ N, let X ⊆ Rd and Y ⊆ R be an input space and
an output space, respectively. We use a capital letter X = (X1, . . . , Xd) for an input random

2



variable defined on X , and a lower case letter x = (x1, . . . , xd) for its realized value. We denote
a prediction model by f̂ : X → Y . For j ∈ N, we set [j] := {1, . . . , j} and denote a power set
of [j] by 2[j]. For a vector u ∈ Rd and a subset S = (j1, . . . , j|S|) ⊆ [d], we denote a subvector
by uS := (uj1 , . . . , uj|S|). We assume that X has a joint distribution p(X) such that a conditional
distribution p(X[d]\S | XS) is well-defined for any subset S ⊊ [d]. With the notations, a conditional
coalition function v

(cond)

x,f̂
: 2[d] → R is defined as follows [Lundberg and Lee, 2017].

v
(cond)

x,f̂
(S) := E[f̂(xS , X[d]\S) | XS = xS ]− E[f̂(X)], (1)

where the first expectation is taken with a conditional distribution p(X[d]\S | XS = xS) and the
second expectation is taken with a joint distribution p(X). Here, we use a slight abuse of notation for
f̂(xS , X[d]\S) to describe f(u) where ui = xi if i ∈ S, and ui = Xi otherwise. By convention, we
set v(cond)

x,f̂
([d]) := f̂(x)− E[f̂(X)] and v

(cond)

x,f̂
(∅) := 0. A conditional coalition function defined in

Equation (1) is a prediction recovered after observing partial information xS compared to the null
information. For instance, if S = ∅, the first term becomes the marginal expectation E[f̂(X)] and
nothing is recovered by S = ∅. For ease of notation, we write v(cond)

x,f̂
(S) = v(cond)(S) for remaining

part of the paper.

Marginal contribution-based attribution methods Given that the goal of the attribution problem
is to assign the significance of an individual feature xi on the prediction f̂(x), its primary challenge
is how to measure the influence of the feature xi. A leading approach is to quantify the difference in
the conditional coalition function values v(cond) after adding one feature of interest. We formalize
this concept below.
Definition 1 (Marginal contribution). For i, j ∈ [d], we define the marginal contribution of the i-th
feature xi with respect to j − 1 features as follows.

∆j(xi) :=
1(

d−1
j−1

) ∑
S⊆[d]\{i},|S|=j−1

v(cond)(S ∪ {i})− v(cond)(S). (2)

The marginal contribution ∆j(xi) considers every possible subset S ⊆ [d]\{i} with the coalition
size |S| = j − 1 and takes a simple average of the difference v(cond)(S ∪ {i})− v(cond)(S). That is,
it measures the average contribution of the i-th feature xi when it is added to a subset S.

Different marginal contributions ∆j(xi) have been studied depending on the coalition size j in
the literature. Zintgraf et al. [2017] considered j = d and measured the leave-one-out marginal
contribution ∆d(xi) = f̂(x)− E[f̂(x[d]\{i}, Xi) | X[d]\{i} = x[d]\{i}] as an influence of a feature.
Guyon and Elisseeff [2003] considered j = 1 and measured the coefficient of determination as an
influence of a feature. Although they did not use an individual prediction, their idea is essentially
similar to using ∆1(xi) = E[f̂(xi, X[d]\{i}) | Xi = xi]− E[f̂(X)].

Another widely used marginal contribution-based method is the Shapley value [Lundberg and Lee,
2017, Covert and Lee, 2021]. It summarizes the impact of one feature by taking a simple average
across all marginal contributions. To be more specific, the Shapley value is defined as follows.

ϕshap(xi) :=
1

d

d∑
j=1

∆j(xi). (3)

The Shapley value in (3) is known as the unique function that satisfies the four axioms of a fair
division in cooperative game theory [Shapley, 1953a]. The four axioms and the uniqueness of the
Shapley value are discussed in more detail in Appendix.

Although the Shapley value provides a principled framework in game theory, one critical issue is that
the economic notion of the Shapley axioms is not intuitively applicable to the attribution problem
[Kumar et al., 2020, Rozemberczki et al., 2022]. In particular, the efficiency axiom, which requires
the sum of the attributions to be equal to vcond([d]), is not necessarily essential because an order of
attributions is invariant to the constant multiplication. For instance, for any positive constant C > 0,
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an attribution ϕC(xi) := C × ϕshap(xi) will have the same order as the Shapley value ϕshap, but the
efficiency axiom is not required for ϕC . In Section 4, we will revisit this point and introduce a new
attribution method that relaxes the efficiency axiom.

Evaluation metrics for the attribution problem. In the literature, different notions of goodness
have been proposed, for instance, the complete axiom [Sundararajan et al., 2017, Shrikumar et al.,
2017], the local Lipschitzness [Alvarez-Melis and Jaakkola, 2018], and the explanation infidelity
[Yeh et al., 2019] with a focus on the total sum of attributions or the sensitivity of attributions.
Recently, Jethani et al. [2021a] suggested using the Inclusion AUC to assess the goodness of an
order of attributions. Specifically, the Inclusion AUC is measured as follows: Given an attribution
method, features are first ranked based on their attribution values. Then the area under the receiver
operating characteristic curve (AUC) is iteratively evaluated by adding features one by one from
the most influential to the least influential. This procedure generates a AUC curve as a function of
the number features added, and the Inclusion AUC is defined as the area under this curve. Similar
evaluation metrics have been used in Petsiuk et al. [2018] and Lundberg et al. [2020]. Following the
literature, we consider the area under the prediction recovery error curve (AUP) defined as follows.
Definition 2 (Area under the prediction recovery error curve). For a given attribution method ϕ, an
input x ∈ X , and k ∈ [d], let I(k;ϕ, x) ⊆ [d] be a set of k integers that indicates k most influential
features based on their absolute value |ϕ(xj)|. For a prediction model f̂ , we define the area under
the prediction recovery error curve at x as follows.

AUP(ϕ;x, f̂) :=

d∑
k=1

∣∣∣f̂(x)− E[f̂(X) | XI(k;ϕ,x) = xI(k;ϕ,x)]
∣∣∣ . (4)

AUP is defined as the sum of the absolute differences between the original prediction f̂(x) and its
conditional expectation E[f̂(X) | XI(k;ϕ,x) = xI(k;ϕ,x)] when the k most influential features are
given. Each term in Equation (4) measures the amount of a prediction that is not recovered by the k
most influential features, and thus this prediction recovery error is expected to decrease as k increases.
The prediction recovery error can be described as a function of k, and the AUP measures the area
under this function as in the Inclusion AUC.

3 The Shapley value is suboptimal

In this section, we show that the suboptimality of the Shapley value through a rigorous analysis of the
marginal contribution. We first derive a useful closed-form expression of the marginal contribution
when f̂ is linear and p(X) is Gaussian (Section 3.1). With this theoretical result, we present two
simulation experiments where the Shapley value incorrectly reflects the influence of features, resulting
in a suboptimal order of attributions (Section 3.2).

3.1 A closed-form expression of the marginal contribution

To this end, we assume that a prediction model f̂ is linear and an input distribution p(X) follows a
Gaussian distribution with zero mean and a block diagonal covariance matrix. To be more specific, we
define some notations. For B ∈ N, we set a vector d = (d1, . . . , dB) ∈ NB such that

∑B
b=1 db = d

and a vector ρρρ := (ρ1, . . . , ρB) ∈ [0, 1)B . We denote a d × d block diagonal covariance matrix
by Σ

(block)
ρρρ,d = diag

(
Σ(ρ1,d1), . . . ,Σ(ρB ,dB)

)
where Σ(ρb,db) = (1 − ρb)Idb

+ ρb1db
1T
db

. Here,
for j ∈ N, we denote the j × j identity matrix by Ij , the j-dimensional vector of ones by 1j :=
(1, . . . , 1)T ∈ Rj and 0j := 0× 1j . Lastly, we denote a Gaussian distribution with a mean vector
µ and a covariance matrix Σ by N (µ,Σ). With the notations, we assume X ∼ N (0d,Σ

(block)
ρρρ,d ).

That is, every feature is normalized to have a unit variance and is included in one of B independent
clusters. For j ∈ [B], the size of the j-th cluster is dj , and features are equally correlated to each
other within a cluster. The correlation levels can vary from cluster to cluster.

In general, the marginal contribution in Equation (2) does not have a closed-form expression, and
it makes a rigorous analysis of the Shapley value difficult. In the following theorem, we derive a
closed-form expression of the marginal contribution when f̂ is linear and X ∼ N (0d,Σ

(block)
ρρρ,d ).
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(a) Illustrations of the suboptimality of Shapley-based feature attributions on the four different situations when
d = 2.
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(b) Illustrations of a prediction recovery error curve and AUP comparison when d = 100.

Figure 1: The Shapley value is suboptimal. (Top) a region described in black denotes the area
the Shapley value fails to select the more influential feature. We encode E(1;x, f̂)− E(2;x, f̂) as
the background color to visualize which feature is more influential. Blue color describes a region
where the first feature x1 is more influential, i.e., E(1;x, f̂) < E(2;x, f̂), and red describes a region
where the second feature x2 is more influential, i.e., E(1;x, f̂) > E(2;x, f̂). The intensity for
E(1;x, f̂)−E(2;x, f̂) is described in a color bar. (Bottom) we compare the three attribution methods
∆1, ϕshap, and ∆d on the two different situations by varying correlation ρ ∈ {0.2, 0.6}. As for the
prediction recovery error curve, we denote a 95% confidence band based on 100 samples. The lower
AUP is, the better. In both settings, the Shapley value is suboptimal according to AUP.

Theorem 1 (A closed-form expression for the marginal contribution). Suppose f̂(x) = β̂0+xT β̂ for
some (β̂0, β̂) ∈ R× Rd and X ∼ N (0d,Σ

(block)
ρρρ,d ). Then, for i, j ∈ [d], the marginal contribution of

the i-th feature xi with respect to j − 1 samples is expressed as

∆j(xi) = xTH(i, j)β̂,

for some explicit matrix H(i, j) ∈ Rd×d.

A proof and the explicit term for H(i, j) are provided in Appendix. Theorem 1 shows that the
marginal contribution is a bilinear function of an input x and the estimated regression coefficient
β̂. One direct consequence is that the Shapley value also has a bilinear form ϕshap(xi) = xTH(i)β̂

for H(i) :=
∑d

j=1 H(i, j)/d. We emphasize that this bilinear form greatly improves computational
efficiency. Specifically, for all i, j ∈ [d], since the term H(i, j)β̂ is not a function of an input x, we
only need to compute the one-time in multiple attribution computations. Moreover, it also leads to a
memory efficient algorithm as there is no need to store the d× d matrix H(i, j).

3.2 Motivational examples

With the theoretical result introduced in the previous subsection, we show that the Shapley-based
feature attribution is suboptimal and fails to assign larger values to more influential features.

When there are two features. When d = 2, there are only two possible values for AUP. For any
attribution method ϕ,

AUP(ϕ;x, f̂) =

{
E(1;x, f̂) if I(1;ϕ, x) = {1}
E(2;x, f̂) otherwise

,
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where E(k;x, f̂) :=
∣∣∣f̂(x1, x2)− E[f̂(X1, X2) | Xk = xk]

∣∣∣ for k ∈ {1, 2}. Therefore, the optimal

order based on AUP is fully determined by E(1;x, f̂) and E(2;x, f̂), for instance, the first feature x1

is more influential than the second one x2 if E(1;x, f̂) < E(2;x, f̂). It is intuitively sensible because
E(1;x, f̂) < E(2;x, f̂) means that the original prediction f̂(x) is more accurately recovered by the
first feature x1 than the second one x2.

Using the optimal order, we demonstrate that the Shapley value does not necessarily assign a large
attribution to a more influential feature. We consider the four different scenarios with two different
prediction models f̂(x) ∈ {1.5x1 + x2, 0.5x1 + x2} and two different Gaussian distributions,
X ∼ N

(
02,Σ(ρ,2)

)
for ρ ∈ {0.2, 0.6}. In these four scenarios, the terms E(1;x, f̂) and E(2;x, f̂)

have a closed-form expression, and thus the optimal order is explicitly obtained. Moreover, due to
Theorem 1, a more influential feature according to the Shapley value is explicitly obtained.

Figure 1(a) illustrates the suboptimality of the Shapley value on the four different situations. In
any situation, there is a non-negligible region (described in black) where the Shapley value fails to
select a more influential feature. In addition, this suboptimal area increases as the correlation gets
larger, showing that the Shapley value-based explainability becomes poor when features are highly
correlated.

When there are more than two features When d > 2, it is infeasible to find the exact optimal
order because there are 2d−1 possible AUPs. For this reason, we compare the Shapley value with
the two commonly used marginal contribution-based methods ∆1 and ∆d, showing the Shapley
value is not optimal in terms of AUP. We assume the following setting: a trained model is linear
f̂(x) = β̂0 + xT β̂ for some (β̂0, β̂) ∈ R × Rd and an input vector X = (X1, . . . , Xd) follows a
Gaussian distribution N

(
0d,Σ(ρ,d)

)
. That is, there are d features and they are equally correlated to

each other with the correlation ρ. We set d = 100 and consider two different situations by varying
ρ ∈ {0.2, 0.6}. Similar to the previous analysis, due to Theorem 1, the three attribution methods are
explicitly obtained. We evaluate the prediction recovery error and the AUP on the 100 held-out test
samples randomly drawn from the distribution N

(
0d,Σ(ρ,d)

)
. Detailed information is provided in

Appendix.

Figure 1(b) illustrates the suboptimality of the Shapley value when d = 100 and ρ ∈ {0.2, 0.6}. In
any situation, the prediction recovery curves for the Shapley value (described in green) have a steeper
slope than ∆1 (described in red), but is not optimal as the ∆d (described in blue) approaches to zero
faster. When ρ = 0.6, the suboptimality becomes more severe in that the gap between ∆d and the
Shapley value gets larger.

4 Proposed method: WeightedSHAP

Our motivational examples in the previous section suggest that the Shapley value does not necessarily
assign larger attributions for more influential features, leading to a suboptimal order of features. In
fact, the last marginal contribution ∆d outperforms other attribution methods in Figure 1(b). Although
the use of ∆d is promising, we show that focusing on one marginal contribution might lead to an
unstable attribution method, suggesting a weighted mean of the marginal contributions. To be more
concrete, we first examine the estimation error of the marginal contribution in the following.

Analysis of estimation error In practice, the Shapley value needs to be estimated, resulting in an
estimation error. Given the mathematical form of the Shapley value in (3), this estimation error arises
from the estimation error of the marginal contribution. In this reason, we investigate the estimation
error of the marginal contribution. We consider the same setting used in Figure 1(b) with ρ = 0.6.
As for the estimation of the marginal contribution, we follow a standard algorithm to estimate a
conditional coalition function v(cond) used in Jethani et al. [2021a] and a sampling-based algorithm
to approximate ∆j . A detailed explanation for the estimation procedure and the additional result for
ρ = 0.2 are provided in Appendix.

Figure 2 shows the relative difference between the true marginal contribution ∆j obtained by
Theorem 1 and its estimate ∆̂j as a function of the coalition size j ∈ [d]. Here, we use the relative
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difference between A and B defined as |A−B|/max(|A|, |B|) to avoid numerical instability that
can be occurred by too small marginal contribution values. It shows the ∆d, the most informative
marginal contribution in Figure 1(b), has the largest relative difference from the true value. In other
words, ∆d has the largest signal to explain a model prediction, but at the same time, it is the most
unstable in terms of the estimation error. This finding motivates us to consider a weighted mean of
the marginal contributions that can reduce the estimation error while maintaining signals.

5 20 35 50 65 80 95
Coalition size j

7.5

8.0

8.5

9.0

Relative difference btw Δj and Δ̂j
 Correlation: ρ= 0.6

Figure 2: Illustrations of the relative dif-
ference between the true marginal contri-
bution ∆j and its estimate ∆̂j as a func-
tion of the coalition size j ∈ [d]. We con-
sider the same setting used in Figure 1(b).
The ∆d is shown to have the largest rela-
tive difference.

Proposed method For a weighted vector w =

(w1, . . . , wd) such that
∑d

j=1 wj = 1 and wj ≥ 0 for
all j ∈ [d], we consider a weighted mean of the marginal
contributions

ϕw(xi) :=

d∑
j=1

wj∆j(xi). (5)

A weighted mean ϕw(xi) is expected to capture the in-
fluence of features better than the Shapely value (3) by
assigning a large weight to important marginal contribu-
tions. As for the game theoretic interpretation, a math-
ematical form of Equation (5) is known as a semivalue
in cooperative game theory. It satisfies all the Shapley
axioms but the efficiency axiom, which is not crucial in
the attribution as we discussed in Section 2 [Dubey and
Weber, 1977, Ridaoui et al., 2018]. Due to the relaxation
of the efficiency axiom, a semivalue is not uniquely deter-
mined, but it is known that the semivalue is almost unique
up to a weighted mean operation. A detailed explanation
for the semivalue is provided in Appendix.

One natural and practical question that arises when using
a weighted mean ϕw(xi) is how to select the weight vector w. Since a weight vector to be selected is
desired to have a certain good property, this question can be rephrased as to which concept of goodness
should be optimized. However, it is difficult to have one universal desideratum by the intricate nature
of model interpretations. There are different types of goodness and they often represent independent
characteristics, as we discussed in Section 2. In other words, a good attribution essentially depends on
a practitioner’s downstream task. To reflect this, we propose to learn a weight vector that optimizes
a user-defined utility. To be more specific, we let W ⊆ {w ∈ Rd :

∑d
j=1 wj = 1, wj ≥ 0} be

a parametrized family of weights and T be a user-defined utility function that takes as input an
attribution method and outputs its utility. Without loss of generality, we assume that the larger T is,
the better it is (e.g., the negative value of AUP). Given T andW , we propose WeightedSHAP as
follows.

ϕWeightedSHAP(T ,W) := ϕw∗(T ,W), (6)

where w∗(T ,W) := argmaxw∈WT (ϕw). That is, we learn the optimal weight by optimizing a
user-defined utility.

When W includes the uniform weight (1/d, . . . , 1/d) ∈ Rd, then by its construction, we can
guarantee that WeightedSHAP is always better than or equal to the Shapley value according to
the utility T . For instance, when the negative value of AUP is used for the utility T , AUP of
WeightedSHAP is less than that of the Shapley value, i.e., AUP(ϕWeightedSHAP) ≤ AUP(ϕshap).
Moreover, the more weight vectors are inW , the better the quality of ϕWeightedSHAP is guaranteed.
WeightedSHAP ϕWeightedSHAP depends on a setW . In our experiments, we parameterize an element
w ∈ W by the Beta distribution inspired by mathematical properties of the semivalue in Monderer
and Samet [2002, Theorem 11]. Detailed information is provided in Appendix.
Example 1 (WeightedSHAP and the Shapley value ϕshap on AUP). We revisit the motivational
example introduced in Section 3.2. With the negative AUP for T and some W ⊇ {∆d, ϕshap},
WeightedSHAP achieves significantly lower AUP than both ∆d and ϕshap. Specifically, when (d, ρ) =
(100, 0.6), the AUPs of (∆d, ϕshap, ϕWeightedSHAP) are (1.49 ± 0.06, 1.65 ± 0.08, 0.77 ± 0.03),
respectively, where the numbers denote “mean ± standard error” based on the 100 held-out test
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(a) Illustrations of the prediction recovery error curve on the four regression datasets. The lower, the
better.
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(b) Illustrations of the Inclusion MSE curve on the four regression datasets. The lower, the better.

Figure 3: Regression tasks. Illustrations of the prediction recovery error curve and the Inclusion
MSE curve as a function of the number of features added. We add features from most influential to the
least influential. We denote a 95% confidence interval based on 50 independent runs. WeightedSHAP
achieves a significantly smaller MSE with fewer features than the MCI and the Shapley value.

samples. Meanwhile, the estimation errors of (∆d, ϕshap, ϕWeightedSHAP) are (9.23± 0.02, 6.16±
0.04, 7.90± 0.11), respectively. In short, WeightedSHAP achieves a significantly lower estimation
error than ∆d while achieving the lowest AUP. Although ϕshap achieves the lowest estimation error,
its AUP is significantly greater than both ∆d and ϕWeightedSHAP. The uniform weight in ϕshap helps
reduce the estimation error, but it loses signals too much. In contrast, WeightedSHAP well balances
the signal and the estimation error, i.e., reducing the estimation error while taking more signals.

Implementation algorithm for WeightedSHAP Given a finite set W and an easy-to-compute
utility function T , the optimal weight w∗ can be achieved by iteratively evaluating the utility T for
each attribution method ϕw with w ∈ W . In addition, ϕw is readily obtained as long as there are
the marginal contribution estimates. Therefore, the key part of the implementation algorithm is to
estimate a set of marginal contributions. The estimation of the marginal contributions consists of
two parts, estimation of a conditional coalition function v(cond) and approximation of the marginal
contribution ∆j . As for the first part, we train a surrogate model that takes as input a subset of input
features and outputs a conditional expectation of a prediction value given the same subset [Frye
et al., 2020, Jethani et al., 2021a,b]. It is known that this surrogate model unbiasedly estimates a
conditional expectation of a prediction value given a subset of features under mild conditions [Frye
et al., 2020, Covert et al., 2020]. Regarding the second part, a weighted mean is approximated
by a sampling-based algorithm [Ghorbani and Zou, 2019, Kwon and Zou, 2021]. We provide a
pseudo algorithm in Appendix. In terms of the computational cost, our algorithm is comparable
to a standard the Shapley value estimation algorithm because both algorithms need to estimate the
marginal contributions as a primary part [Lundberg and Lee, 2017, Frye et al., 2020]. For instance,
with the classification dataset fraud, the marginal contribution estimation part takes 20.7 seconds
per sample on average but the weight optimization part only takes 0.18 seconds, i.e., the weight
optimization part is only 0.86% of the total compute.

5 Experimental results

We demonstrate the practical efficacy of WeightedSHAP on various regression and classification
datasets. We compare WeightedSHAP with the marginal contribution feature importance (MCI)
proposed by Catav et al. [2021] and the Shapley value on the prediction recovery error task and the
inclusion performance task. Each task assesses the goodness of an attribution order by iteratively
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(a) Illustrations of the prediction recovery error curve on the four binary classification datasets. The
lower, the better.

6 15 24 33 42 51
Number of features added

0.970

0.975

0.980

0.985

0.990

0.995

AU
C

Inclusion AUC 
 Dataset: fraud

MCI
Shapley
WeightedSHAP

1 2 3 4 5 6 7 8
Number of features added

0.65

0.70

0.75

0.80

0.85

AU
C

Inclusion AUC 
 Dataset: phoneme

MCI
Shapley
WeightedSHAP

3 7 11 15 19 23
Number of features added

0.725

0.750

0.775

0.800

0.825

0.850

0.875

AU
C

Inclusion AUC 
 Dataset: wind

MCI
Shapley
WeightedSHAP

4 10 16 22 28 34
Number of features added

0.93

0.94

0.95

0.96

0.97

0.98

AU
C

Inclusion AUC 
 Dataset: cpu

MCI
Shapley
WeightedSHAP

(b) Illustrations of the Inclusion AUC curve on the four binary classification datasets. The higher, the
better.

Figure 4: Classification tasks. Illustrations of the prediction recovery error curve and the Inclusion
AUC curve as a function of the number of features added. Details are provided in Figure 3. Weighted-
SHAP achieves a significantly higher AUC with fewer features than the MCI and the Shapley value.

measuring how much the original model prediction or its performance is recovered with a given
number of features. As for the model performance, we evaluate mean squared error (MSE) and AUC
for regression and classification problems, respectively. We consider a gradient boosting model for
a prediction model f̂ . As for the surrogate model in coalition function estimation v(cond), we use
a multilayer perceptron model with the two hidden layers, and each layer has 128 neurons and the
ELU activation function [Clevert et al., 2015]. As for the WeightedSHAP in (6), we use the negative
value of the AUP for T and a setW that has 13 different weights including ∆1, ϕshap, and ∆d. All
the missing details about numerical experiments are provided in Appendix, and our Python-based
implementations are available at https://github.com/ykwon0407/WeightedSHAP.

Figure 3(a) compares the prediction recovery error curves for the WeightedSHAP (described in
red) with the MCI (described in blue) and the Shapley value (described in green). WeightedSHAP
shows always lower prediction recovery errors than the MCI and the Shapley value. Given that
WeightedSHAP minimizes the AUP, which is the sum of prediction recovery error |f̂(x)− E[f̂(X) |
XS = xS ]|, WeightedSHAP does not necessarily have a smaller prediction recovery error for every
number of features added. As for the MSE, Figure 3(b) shows that WeightedSHAP has a significantly
smaller MSE than baseline methods with fewer features. In particular, on the airfoil dataset,
WeightedSHAP achieves 0.53 MSE with 10 features, but the Shapley value never achieves this value
because of the suboptimality of the attribution order.

We also evaluate the prediction recovery error and AUC for the four classification datasets. Similar to
the regression cases, Figures 4(a) and 4(b) show that WeightedSHAP effectively assigns larger values
for more influential features and recovers the original prediction f̂(x) significantly faster than the
MCI and the Shapley value. Specifically, on the fraud dataset, WeightedSHAP achieves 0.995 AUC
with 14 features, but the Shapley value always has the lower AUC value. Our findings are consistently
observed with a different model for f̂ or other datasets. Additional experimental results with different
evaluation metrics and a qualitative assessment of WeightedSHAP are provided in Appendix.

5.1 Illustrative examples from MNIST

We present a qualitative assessment of WeightedSHAP and examine how its top influential features
differ from those from SHAP using the MNIST dataset. We train a convolutional neural network
model using the same setting suggested in Jethani et al. [2021a]. It achieves 98.6 % accuracy
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Figure 5: Illustrative examples of WeightedSHAP and SHAP attributions on MNIST images. We
present the top 10% of influential features. Red (resp. blue) color indicates the corresponding feature
positively (resp. negatively) affects the model prediction. (Top) WeightedSHAP clearly captures the
last stroke of nine while SHAP fails to capture it. (Bottom) While SHAP has noisy negative feature
attributions described by blue pixels, WeightedSHAP provides noiseless and intuitive explanations.

on the test dataset. We select illustrative images with a significant difference in AUPs between
WeightedSHAP and SHAP.

Figure 5 compares the top 10% influential attributions for WeightedSHAP and the Shapley value.
On the top images, while SHAP fails to capture the last stroke of digit nine, which is a crucially
important stroke to differentiate from the digit zero, WeightedSHAP clearly captures the strokes. On
the bottom images, SHAP produces unintuitive negative attributions, providing noisy explanations.
In contrast, WeightedSHAP provides noiseless and intuitive explanations.

6 Conclusion

In this paper, we provide an analysis of the widely used SHAP attribution method. We discover that
even in simple natural settings, SHAP can incorrectly identify important features. Mathematically,
a key limitation of SHAP is in that it assigns uniform weights to all marginal contributions. We
propose WeightedSHAP which generalizes the Shapley value by relaxing the efficiency axiom.
WeightedSHAP learns to pay more attention to the marginal contributions that have more signal on a
prediction, assigning larger attributions for more influential features. There are several limitations of
WeightedSHAP that motivate interesting future works. Here we use the AUP metric to optimize the
weights because AUP is commonly used in practice. However, there is no agreed-upon metric for
evaluating feature attribution methods. Different users may care about different notions of attribution.
Developing variants of marginal contribution weighting optimized for different applications is an
important direction of future research. We believe that the core contribution of this paper—that
the uniform weighting used by SHAP can be suboptimal—still provides useful insights for these
investigations. Here we focus our experiments on directly comparing WeightedSHAP with SHAP
because our goal is to characterize the limitations of SHAP. There is a large body of works comparing
SHAP with other attribution methods that are complementary to our work [Yeh et al., 2019, Jethani
et al., 2021a].
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In appendix, we provide proofs in Section A, a detailed discussion on the Shapley value and the
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A Proofs

In this section, we provide a proof of Theorem 1. We first prove a lemma that shows a closed-form
expression of the marginal contribution when a covariance matrix has a exchangeable correlation
structure, i.e., Σ(ρ,d) = (1 − ρ)Id + ρ1d1

T
d . To begin with, for d ∈ N and S ∈ [d], we set a

d-dimensional vector eS ∈ {0, 1}d whose i-th element is one if i ∈ S, otherwise zero. We set
ei := e{i} for i ∈ [d].

Lemma 2 (A closed-form expression of the Marginal contribution when a covariance matrix has
an exchangeable correlation structure.). For d ∈ N, suppose f̂(x) = β̂0 + xT β̂ for some (β̂0, β̂) ∈
R× Rd and X ∼ N (0d,Σ(ρ,d)) for ρ ∈ [0, 1). Then for i, j ∈ [d], the marginal contribution of the
i-th feature xi with respect to j − 1 samples is given as

∆j(xi) = xThd(i, j)β̂,

where

hd(i, j)

:= eie
T
i +

ρ

1 + ρ(j − 1)

d− j

d− 1
ei(1d − ei)

T − ρ

1− ρ+ ρ(j − 1)

j − 1

d− 1
(1d − ei)e

T
i

+

(
ρ

1 + ρ(j − 1)
− ρ

1− ρ+ ρ(j − 1)

)
(j − 1)(d− j)

(d− 1)(d− 2)

(
(1d − ei)(1d − ei)

T − (Id − eie
T
i )
)
.

Proof of Lemma 2. Without loss of generality, we set β̂0 = 0 as a constant intercept does not affect
the marginal contribution. We denote ΣS,S := (1− ρ)I|S| + ρ1|S|1

T
|S|. Then, for any S, we have

v(cond)(S) = xT
S β̂S + (ΣD\S,SΣ

−1
S,SxS)

T β̂D\S

= xT
S

β̂S +

(
ρ

1− ρ
− |S|ρ2

(1− ρ)(1 + ρ(|S| − 1))

)
1|S|1

T
d−|S|β̂D\S


= xT

S β̂S +
ρ

1− ρ+ ρ|S|
xT
S1|S|1

T
d−|S|β̂D\S

= xT
S β̂S +

ρ

1− ρ+ ρ|S|
xT eSe

T
Sc β̂.
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Here, the second equality is due to Σ−1
S,S = (1− ρ)−1I|S| − ρ

(1−ρ)(1+ρ(|S|−1))1|S|1
T
|S|. Hence, we

have

v(cond)(S ∪ {i})− v(cond)(S) = xiβ̂i −
ρ

1− ρ+ ρ|S|
xT eSe

T
Sc β̂ +

ρ

1 + ρ|S|
xT eS∪{i}e

T
(S∪{i})c β̂.

[Step 1] Since eSe
T
Sc = eS(1d − eS)

T .

1(
d−1
j−1

) ∑
S⊆[d]\{i},|S|=j−1

eSe
T
Sc =

j − 1

d− 1
(1d − ei)1

T
d −

1(
d−1
j−1

) ∑
S⊆[d]\{i},|S|=j−1

eSe
T
S

=
j − 1

d− 1
(1d − ei)1

T
d − P (i, j),

where, for k, l ∈ [d], P (i, j)kl is given by

P (i, j)kl =


(d−2
j−2)
(d−1
j−1)

= j−1
d−1 if k = l, i /∈ {k, l}

(d−3
j−3)
(d−1
j−1)

= (j−1)(j−2)
(d−1)(d−2) if k ̸= l, i /∈ {k, l}

0 if i ∈ {k, l}

.

That is, P (i, j) = (j−1)(j−2)
(d−1)(d−2) (1d − ei)(1d − ei)

T + (j−1)(d−j)
(d−1)(d−2) (Id − eie

T
i ) and

1(
d−1
j−1

) ∑
S⊆[d]\{i},|S|=j−1

eSe
T
Sc

=
j − 1

d− 1
(1d − ei)1

T
d −

(j − 1)(j − 2)

(d− 1)(d− 2)
(1d − ei)(1d − ei)

T − (j − 1)(d− j)

(d− 1)(d− 2)
(Id − eie

T
i ).

[Step 2] Since eS∪{i}e
T
(S∪{i})c = (eS + ei)(1d − eS − ei)

T = eS(1d − eS)
T − eSe

T
i + ei(1d −

eS)
T − eie

T
i ,

1(
d−1
j−1

) ∑
S⊆[d]\{i},|S|=j−1

eS∪{i}e
T
(S∪{i})c

=
j − 1

d− 1
(1d − ei)1

T
d − P (i, j)− j − 1

d− 1
(1d − ei)e

T
i +

d− j

d− 1
ei(1d − ei)

T

=
1(

d−1
j−1

) ∑
S⊆[d]\{i},|S|=j−1

eSe
T
Sc −

j − 1

d− 1
(1d − ei)e

T
i +

d− j

d− 1
ei(1d − ei)

T .

[Step 3] Therefore, ∆j(xi) = xThd(i, j)β̂ where

hd(i, j)

=
ρ

1 + ρ(j − 1)

 1(
d−1
j−1

) ∑
S⊆[d]\{i},|S|=j−1

eSe
T
Sc −

j − 1

d− 1
(1d − ei)e

T
i +

d− j

d− 1
ei(1d − ei)

T


+ eie

T
i −

ρ

1− ρ+ ρ(j − 1)

 1(
d−1
j−1

) ∑
S⊆[d]\{i},|S|=j−1

eSe
T
Sc


= eie

T
i +

(
ρ

1 + ρ(j − 1)
− ρ

1− ρ+ ρ(j − 1)

) 1(
d−1
j−1

) ∑
S⊆[d]\{i},|S|=j−1

eSe
T
Sc


+

ρ

1 + ρ(j − 1)

(
− j − 1

d− 1
(1d − ei)e

T
i +

d− j

d− 1
ei(1d − ei)

T

)
= eie

T
i +

ρ

1 + ρ(j − 1)

d− j

d− 1
ei(1d − ei)

T − ρ

1− ρ+ ρ(j − 1)

j − 1

d− 1
(1d − ei)e

T
i
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+

(
ρ

1 + ρ(j − 1)
− ρ

1− ρ+ ρ(j − 1)

)
(j − 1)(d− j)

(d− 1)(d− 2)

(
(1d − ei)(1d − ei)

T − (Id − eie
T
i )
)
.

Now we prove Theorem 1.

Proof of Theorem 1. Without loss of generality, i ∈ [d1]. That is, a feature of interest is in the first
cluster. The key idea of the proof is to only consider the effect of the same cluster. That is, for all
possible subsets S ⊆ [d]\{i} such that |S| = j − 1, we can decompose S = S(1) ∪ S(2) such that
S(1) ∩ S(2) = ∅, S(1) ∩ [d1] = S(1), and S(2) ∩ [d1] = ∅. In addition, from the Vandermonde’s
identity, we have

max{d1−1,j−1}∑
k=min{d1−j−1−d,0}

(
d1 − 1

k

)(
d− d1

j − 1− k

)
=

(
d− 1

j − 1

)
.

Hence, the marginal contribution is expressed as

∆j(xi) =
1(

d−1
j−1

) ∑
S⊆[d]\{i},|S|=j−1

v(cond)(S ∪ {i})− v(cond)(S)

=
1(

d−1
j−1

) max{d1−1,j−1}∑
k=min{d1−j−1−d,0}

∑
S1⊆[d1]\{i},|S|=k

v(cond)(S1 ∪ {i})− v(cond)(S1)

=
1(

d−1
j−1

) max{d1−1,j−1}∑
k=min{d1−j−1−d,0}

(
d− d1

j − 1− k

)
xT
[d1]

hd1(i, k + 1)β̂[d1]

= xT
[d1]

 1(
d−1
j−1

) max{d1−1,j−1}∑
k=min{d1−j−1−d,0}

(
d− d1

j − 1− k

)
hd1

(i, k + 1)

 β̂[d1].

Here, the second equality is because features in S(2) is independent of S(1) and the last equality is
due to Lemma 2. The last term can be expressed as xTH(i, j)β̂ by setting a block diagonal matrix

H(i, j) = diag


 1(

d−1
j−1

) max{d1−1,j−1}∑
k=min{d1−j−1−d,0}

(
d− d1

j − 1− k

)
hd1

(i, k + 1)

 , 0(d−d1)×(d−d1)

 .

When i-th feature is in m-th cluster, then a similar method gives

H(i, j) = diag

(
0(d1+···+dm−1)×(d1+···+dm−1), 1(

d−1
j−1

) max{dm−1,j−1}∑
k=min{dm−j−1−d,0}

(
d− dm
j − 1− k

)
hdm

(i, k + 1)

 ,

0(d−d1−···−dm)×(d−d1−···−dm)

)
.

It concludes a proof.

17



B The Shapley value and the semivalue

In this section, we elaborate on the Shapley value and the semivalue with a focus on their mathematical
properties. To this end, we denote an attribution that is based on a coalition function v by ϕ(·; v)1.

Shapley axioms We first introduce the four Shapley axioms: Linearity, Null player, Symmetry, and
Efficiency.

• Linearity: for coalition functions v1, v2 ∈ {u | u : 2[d] → R} and α1, α2 ∈ R, ϕ(xi, α1v1+
α2v2) = α1ϕ(xi, v1) + α2ϕ(xi, v2).

• Null player: if v(S ∪ {i}) = v(S) + c for every S ⊆ [d]\{i} and some c ∈ R and
v : 2[d] → R, then ϕ(xi; v) = c.

• Symmetry: for every v : 2[d] → R and every permutation π on [d], ϕ(xi;π
∗v) = π∗ϕ(xi; v)

where π∗v is defined as (π∗v)(S) := v(π(S)) for every S ⊆ [d].

• Efficiency: for every v : 2[d] → R,
∑

i∈[d] ϕ(xi; v) = v([d]).

Shapley [1953a] showed that the Shapley value is the unique function that satisfies the four axioms,
and it has been studied in the literature [Owen, 2014, Lundberg and Lee, 2017].

Semivalue The relaxation of the Shapley axioms has been a central topic in cooperative game
theory [Monderer and Samet, 2002, Weber, 1988]. Our WeightedSHAP is based on the semivalue
[Dubey and Weber, 1977], which relaxes the Efficiency axiom. We formally define the semivalue in
the following definition.
Definition 3 (semivalue). We say a function ϕ is a semivalue if ϕ satisfies Linearity, Null player, and
Symmetry axioms.

In the machine learning literature, Kwon and Zou [2021] used the semivalue to quantify the importance
of individual data points. In addition, they showed the theoretical properties of the semivalue in the
language of the data valuation problem. In the following, we provide the counterpart theorems on the
attribution problem settings.
Proposition 3 (Theorem 2 of Kwon and Zou [2021]). An attribution ϕ is a semivalue, if and only if,
the exists a weight vector w = (w1, . . . , wd)

T such that
∑d

j=1

(
d−1
j−1

)
wj = d and the attribution ϕ

can expressed as follows.

ϕ(xi; v,w) :=
1

d

d∑
j=1

(
d− 1

j − 1

)
wj∆j(xi; v). (7)

By setting w̃j =
(
d−1
j−1

)
wj/d, it can be represented as a weighted mean of the marginal contribution

in Equation 5, i.e., ϕw̃ = ϕ(xi; v,w).
Proposition 4 (Proposition 3 of Kwon and Zou [2021]). Let ϕ1 and ϕ2 be two attribution methods
such that for any v, the sum of feature attributions are same, i.e.,

d∑
i=1

ϕ1(xi; v) =

d∑
i=1

ϕ2(xi; v).

Then, the two attribution methods are identical, i.e., ϕ1 = ϕ2.

That is, if there are two attributions with the same total sum of attributions across all coalition function
v, then they are identical. Although the semivalue is not unique, but it is almost unique in that it is
the only semivalue with a particular sum of attributions.

We deploy the concept of the semivalue into the attribution problem, which makes the main difference
from Kwon and Zou [2021]. In contrast to the data valuation problem, where the marginal contribution
based on a small coalition size is preferred because it is more effective to capture the label errors, we
observe that it is not necessarily true in the attribution problem. As we discussed in the manuscript,
the marginal contribution based on a large coalition size ∆d can be preferred due to the signal, but a
weighted mean can be preferred to reduce an estimation error.

1In the manuscript we omitted v(cond) for notational convenience.
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C Implementation details

In this section, we provide implementation details used in Example in Section 4 and numerical
experiments in Section 5. We present implementation algorithms in Section C.1, datasets in Sec-
tion C.2, and experimental settings in Section C.3. Our Python-based implementations are available
at https://github.com/ykwon0407/WeightedSHAP.

C.1 Implementation algorithm

Given a finite setW , an easy-to-compute utility function T and the marginal contribution estimates
∆j(xi), the optimal weight w∗ can be achieved by iteratively evaluating the utility T for each
attribution method ϕw with w ∈ W . This procedure is described in Algorithm 1.

Algorithm 1 Computation of WeightedSHAP
Require: A finite set of weights W . A utility function T . A set of estimates for the marginal

contributions ∆j(xi) obtained from Algorithm 2.
procedure

Initialize a constant CT = −∞.
for w ∈ W do

Compute ϕw(xi) =
∑d

j=1 wj∆j(xi) for all i ∈ [d].
Rank features (x(1), . . . , x(d)) based on the absolute value of their attribution, i.e.,

|ϕw(x(1))| ≥ · · · ≥ |ϕw(x(d))|.
Evaluate T (ϕw;x, f̂).
if CT ≤ T (ϕw;x, f̂) then

CT ← T (ϕw;x, f̂) and w∗(T ,W)← w.
end if

end for
ϕWeightedSHAP(T ,W) := ϕw∗(T ,W)

end procedure

Algorithm 2 Estimation of the marginal contributions ∆j(xi)

Require: A conditional coalition estimate v̂(cond). A terminating threshold ρ.
procedure

Initialize ρ̂ = 2ρ, B = 1, ∆(0)
j (xi) = 0 for all i, j ∈ [d].

while ρ̂ ≥ ρ do
for i ∈ [d] do

S ← ∅.
Generate a random order of [d]\{i} and denote it by η.
for j ∈ [d] do

∆
(B)
j (xi)← B−1

B ∆
(B−1)
j (xi) +

1
B (v̂(cond)(S ∪ {i})− v̂(cond)(S)).

S ← S ∪ η(j).
end for

end for
Compute the Gelman-Rubin statistics for {∆(b)

j (xi)}Bb=1 and take its maximum value
among i, j ∈ [d].

B ← B + 1.
end while

end procedure

Throughout our experiments, T is the negative value of the AUP defined in 4 and W
is a set of 13 different weights, namely, W = {∆1,∆d} ∪ {ϕwBeta(α,β) | (α, β) ∈
{(16, 1), (8, 1), (4, 1), (2, 1), (1, 1), (1, 2), (1, 4), (1, 8), (1, 16), (1, 32)}}. Here, wBeta(α, β) ∈
[0, 1]d is defined as

(wBeta(α, β))j :=

(
d− 1

j − 1

)
Beta(j + β − 1, d− j + α)

Beta(α, β)
,
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where Beta(α, β) = Γ(α)Γ(β)/Γ(α, β) is the Beta function and Γ(·) is the Gamma function.
Inspired by Kwon and Zou [2021], the key motivation of this function is that (i) this type of a
functional form is known to satisfy the condition in Proposition 3 and (ii) it has a closed-form
expression, so it is easy-to-compute. Note that wBeta(1, 1) = d−11d generates the Shapley value,
and our algorithm guarantees the superior performance of WeightedSHAP to the Shapley value as
wBeta(1, 1) ∈ W . Since the Beta weight vector wBeta(α, β) distributes weights throughout all the
marginal contributions ∆1, . . . ,∆d, we can think of it as a regularized version of 1(j = 1) and
1(j = d), which generates ∆1 and ∆d, respectively.

The key input of Algorithm 1 is the marginal contribution estimates. To obtain this estimate, we first
need to estimate a conditional coalition function v(cond). Following the literature [Frye et al., 2020,
Jethani et al., 2021a,b], we obtain this by training a surrogate model2 that takes as input a subset
of input features and outputs a conditional expectation of a prediction value given the same subset.
As for the surrogate model, we use a multilayer perceptron model with the two hidden layers, and
each layer has 128 neurons with the ELU nonlinear activation function [Clevert et al., 2015]. For
the classification (resp. regression) tasks, we consider the Kullback-Libeler divergence (resp. MSE
loss) as a loss function as suggested in [Jethani et al., 2021a]. We use the held-out dataset to learn a
surrogate model, which corresponds to 10% of the original dataset. Throughout our experiments, we
mostly follow the hyperparameters used in the previous work Jethani et al. [2021a]. For instance,
we use the same Adam optimizer [Kingma and Ba, 2014] with the initial learning rate of 10−3, the
epochs of 100, and the mini-batch size of 64.

With the estimator v̂(cond), the marginal contributions are estimated as in Algorithm 2. Using the
fact that the marginal contribution in Equation (2) is defined as a simple average over all the possible
subsets S with the same coalition size, we use a sampling-based algorithm [Ghorbani and Zou, 2019,
Kwon and Zou, 2021]. It is well known that a sampling-based algorithm guarantees the convergence
to the true marginal contribution value when sampling procedures are repeated. In our experiments,
we use a finite number of samplings based on the Gelman-Rubin stopping criteria [Vats and Knudson,
2021, Equation (4)]. We regard the repeated sampling procedures as 10 Markov chains and compute
the Gelman-Rubin statistic for the marginal contribution ∆j(xi) for all i, j ∈ [d]. We take their
maximum for every iteration and stop the sampling procedure if this maximum is smaller than a
prefixed terminating threshold. We use a terminating threshold ρ = 1.005 which is much smaller
than a typical terminating threshold 1.1 [Gelman et al., 1995].

C.2 Datasets

In Section 5 and D.3, the four real-world datasets are used for the regression tasks. The one
synthetic dataset (gaussian) and the seven real-world datasets are used for the classification tasks.
All the real-world datasets are downloaded from the UCI repository [Dua and Graff, 2017] or the
OpenML platform3. As for the synthetic classification dataset (gaussian), we consider the following
distribution. For d = 30 and ρ = 0.25,

X ∼ N (0d,Σ(ρ,d)), Y = Bern(p(X)),

where p(X) := exp(XTβ∗)/(1 + exp(XTβ∗)) for β∗ = (1, 0.98, . . . , 0.82, 0, . . . , 0)T . The first
10 features are associated with an output and the last 20 features are not directly associated.

As for the real datasets, from a given raw dataset, we only use the continuous features and exclude
an observation if some information is missing. Table 1 summarizes the basic information after
preprocessing the raw datasets. From this dataset, we randomly take 10, 000 samples and consider it
as the entire dataset. We normalize every feature to have zero mean and unit variance. In addition,
we generate spurious features that are associated with the original features, but not directly associated
with an output by its construction. We repeat the following procedure until the number of features
becomes three times the original number of features: given an input matrix X ∈ Rn×p, we generate

a new column Xnew ∈ Rn×1 by Xnew = ρ
1+ρ(p−1)X1p +

√
1− ρ2p

1+ρ(p−1)ε where ε ∼ N (0, 1) is
randomly drawn from a standard Gaussian distribution and ρ is the average of off-diagonal terms in
the correlation matrix of the original input matrix. This procedure is to append more features while

2It is known that this surrogate model unbiasedly estimates a conditional expectation of a prediction value
given a subset of features under mild conditions [Frye et al., 2020, Covert et al., 2020].

3Website: https://www.openml.org/
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Table 1: A summary of real-world datasets used in experiments.

Dataset Sample size Input dimension Source

Regression
abalone 4177 10 UCI Repository
boston 506 13 Harrison Jr and Rubinfeld [1978]
airfoil 1503 5 UCI Repository
whitewine 4898 11 UCI Repository

Classification
cpu 8192 22 https://www.openml.org/d/761
fraud 284807 31 Dal Pozzolo et al. [2015]
phoneme 5404 6 https://www.openml.org/d/1489
wind 6574 15 https://www.openml.org/d/847
adult 32561 11 UCI Repository
2dplanes 40768 11 https://www.openml.org/d/727
click 1997410 12 https://www.openml.org/d/1218

keeping the average correlation between two features same. We observe several preprocessing steps
we deploy do not affect our main result that WeightedSHAP consistently assigns large values for
more influential features. However, they are deployed to increase the stability in training a prediction
model and to reflect practical data analysis situations (e.g., features are highly correlated, but not
necessarily every feature is associated with an output).

C.3 Experimental settings

Experiments in Section 3.2 As we have closed-form expressions under the Gaussian assumption
by Theorem 1, we do not use any estimation algorithm here. As for the Figure 1(a), explicit forms for
the Shapley value and the optimal order have been used. As for the Figure 1(b), we first generate
10, 000 training data points as follows. For d = 100 and ρ ∈ {0.2, 0.6},

X ∼ N (0d,Σ(ρ,d)), Y = XTβ∗ + 2× ε,

where ε ∼ N (0, 1) is a random Gaussian error and β∗ = (1, 0.99, . . . , 0.81, 0, . . . , 0)T . That is, the
first 20 features are associated with an output, but the last 80 features are not directly associated with
the output. We train a linear model based on the 10, 000 samples and evaluate feature attributions for
the held-out 100 samples. All the results in Figure 1(b) is based on this held-out test dataset.

Experiment in Section 4 In contrast to the experiment in Section 3.2, we estimate the marginal
contributions following Algorithm 2. Other experiment settings are same as in Section 3.2.

Experiments in Section 5 We first split the original dataset into four parts: a training dataset, a
validation dataset, a dataset to obtain a surrogate model, and a test dataset. The ratio between them is
70%, 10%, 10%, and 10%, but we take ntest := max(0.1×N, 100) samples for a test dataset. Here
N denotes the number of the original sample size. The training and validation datasets are used for
a prediction model f̂ , and a dataset to obtain a surrogate model is used for v̂(cond). After that we
compute WeightedSHAP for ntest samples. All the results (e.g., prediction recovery error, MSE, and
AUC) are based on these ntest test samples.

For a boosting model, we use the lightgbm algorithm [Ke et al., 2017] with the learning rate of 0.005
and 15 final leaves and apply the early stopping with the 25 patience epoch. For the classification
(resp. regression) tasks, we use the cross entropy (resp. MSE) loss function. As for the estimation
of WeightedSHAP, see Section C.1. In Section D.2, we simply use the least squares estimator for a
linear prediction model.
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D Additional experimental results

In this section, we provide additional experimental results. Our main findings presented in the
manuscript are consistently observed on different models and datasets. We first present estimation
error analysis on a different dataset in Section D.1, additional experimental results when a prediction
model is linear in Section D.2, and additional experimental results on different classification datasets
in Section D.3.

D.1 Estimation error analysis when ρ = 0.2

5 20 35 50 65 80 95
Coalition size j

7.5

8.0

8.5

9.0

Relative difference btw Δj and Δ̂j
 Correlation: ρ= 0.2

Figure 6: Illustrations of the relative difference between the true marginal contribution ∆j and its
estimate ∆̂j as a function of the coalition size j ∈ [100]. We consider the same setting used in
Figure 1(b) with ρ = 0.2. The ∆100 is shown to have the largest relative difference.

We provide an additional estimation error result with a different dataset. In contrast to the Figure 2
shown in the manuscript, we generate data points from the Gaussian distribution N (0100,Σ(0.2,100)),
i.e., ρ = 0.2.

Figure 6 shows the relative difference between the true marginal contribution ∆j and its estimate ∆̂j

as a function of the coalition size j ∈ {1, . . . , 100}. Similar to Figure 2, the relative difference of
∆100 has the largest estimation error. Given that ∆100 is the most informative marginal contribution
in Figure 1(b), it again suggests the use of a weighted mean of the marginal contributions.

D.2 Additional experimental results when a prediction model is linear

We conduct additional analyses when a prediction model f̂(x) is linear. We use the same experimental
setting as in Section 5, but only a prediction model is changed from a boosting model to a linear
model.

Figures 7(a) and 7(b) (resp. Figures 7(c) and 7(d)) compare WeightedSHAP with the Shapley on
the regression tasks (resp. the classification tasks). In all experiments, the prediction recovery
error of WeightedSHAP is significantly smaller than the MCI and the Shapley value. Moreover,
the performance metrics, namely MSE and AUC, of WeightedSHAP are better than or at least
comparable to the MCI and the Shapely value. In short, our findings are consistently observed with
a linear prediction model, showing the influential features identified by WeightedSHAP are better
able to recapitulate the model’s predictions compared to the features identified by baseline attribution
methods.

D.3 Additional experimental results with different classification datasets

We conduct additional experiments on different classification datasets. A boosting model is used for
a prediction model. In terms of the experimental setting, the only difference from Figures 4(a) and
4(b) is the datasets. Details on the four datasets are provided in Section C.2.

Figures 8(a) and 8(b) show additional experimental results on the four different classification datasets.
As in the previous experiments, the prediction recovery error of WeightedSHAP is lower than the
Shapley value. As for the inclusion AUC metric, WeightedSHAP is significantly better or at least
comparable to the Shapley value.
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(a) Illustrations of the prediction recovery error curve on the four regression datasets. The lower, the
better.
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(b) Illustrations of the Inclusion MSE curve on the four regression datasets. The lower, the better.
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(c) Illustrations of the prediction recovery error curve on the four binary classification datasets. The
lower, the better.
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(d) Illustrations of the Inclusion AUC curve on the four binary classification datasets. The higher, the
better.

Figure 7: When a linear prediction model is used. Illustrations of the prediction recovery error
curve and the performance curve as a function of the number of features added. We add features from
most influential to the least influential. We denote a 95% confidence interval based on 30 independent
runs. Our main findings are consistently observed with a linear prediction model.

D.4 Additional experimental results with different evaluation metrics

We further examine the performance of WeightedSHAP on two different evaluation metrics: the
Exclusion performance used in Jethani et al. [2021a] and the Inclusion performance using masked
features used in Masoomi et al. [2021]. As for the Inclusion performance in Figures 9(b) and 9(d),
the main difference from Figures 3(b) and 4(b) is that it considers model predictions based on
mean-masked features whenever new features are added, not the conditional expectation. For each
evaluation metric, we use different utility functions in the weight optimization (6). Specifically, for
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(a) Illustrations of the prediction recovery error curve on the four binary classification datasets. The
lower, the better.
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(b) Illustrations of the Inclusion AUC curve on the four binary classification datasets. The higher, the
better.

Figure 8: Additional results on different classification datasets. Illustrations of the prediction
recovery error curve and the performance curve as a function of the number of features added. We add
features from most influential to the least influential. We denote a 95% confidence interval based on
50 independent runs. Our main findings are consistently observed on various classification datasets.

the Exclusion task, we use

T (ϕ) =
d∑

k=1

∣∣∣f̂(x)− E[f̂(X) | XJ (k;ϕ,x) = xJ (k;ϕ,x)]
∣∣∣ ,

where J (k;ϕ, x) := [d]\I(k;ϕ, x) and I(k;ϕ, x) ⊆ [d] be a set of k integers that indicates k most
influential features based on their absolute value |ϕ(xj)|. That is, it adds the least important feature
first. This is equivalent to removing the most important feature from the entire set of features. As for
the Inclusion task, we consider the following quantity.

T (ϕ) =
d∑

k=1

∣∣∣f̂(x)− f̂(xI(k;ϕ,x), µJ (k;ϕ,x))
∣∣∣ ,

where µ is a pre-computed mean of the entire features. The main idea is that µ part is non-
informative to a particular prediction, but after replacing the µ part with influential features, the
quantity

∣∣∣f̂(x)− f̂(xI(k;ϕ,x), µJ (k;ϕ,x))
∣∣∣ is expected to be reduced.

We note that there is not an agreed-upon objective metric for ML interpretability, and at the same time,
practitioners always can choose their downstream objectives depending on their tasks. Given that
the concept of influential features can be dependent on downstream tasks, we believe the attribution
should be optimized to downstream objectives. For instance, there is no single attribution method
that works universally well simultaneously on the Inclusion AUC and Exclusion AUC tasks, and the
optimal attribution depends on the evaluation metric. Our WeightedSHAP is anticipated to be flexible
in optimizing downstream objectives and finds the most suitable attributions. In contrast, the Shapley
value is fixed to every downstream task.

Figures 9(a) and 9(b) (resp. Figures 9(c) and 9(d)) compare MSE (resp. AUC) curves of the
three different attribution methods. In most experimental settings, as anticipated, WeightedSHAP
substantially outperforms the MCI and the Shapley value. With flexible choices of the utility function,
WeightedSHAP shows significantly better performances than standard attribution methods across
different downstream objectives.
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(a) Illustrations of the Exclusion MSE on the four regression datasets. The higher, the better.
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(b) Illustrations of the Inclusion MSE curve using masked features on the four regression datasets. The
lower, the better.
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(c) Illustrations of the Exclusion AUC curve on the four binary classification datasets. The lower, the
better.
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(d) Illustrations of the Inclusion AUC curve using masked features on the four binary classification
datasets. The higher, the better.

Figure 9: WeightedSHAP on different evaluation metrics. Illustrations of the Exclusion perfor-
mance curve (resp. Inclusion performance curve using masked features) as a function of the number
of removed (resp. added). We remove (resp. add) features from most influential to the least influential.
We denote a 95% confidence interval based on 50 independent runs. WeightedSHAP significantly
outperforms the MCI and the Shapley value on different evaluation metrics.
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