
A L-AMIGo algorithm

Algorithm S1 Asynchronous learning step for L-AMIGo
1: Input: student batch size BS , teacher policy batch size Bpolicy, grounding network batch size

Bground
2: Bpolicy ?,Bground ? . Init teacher batches
3: G ? . Track descriptions seen thus far
4: while not converged do
5: Sample batch B of size BS from actors
6: Train student on B
7: Add new descriptions `t in the batch to G
8: Update Bpolicy with (s0, `t, rTt) tuples where goal `t completed (rT

t
= +↵) or episode ended

(rT
t
= ��)

9: if |Bpolicy| > Bpolicy then
10: Train teacher policy on Bpolicy; Bpolicy ?
11: end if
12: Update Bground with (s0, `1st) tuples
13: if |Bground| > Bground then
14: Train grounding net on Bground; Bground ?
15: end if
16: end while

Algorithm S1 describes the joint student/teacher learning step of L-AMIGo. Batches of experience
B are generated from actors, which are used to update the student policy, and the teacher policy at
different intervals defined by batch sizes Bpolicy and Bground. The set of goals G known to the teacher
is also progressively updated.

To reiterate the teacher training process: the teacher policy network is trained on tuples of student
initial state s0, proposed goal `t, and teacher rewards rT

t
(which is +↵ if the goal was completed by

the student in � t
⇤ steps, or �� if the goal was completed in < t

⇤ steps or never completed before
episode termination). The teacher grounding network is trained on tuples of initial state s0 and the
first language description encountered along that trajectory `1st. Given s0, the grounding network is
asked to predict 1 for `1st and 0 for all other goals known to the teacher at the time.

B Details on naive message reward and equivalencies to prior work

As discussed in Section 2, prior approaches to language-guided reward shaping assume either a single
extrinsic goal, or that language annotations are always helpful for progress in the environment. Here
we show how these methods can all be approximately captured by a naive message reward, which our
experiments show is insufficient for learning in sufficiently large linguistic spaces (Figure 3).

• Harrison et al. [24] (also [51]) propose a policy shaping method that generates language
annotations for (action, state) pairs from simulated oracles, then for each language annotation
learns a “critique policy” that mimics the human action distributions for the current state
and language annotation. This is used to update the prior action distribution of the learned
policy during training: given a state, the most likely language annotation over all possible
actions is inferred (via Bayes’ rule); then the critique policy for this language annotation is
mixed in with the current policy’s action distribution via a tunable hyperparameter. While
the focus is on policy shaping rather than reward shaping, agents are simply pushed in
the direction of the most salient language annotation, and there are no preferences for or
against certain language. The overall effect, then, is that policies are pushed indiscriminately
towards encountering any message in the environment, which is similar to a fixed message
reward.
A further limitation of Harrison et al. [24] that prevents straightforward application here is
that it requires sufficient training data for training a critique policy offline for every possible

message encountered in the environment. In contrast, we assume no such pretraining data;
in fact, we have no knowledge about what messages we might encounter at all.

15

• ELLA [31] is closer to our setting, since the authors acknolwedge that not all messages
or subgoals in a trajectory may be relevant for an overall goal, especially in the multi-task
settings they explore where the extrinsic goal is subject to change. Accordingly, ELLA
proposes to learn a “Relevance Classifier” that predicts whether or not a message is useful for
the extrinsic goal by training on the messages encountered along trajectories that resulted in
positive reward. However, in our setting, we have no extrinsic goals, and in most of our tasks,
random exploration fails to attain any positive trajectories to provide such training data for a
classifier (Figure 3, IMPALA curves). We could implement ELLA with an uninformative
reference classifier, i.e. one that assumes all messages are relevant for the extrinsic goal.
Then ELLA reduces to simply giving a fixed reward for any message encountered.

• Finally, a large class of reward shaping and inverse RL methods operate primarily by giving
rewards associated with a (linguistic) extrinsic goal [3, 5, 21–24, 31, 44, 51, 53]. As one
representative example, LEARN [22] proposes to train a model to associate an action
at a given timestep with the probability it is related to an extrinsic language command:
pR(at, `), as well as the complementary probability that an action is unrelated: pU (at, `) =
1 � pR(at, `). The difference in these probabilities can thus be used as a reward signal:
r
i

t
= pR(at, `)� pU (at, `).

However, in our case we have no extrinsic instruction; rather, we have many intermediate
low-level messages of unknown relevance to the extrinsic goal. A naive solution for LEARN-
style approaches is thus to do reward shaping for every intermediate message, i.e. assign
rewards whenever any annotation ` is deemed relevant. Moreover, we do not need to predict
when an action is relevant to `; the frequent annotations we receive already confirm that an
action is linguistically relevant. Thus, in our setting, we can set pR(a, `) = 1 if ` is observed
in the given state, and pR(a, `) = 0 otherwise.9 Using this as the reward is equivalent
to the baseline employed here. Technically, LEARN proposes a slightly modified reward
r
0i
t

= �r
i

t
� r

i

t�1, i.e. the difference in reward between timesteps where � is the MDP
discount factor, but this made no difference in our experiments; thus, for brevity we report
the single fixed reward.

For the naive reward baseline reported in Figure 3, we performed a grid search on the intrinsic reward
coefficient � 2 {0.1, 0.5, 1.0}, though modifying � made no difference and results are reported with
� = 0.1. In all cases, agents trained with such rewards fail because without some notion of message
novelty or difficulty, the agents are stuck exploiting easy-to-achieve, locally-optimal messages (e.g.
running into the nearest wall in MiniHack, or the nearest door in MiniGrid); in fact, rewards for easy
messages discourage exploration and lead to worse reward than even the vanilla IMPALA baselines!
Thus, some way of measuring novelty/progress in the space of language annotations must be used,
which is operationalized in L-AMIGo (via the continually growing difficulty threshold given to
the teacher) and L-NovelD (via the decaying reward given for seeing the same message over and
over again), though note that for L-NovelD, using a message reward with novelty-based decay is
insufficient (Appendix F.2).

C Architecture and training details

Here, we describe the architecture, training details, and hyperparameters for the MiniGrid and Mini-
Hack tasks. Our code is available in the supplementary material and also at https://anonymized.

C.1 MiniGrid

All models are adapted from Campero et al. [7]. Figure S1 from Campero et al. [7] details the
architecture of the standard AMIGo student and teacher.

AMIGo student. The student gets an 7⇥ 7⇥ 3 partial and egocentric grid representation, where
each cell in the 7 ⇥ 7 grid is represented by 3 features indicating the type of the object, color of

9An even stricter interpretation would be to give partial rewards even for states with the null message ? by
training a classifier to predict relevance for any non-null linguistic state. However, intermediate message rewards
are already fairly common in our setting (it is easy to walk to the nearest wall in MiniHack, for example), and
this would not solve the fundamental problem that without learning to disprefer certain messages, an agent will
be stuck pursuing locally optimal messages.

16

https://anonymized

Figure S1: Original AMIGo model overview. Original figure from Campero et al. [7], reproduced
with permission.

object, and object state (e.g. for doors, open/closed). The student first embeds the features into
type/color/state embeddings of size 5, 3, and 2 respectively, as well as the (x, y) goal as a singleton
feature, to get a 7⇥ 7⇥ 11 grid which is then fed through a 5-layer convolutional neural network
interleaved with Exponential Linear Units (ELUs; 11). Each layer has 32 output channels, filter size
of (3, 3), 2 stride, and 1 padding. The output of the ConvNet is then flattened and fed through a
fully-connected layer to produce a 256-d state embedding. The policy and value functions are linear
layers on top of this state embedding. The policy in particular produces a distribution over 7 possible
actions (forward, pick up, put down, open, left, right, and a “done” action).

AMIGo teacher. The teacher gets an N ⇥N ⇥ 3 fully observed grid encoding of the environment,
where N varies according to the environment size. Like the student, the teacher embeds the grid
representation into embeddings which are then fed through a 4-layer dimensionality-preserving neural
network again interwoven with ELUs. Each convolutional layer has 16 output channels, filter size of
(3, 3), 1 stride, and 1 padding, except the last layer which has only 1 output channel. The ConvNet
processes the input embeddings into a spatial action distribution over grid locations, from which an
goal is sampled. The value head takes as input the penultimate layer from the ConvNet (i.e. a grid of
N ⇥N ⇥ 16) to produce the value estimate.

L-AMIGo Student. The L-AMIGo student has the same ConvNet base as the standard AMIGo
student, but without an (x, y) goal channel feature (so the input to the ConvNet is 7⇥ 7⇥ 10 instead
of 11). To encode the goal, the student uses a one-layer Gated Recurrent Unit (GRU; Cho et al. [10])
recurrent neural network (RNN) with embedding size 64 and hidden size 256. The last hidden state
of the GRU is taken as the goal representation, which is then concatenated with the state embedding
to be fed into the policy and value functions, respectively.

L-AMIGo Teacher. The L-AMIGo policy network has the same ConvNet as the standard AMIGo
teacher, but without the last layer (so the output is a N⇥N⇥16 grid). The last output of the ConvNet
is averaged across the spatial map to form a final 16-dimensional state embedding. The L-AMIGo
teacher also has a GRU of same dimensionality as the L-AMIGo student. To propose a goal, the
teacher embeds each known goal in the vocabulary with the GRU to produce 256-dimensional goal
embeddings which are then projected via a linear layer into the 16-dimensional goal embedding
space. The dot product of the goal embeddings and the state form the logits of the goal distribution.
The value head takes as input the N ⇥N ⇥ 16 unaveraged state representation concatenated with the
logits of the distribution of language goals.

The grounding network also uses the 16-dimensional state embedding and the same GRU as the
L-AMIGo policy network, but the 256-d goal embeddings are projected via a separate linear layer to
a separate set of 16-dimensional embeddings. The dot product between these grounder-specific goal
embeddings and the state embedding represent the log probabilities of the goal being achievable in an
environment.

17

NovelD and L-NovelD. For NovelD experiments we use the student policy of L-AMIGo but with
the goal embedding always set to the 0 vector.

The NovelD RND network uses the same convolutional network as the AMIGo/L-AMIGo students,
taking in an egocentric agent view. The L-NovelD message embedding network uses a GRU
parameterized identically to those of the L-AMIGo student and teacher. For NovelD experiments
we set ↵ = 1, scale the RND loss by 0.1, and use the same learning rate as the main experiments.
Using a grid search, we found optimal scaling factors of the standard NovelD reward to be 0.5 and
the L-NovelD reward (i.e. �`) also to be 0.5.

Hyperparameters. We use the same hyperparameters as in the original AMIGo paper: a starting
difficulty threshold t

⇤ of 7, a maximum difficulty t
⇤ of 100, positive reward for the teacher +↵ = 0.7,

negative reward �� = �0.3, learning rate 10�4 which is linearly annealed to 0 throughout training,
batch size 32, teacher policy batch size 32, teacher grounder batch size 100, unroll length 100,
RMSprop optimizer with " = 0.01 and momentum 0, entropy cost 0.0005, generator entropy cost
0.05, value loss cost 0.5, intrinsic reward coefficient � = 1.

C.2 MiniHack

Models are adapted from baselines established for the NetHack [28] and MiniHack [41] Learning
Environments.

AMIGo student. The student is a recurrent LSTM-based [25] policy. The NetHack observation
contains a 21 ⇥ 79 matrix of glyph identifiers, a 21-dimensional feature vector of agent stats
(e.g. position, health, etc), and a 256-character (optional) message. The student produces 4 dense
representations from this observation which are then concatenated to form the state representation.

First, an embedding of the entire game area is created. Each glyph is converted into a 64-dimensional
vector embedding, i.e. the input is now a 21⇥ 79⇥ 64 grid. This entire grid is fed through a 5-layer
ConvNet interleaved with ELUs. Each conv layer has a filter size of (3, 3), stride 1, padding 1, and
16 output channels, except for the last which has 8 output channels. Second, an embedding of a
9 ⇥ 9 egocentric crop of the grid around the agent is created. This is created by feeding the crop
through another separately-parameterized ConvNet of the same architecture. Third, the 21-d feature
vector of agent stats is fed into a 2-layer MLP (2 layers with 64-d outputs with ReLUs in between)
to produce a 64-d representation of the agent stats. Fourth, the message is parsed with the BERT
[16] WordPiece tokenizer and fed into a GRU with embedding size 64 and hidden size 256. These
four embeddings are then concatenated and form the state representation, which is then fed into the
LSTM which contextualizes the current representation. This final representation is fed into linear
policy and value heads to produce action distribution and value estimates.

AMIGo teacher. The teacher first embeds the agent stats using the same MLP that the student uses.
It has the same 5-layer ConvNet used by the student to embed the full game area, except the input
channels are modified to accept the 64-d feature vector concatenated to every cell in the 21 ⇥ 79
grid, so the input to the ConvNet is 21⇥ 79⇥ 128. Additionally, the output layer has only 1 output
channel. This produces a spatial action distribution over the 21 ⇥ 79 grid from which a “goal” as
(x, y) coordinate is sampled.

L-AMIGo student. The student works identically to the standard AMIGo student, except without
the teacher goal channel concatenated into the grid input. Also, in addition to the 4 representation
constructed from the observation, the student gets 2 more representations constructed from the
teacher’s language goal. First, the student uses the same GRU used to process the game message to
encode the teacher’s language goal to create a 256-d representation. Second, the difference between
the observed language embedding and the teacher language embedding is used as an additional
feature (when this is the 0 vector then the student has reached the goal). All together, this forms 6
representations that together constitute the state representation.

L-AMIGo teacher. The teacher constructs the same state representation as the standard AMIGo
student (not the AMIGo teacher). The teacher then embeds all known goals with a word-level
GRU with the same architecture as the message network used by the student. These 256-d message
embeddings are then projected to the state representation hidden size, and the dot product between

18

message embeddings and state representations forms the distribution over goals. Similarly, for the
grounding network, the 256-d message embeddings are projected via a separate linear layer to produce
probabilities of achievability. Like in MiniGrid, the state representation and the goal logits are used
as input for the value head.

NovelD and L-NovelD. As in MiniGrid experiments, for NovelD experiments we use the L-AMIGo
student policy where the goal embedding is always 0.

The NovelD RND network uses the cropped ConvNet representation of the student, fed through a
linear layer to produce a 256-d state representation. Egocentric crops change more over time and are
thus a more reliable signal of “novelty” than the full grid representation (verified with experiments).
Additionally, as done in Burda et al. [6], two more additional layers are added to the final MLP of
the predictor network only (not the random target network). The L-NovelD message RND network
uses the same word-level GRU architecture of the student. We set ↵ = 0.5, scale the RND loss by
0.1, and use the same learning rate as the main student policy. The standard NovelD reward is left
alone, and the L-NovelD reward hyperparameter (�`) is grid-searched and set to 50 for all MiniHack
experiments except Quest-{Easy,Medium}, where it is 30.

Hyperparameters. We generally stick to the same hyperparameters of Samvelyan et al. [41]. We
use a starting difficulty threshold t

⇤ of 1, a maximum difficulty t
⇤ of 2 (a high goal difficulty is not as

important for MiniHack), positive reward for the teacher +↵ = 0.7, negative reward �� = �0.3,
linearly-annealed learning rate 10�4, batch size 32, teacher policy batch size 32, teacher grounder
batch size 500, unroll length 100, RMSprop optimizer with " = 0.01 and momentum 0, entropy
cost 0.0005, generator entropy cost 0.05, value loss cost 0.5, intrinsic reward coefficient � = 0.4.
"-greedy exploration was used for the teacher policy with " = 0.05, which we found helped learning.

C.3 Compute Details

Each model was run for 5 independent seeds on a machine in an independent cluster with 40 CPUs,
1 Tesla V100 GPU, and 64GB RAM. Runs take between 4 hours (for ObstructedMaze_1Dl) to 20
hours (for the longest MultiRoom-N4-Extreme and KeyCorridorS5R3 tasks).

D Additional tables visualizations of main results

D.1 Full numeric tables

Table S1 contains full numbers for IQM performance. This is the same data as Figure 4, just
summarized in numeric form.

Table S1: Full IQM numbers. IQM performance (± 95% bootstrapped CIs) for models across tasks.

Environment AMIGo L-AMIGo NovelD L-NovelD

KeyCorridorS3R3 0.86 (0.77, 0.89) 0.89 (0.85, 0.90) 0.88 (0.87, 0.88) 0.90 (0.83, 0.90)
KeyCorridorS4R3 0.82 (0.11, 0.90) 0.89 (0.80, 0.91) 0.07 (0.02, 0.45) 0.89 (0.87, 0.91)
KeyCorridorS5R3 0.92 (0.54, 0.93) 0.93 (0.92, 0.93) 0.00 (0.00, 0.03) 0.88 (0.70, 0.93)
ObstructedMaze_1Dl 0.18 (0.13, 0.91) 0.91 (0.89, 0.93) 0.23 (0.15, 0.64) 0.87 (0.39, 0.93)
ObstructedMaze_2Dlhb 0.61 (0.14, 0.86) 0.80 (0.18, 0.83) 0.86 (0.82, 0.88) 0.89 (0.86, 0.90)
ObstructedMaze_1Q 0.17 (0.06, 0.86) 0.88 (0.77, 0.92) 0.91 (0.83, 0.93) 0.91 (0.91, 0.93)
River 0.47 (0.42, 0.49) 1.00 (0.47, 1.00) 0.54 (0.52, 0.73) 1.00 (0.58, 1.00)
WoD-Medium 1.00 (1.00, 1.00) 1.00 (0.82, 1.00) 0.00 (0.00, 0.40) 0.50 (0.00, 1.00)
WoD-Hard 0.00 (0.00, 0.00) 0.85 (0.00, 0.90) 0.00 (0.00, 0.00) 0.75 (0.29, 0.92)
Quest-Easy 1.00 (0.99, 1.00) 1.00 (0.00, 1.00) 1.00 (0.25, 1.00) 1.00 (1.00, 1.00)
Quest-Medium 1.00 (0.99, 1.00) 1.00 (1.00, 1.00) 0.00 (0.00, 0.67) 0.97 (0.00, 1.00)
MultiRoom-N2-Extreme 0.25 (0.08, 0.69) 0.82 (0.09, 0.95) 0.64 (0.46, 0.84) 0.81 (0.41, 0.96)
MultiRoom-N4-Extreme 0.00 (0.00, 0.00) 0.01 (0.01, 0.58) 0.00 (0.00, 0.01) 0.00 (0.00, 0.24)

MiniGrid 0.62 (0.47, 0.81) 0.88 (0.78, 0.89) 0.51 (0.47, 0.59) 0.89 (0.81, 0.90)
MiniHack 0.53 (0.51, 0.59) 0.81 (0.65, 0.91) 0.31 (0.23, 0.41) 0.65 (0.46, 0.79)
Overall 0.57 (0.50, 0.66) 0.84 (0.74, 0.89) 0.41 (0.35, 0.47) 0.76 (0.66, 0.83)

19

Overall
MiniHack
MiniGrid

MultiRoom−N4−Extreme
MultiRoom−N2−Extreme

Quest−Medium
Quest−Easy
WoD−Hard

WoD−Medium
River

ObstructedMaze_1Q
ObstructedMaze_2Dlhb

ObstructedMaze_1Dl
KeyCorridorS5R3
KeyCorridorS4R3
KeyCorridorS3R3

0% 25% 50% 75% 100%
P(L−AMIGo > AMIGo) P(L−NovelD > NovelD)

Figure S2: Probability of improvement. Proba-
bility of improvement of L-AMIGo over AMIGo,
and L-NovelD over NovelD, as measured by
Mann-Whitney U tests between their final per-
formances. Plot elements same as Figure 4.

0 .25 .5 .75 0 .25 .5 .75
Overall

MiniHack
MiniGrid

MultiRoom−N4−Extreme
MultiRoom−N2−Extreme

Quest−Medium
Quest−Easy
WoD−Hard

WoD−Medium
River

ObstructedMaze_1Q
ObstructedMaze_2Dlhb

ObstructedMaze_1Dl
KeyCorridorS5R3
KeyCorridorS4R3
KeyCorridorS3R3

Normalized AUC
AMIGo L−AMIGo NovelD L−NovelD

Figure S3: Normalized AUC. Normalized area
under the curve (AUC) for AMIGo, L-AMIGo,
NovelD, and L-NovelD. Plot elements same as
Figure 4.

D.2 Probability of improvement

In addition to the IQM, another alternative interpretation of results as advocated in Agarwal et al.
[2] is to use the probability of improvement of algorithm A over algorithm B, as measured by the
nonparametric Mann-Whitney U test between independent runs from both algorithms. Figure S2
shows results from such an evaluation, again evaluated over bootstrapped confidence intervals
constructed from 5000 samples per model/env combination. Qualitative results are the same as in
Figure 4: overall, across environments, L-AMIGo and L-NovelD are both highly likely to outperform
AMIGo and NovelD.

D.3 Area Under the Curve (AUC).

The IQM (Figure 4) and probability plots (Figure S2) use point estimates of ultimate performance
attained after a fixed compute budget, which does not measure differences in sample efficiency
between runs. As a measure which also elucidates differences in sample efficiency, we to use the
normalized Area Under the Curve (AUC) to compare runs, as used in prior work [22]. Results are
in Figure S3, and are qualitatively similar to the IQM and probability plots, but here, differences in
sample efficiency can be seen in some environments, e.g. in KeyCorridorS3R3 for L-AMIGo, which
are absent from the IQM plot.

E MiniGrid experiments with language encoded into the state representation

Here we run MiniGrid models with language encoded into the state representation. Full training
curves for MiniGrid tasks only are located in Figure S4, IQM summary statistics for all environments
(with only MiniGrid environments changed) are located in Figure S5, and Table S2 contains updated
raw performance numbers. As discussed in the main text, recall that MiniHack models all already
encode language into the state representation. We make the following observations about how these
experiments differ from those in the main text:

Incorporating language into the feature space improves performance across all models. How-
ever, just incorporating language in the feature space is insufficient for competitive performance alone:
while the IMPALA baseline is able to make more progress in simpler environments (e.g. now nearly
solving KeyCorridorS3R3), it still lags behind and is unable to solve the harder environments. This
clearly illustrates that in order to reap the benefits of language, it is important to use it in conjunction
with exploration, not just as a feature.

L-AMIGo continues to outperform AMIGo, though the differences are smaller. While the
tables show that both L-AMIGo and AMIGo can solve each task, reaching roughly similar final
performance, they differ in sample efficiency as well as training stability (Figure S4, as well as the
smaller error bars of L-AMIGo in Figure S5). Similar to the results in the main text, the full training

20

Figure 3: Before 

Figure 3: After
(Note not every run has not fully finished, but the important ones have reached

convergence)

 

 

 

Figure S4: Training curves for MiniGrid with
language states. Plot elements same as Figure 3.

Figure 4: Before

Figure 4: After

Figure S5: IQMs with language states. Plot
elements same as Figure 4.

curves in Figure S4 show that while L-AMIGo and AMIGo reach similar asymptotic performance,
L-AMIGo learns quicker or more stably. This happens quite clearly in KeyCorridorS5R3 and the
Maze environments.

L-NovelD and NovelD performance on MiniGrid are similar. This is the case except on a few
tasks: KeyCorridorS4R3, and KeyCorridorS5R3 where NovelD is still unable to learn. Note that
these NovelD results are somewhat unsurprising given the L-NovelD ablations and discussion in
Appendix F.2; as we discuss there, L-NovelD is simply an adaptation of NovelD that enables a
more precise tradeoff between language and state-based novelty. Similarly to how L-NovelD did not
significantly outperform NovelD with language in the RND representation in Appendix F.2, L-NovelD
does not outperform NovelD here, showing that for MiniGrid it is sufficient to naively combine the
language and state representations. However, the MiniHack results in the main text indicate that
there are settings where it is beneficial to have the separate L-NovelD term, and insufficient to solely
encode language into the state representation.

To conclude, while adding language to the state representation results in smaller and more subtle
performance differences in MiniGrid environments, the main conclusion (that language variants
outperform their non-linguistic baselines) remains unchanged. As the last row of Table S2 shows,
overall, L-AMIGo outperforms AMIGo by 23% (.16 absolute), and L-NovelD outperforms NovelD
by 46% (.24 absolute) across environments; both differences remain statistically significant.

Table S2: IQM numbers for MiniGrid with language states. Table elements same as Table S1.

Environment AMIGo L-AMIGo NovelD L-NovelD

KeyCorridorS3R3 0.88 (0.88, 0.89) 0.88 (0.88, 0.89) 0.89 (0.88, 0.89) 0.89 (0.88, 0.89)
KeyCorridorS4R3 0.88 (0.79, 0.90) 0.89 (0.88, 0.89) 0.89 (0.85, 0.90) 0.90 (0.89, 0.91)
KeyCorridorS5R3 0.92 (0.90, 0.93) 0.93 (0.92, 0.93) 0.01 (0.00, 0.07) 0.89 (0.07, 0.93)
ObstructedMaze_1Dl 0.91 (0.41, 0.93) 0.92 (0.90, 0.93) 0.93 (0.91, 0.93) 0.93 (0.92, 0.93)
ObstructedMaze_2Dlhb 0.81 (0.34, 0.87) 0.86 (0.83, 0.87) 0.89 (0.85, 0.91) 0.87 (0.74, 0.88)
ObstructedMaze_1Q 0.92 (0.90, 0.93) 0.91 (0.88, 0.92) 0.92 (0.91, 0.94) 0.93 (0.93, 0.94)
MiniGrid 0.88 (0.79, 0.90) 0.90 (0.89, 0.90) 0.75 (0.74, 0.76) 0.90 (0.76, 0.91)
Overall (w/ MiniHack) 0.69 (0.65, 0.73) 0.85 (0.77, 0.90) 0.52 (0.47, 0.57) 0.76 (0.65, 0.83)

F Ablations

F.1 L-AMIGo grounding network

Figure S6 shows performance of L-AMIGo without the grounding network, where the policy network
directly produces a distribution over goals without first predicting goal achievability, aggregated across
domains. Overall, L-AMIGo without the grounding network performs reasonably well, matching full
L-AMIGo performance on MiniHack. On MiniGrid, we see a modest difference in aggregate perfor-
mance, though importantly, we also see greatly increased training stability with the grounding network

21

Overall
MiniHack
MiniGrid

MultiRoom−N4−Extreme
MultiRoom−N2−Extreme

Quest−Medium
Quest−Easy
WoD−Hard

WoD−Medium
River

ObstructedMaze_1Q
ObstructedMaze_2Dlhb

ObstructedMaze_1Dl
KeyCorridorS5R3
KeyCorridorS4R3
KeyCorridorS3R3

0 .25 .5 .75 1
Extrinsic Reward

L−AMIGo L−AMIGo (no grounding)

Figure S6: L-AMIGo grounding network ab-
lation. IQM of L-AMIGo with and without
grounding network across environments. Plot
elements same as Figure 4.

Overall
MiniHack
MiniGrid

MultiRoom−N4−Extreme
MultiRoom−N2−Extreme

Quest−Medium
Quest−Easy
WoD−Hard

WoD−Medium
River

ObstructedMaze_1Q
ObstructedMaze_2Dlhb

ObstructedMaze_1Dl
KeyCorridorS5R3
KeyCorridorS4R3
KeyCorridorS3R3

0 .25 .5 .75 1
Extrinsic Reward

L−NovelD combined lang only

Figure S7: L-NovelD ablations. IQMs
for Full L-NovelD, NovelD with combined
state/language input, and language-only L-
NovelD across environments. Plot elements
same as Figure 4.

on individual environments. Specifically, the confidence intervals are much larger for L-AMIGo
without the grounding network on KeyCorridorS{3,4,5}R3 and ObstructedMaze_{1Dl,1Q}.

We hypothesize that the difference between MiniGrid and MiniHack tasks is because MiniGrid goals
differ more between episodes: for example, since the colors of the doors are randomly shuffled, not
all environments have red doors, so it is helpful to explicitly predict such features of the environment
with a grounding network. In contrast, MiniHack envs have a more consistent set of goals (e.g. every
WoD seed has a wand, a minotaur, etc), and so the grounding network is less necessary in this case.

F.2 L-NovelD components

To examine the relative performance of each component of L-NovelD, we run ablation experiments
by (1) using the language-based reward only, or (2) combining the language and state embedding
into a single representation. As discussed in Appendix B. using the language-based reward only
is equivalent to the naive message baseline (and thus prior work like [22, 24, 31]) with an RND-
determined novelty-based decay.

Results are in Figure S7. They show that using the language reward alone results in uniformly worse
performance across environments, suggesting that a naive message-based reward, even with novelty
decay, underperforms and it is important to provide a simpler navigation-based bonus to encourage
exploration.10 Additionally, while combining the state and language into a single embedding works
well for MiniGrid, it does not work as well for MiniHack tasks, suggesting that the additional
flexibility afforded by the separate L-NovelD term can be helpful in many settings. In principle,
it should be possible to tune the state and language embedding sizes of combined NovelD to see
comparable performance to L-NovelD, but the point of L-NovelD is to clarify the contributions made
by both the language and state and make it easier to trade-off between the two.

G Full description of tasks and language

Here we describe each task in MiniGrid and MiniHack in detail, and enumerate the list of messages
available in each task. Examples of all tasks explored in this work are located in Figure S9.

G.1 MiniGrid

Language. As described in Section 6.1, the set of possible descriptions in the BabyAI language
652 involves goto, open, pickup, and putnext commands which can be applied to boxes, doors, and
balls, optionally qualified by color. These messages can be grouped into 66 message “templates”
where specific colors are replaced with a placeholder <C>, as shown in Figure S8. Not all messages

10Note also that message-only NovelD underperforms L-AMIGo as well.

22

"*�/*�/# �������''
"*�/*�/# ������*3
"*�/*�/# ������**-
"*�/*�/# �����& 4
"*�/*�/# ���''
"*�/*�/# ��*3
"*�/*�/# ��**-
"*�/*�/# �& 4
*+)�/# ������*3
*+)�/# ������**-
*+)�/# ��*3
*+)�/# ��**-
+$�&�0+�/# �������''
+$�&�0+�/# ������*3
+$�&�0+�/# �����& 4
+$�&�0+�/# ���''
+$�&�0+�/# ��*3
+$�&�0+�/# �& 4
+0/�/# �������''�) 3/�/*�/# �������''
+0/�/# �������''�) 3/�/*�/# ������*3
+0/�/# �������''�) 3/�/*�/# ������**-
+0/�/# �������''�) 3/�/*�/# �����& 4

+0/�/# �������''�) 3/�/*�/# ���''
+0/�/# �������''�) 3/�/*�/# ��*3
+0/�/# �������''�) 3/�/*�/# ��**-
+0/�/# �������''�) 3/�/*�/# �& 4
+0/�/# ������*3�) 3/�/*�/# �������''
+0/�/# ������*3�) 3/�/*�/# ������*3
+0/�/# ������*3�) 3/�/*�/# ������**-
+0/�/# ������*3�) 3/�/*�/# �����& 4
+0/�/# ������*3�) 3/�/*�/# ���''
+0/�/# ������*3�) 3/�/*�/# ��*3
+0/�/# ������*3�) 3/�/*�/# ��**-
+0/�/# ������*3�) 3/�/*�/# �& 4
+0/�/# �����& 4�) 3/�/*�/# �������''
+0/�/# �����& 4�) 3/�/*�/# ������*3
+0/�/# �����& 4�) 3/�/*�/# ������**-
+0/�/# �����& 4�) 3/�/*�/# �����& 4
+0/�/# �����& 4�) 3/�/*�/# ���''
+0/�/# �����& 4�) 3/�/*�/# ��*3
+0/�/# �����& 4�) 3/�/*�/# ��**-
+0/�/# �����& 4�) 3/�/*�/# �& 4
+0/�/# ���''�) 3/�/*�/# �������''
+0/�/# ���''�) 3/�/*�/# ������*3

+0/�/# ���''�) 3/�/*�/# ������**-
+0/�/# ���''�) 3/�/*�/# �����& 4
+0/�/# ���''�) 3/�/*�/# ���''
+0/�/# ���''�) 3/�/*�/# ��*3
+0/�/# ���''�) 3/�/*�/# ��**-
+0/�/# ���''�) 3/�/*�/# �& 4
+0/�/# ��*3�) 3/�/*�/# �������''
+0/�/# ��*3�) 3/�/*�/# ������*3
+0/�/# ��*3�) 3/�/*�/# ������**-
+0/�/# ��*3�) 3/�/*�/# �����& 4
+0/�/# ��*3�) 3/�/*�/# ���''
+0/�/# ��*3�) 3/�/*�/# ��*3
+0/�/# ��*3�) 3/�/*�/# ��**-
+0/�/# ��*3�) 3/�/*�/# �& 4
+0/�/# �& 4�) 3/�/*�/# �������''
+0/�/# �& 4�) 3/�/*�/# ������*3
+0/�/# �& 4�) 3/�/*�/# ������**-
+0/�/# �& 4�) 3/�/*�/# �����& 4
+0/�/# �& 4�) 3/�/*�/# ���''
+0/�/# �& 4�) 3/�/*�/# ��*3
+0/�/# �& 4�) 3/�/*�/# ��**-
+0/�/# �& 4�) 3/�/*�/# �& 4

Figure S8: Full list of possible MiniGrid messages. Messages are synthesized with the BabyAI
[9] grammar, then divided into 66 templates. <C> is one of 6 possible colors: grey, green, blue, red,
purple, yellow.

are needed for success on MiniGrid tasks, nor achieved by expert policies during training. We explain
which messages are needed and/or encountered for each task below.

KeyCorridorS{3,4,5}R3. In these tasks (Figure S9a–c), the agent is tasked with picking up a ball
behind a locked door. To do so, it must first find and pick up the key which is hidden in (possibly
several) nested rooms, return to the locked door, unlock the door, place the key down, and pick up the
ball. The agent start location, object colors, and room/door positions are randomized across seeds.

A typical policy trained on each task will encounter anywhere from 92 (KeyCorridorS3R3) to
141 messages (KeyCorridorS{4,5}R3) throughout training. Regardless of the environment size, a
successful trajectory requires encountering anywhere from 8–12 messages: go to the door (up to 3x),
open the door (up to 3x), go to the key, pick up the key, go to the [locked] door, open the [locked]
door, go to the ball, pick up the ball.

ObstructedMaze-{1Dl,2Dlhb,1Q}. In these tasks (Figure S9d–f), the agent is also tasked with
picking up a ball behind a locked door. In the easier 1Dl task, the key is in the open; in the harder
tasks, the keys are hidden in boxes which must be opened, and the doors are blocked by balls which
must be moved to access them.

A typical policy trained on each task will encounter anywhere from 66 messages (ObstructedMaze-
1Dl) to 244 messages (ObstructedMaze-1Q) throughout training. Of these, a successful trajectory
requires anywhere from 6 messages in ObstructedMaze-1Dl (go to the key, pick up the key, go to the

door, open the door, go to the ball, pick up the ball) to 11 messages in ObstructedMaze-1Q (go to the

door, open the door, go to the box, open the box, pick up the key, go to the ball, pick up the ball, go to

the door, open the door, go to the ball, pick up the ball).

G.2 MiniHack

Language. As discussed previously, it is difficult to enumerate all messages in MiniHack, though
we describe the messages encountered for each environment below, with a raw dump in Appendix H.
We perform some preprocessing on the messages to prevent unbounded growth: we replace all
numbers (e.g. 3 flint stones, 2 flint stones, etc) with a single variable N; we fix wands encountered
in the environment to be a single Wand of Death (instead of having a wand of over 30 different
types); items that can be arbitrarily named with random strings (e.g. a scroll labeled zelgo mer; a dog

named Hachi have their names removed; finally, we cap the number of unique messages for each
environment at 100.

23

River. In this task (Figure S9g), the agent must cross the river located to the right on the environment,
which can only be done by planning and pushing at least two boulders into the river in a row (to
form a bridge over the river). A typical policy will encounter 14 distinct messages during training
(Appendix H.1), of which 7–8 messages (3–4 unique) are seen during training (with great effort you

move the boulder, you push the boulder into the water., now you can cross it!; these messages must
be repeated twice).

Wand of Death ({Medium,Hard}). In these tasks (Figure S9i–j; also described in the main text),
the agent must learn to use a wand of death, which can zap and kill enemies. This involves a complex
sequence of actions: the agent must find the wand, pick it up, choose to zap an item, select the wand
in the inventory, and finally choose the direction to zap (towards the minotaur which is pursuing the
player). It must then proceed past the minotaur to the goal to receive reward. Taking these actions out
of order (e.g. trying to zap something with nothing in the inventory, or selecting something other than
the wand) has no effect.

In the Medium environment, the agent is placed in a narrow corridor with the wand somewhere in
the corridor, and the minotaur is asleep (which gives the agent more time to explore). In the Hard
environment, the agent is placed in a larger room where it must first find the wand, with the added
challenge that the minotaur is awake and pursues the player, leading to death if the minotaur ever
touches the player.

In both Medium and Hard environments, a policy encounters around 60 messages (Appendix H.2), of
which 7 messages (7 unique) are typically necessary to complete the task (you see here a wand, f - a

wand, what do you want to zap?, in what direction? you klil the minotaur!, welcome to experience

level 2, you see here a minotaur corpse).

Quest ({Easy,Medium}). These tasks (Figure S9j–k) require learning to use a Wand of Cold to
navigate over a river of lava while simultaneously fighting monsters. The agent spawns with a Wand
of Cold in its inventory, and must learn to zap the Wand of Cold at the lava, which freezes it and
forms a bridge over the lava.

In the Easy environment, the agent must first cross the lava river, then survive fights with one or two
monsters to the staircase at the end of the hall. In the Medium environment, the agent must first fight
several monsters before crossing the lava river. There is an additional challenge: note the narrow
corridor before the main room in the Medium environment. If the agent runs into the room and tries
to fight the monsters all at once, it quickly will become overwhelmed and die; to successfully kill all
monsters, the agent must learn to use the narrow corridor as a “bottleneck”, first baiting then leading
the monsters into the corridor, until all are defeated. It can then use the Wand of Cold to cross the
lava bridge to the staircase beyond.

In both Easy and Medium environments, a typical policy encounters the maximum of 100 messages
(Appendix H.3). Very few messages, besides what do you want to zap? / in what direction ? / the

lava cools and solidifies are required to complete an episode, since there is a large variety of monsters
faced and uncertainty in their behaviors, which can trigger additional messages. However, highly
efficient expert play typically encounters 8–12 messages (7–10 unique) in the Easy environment and
30–40 messages (8–12 unique) in the Medium environment: besides freezing the lava to cross the
environment, the rest of the messages are combat related (e.g. you kill the enemy!, an enemy corpse,
additional zapping commands, etc).

MultiRoom-N{2,4}-Extreme. These tasks (Figure S9l–m) are ported from the MiniGrid Multi-
Room tasks, but with significant additional challenges. The ultimate task is to reach the last room in
a sequence of interconnected rooms, but in the Extreme versions of this task, the walls are replaced
with lava (which result in instant death if touched), there are monsters in each room (which must be
fought), and additionally the doors are locked and must be “kicked” open (which requires that select
the kick action, then kick in the direction of the door).

In both environments, a typical policy encounters the maximum of 100 messages (Appendix H.4). In
a successful trajectory, an agent encounters 20–30 (12–14 unique) messages in MultiRoom-N2 and
60–70 messages (16–18 unique) in MultiRoom-N4. These messages are mostly combat-related (the

enemy hits!, you hit the enemy!, you kill the enemy, with repeated messages relating to kicking down

24

)����5LYHU

/# �./�$-.��- �.*'$�'4�!$3 ��/*�/# �!'**-`
2$/#�"- �/� !!*-/�4*0�(*1 �/# ��*0'� -`
/#�/�2�.��'*. `
$/m.�.*'$��./*) `
4*0��*)m/�#�1 ��)4/#$)"�/*�5�+`
4*0�/-4�/*�(*1 �/# ��*-� -_��0/�$)�1�$)`
4*0�/-4�/*��-�2'�*0/�*!�/# �2�/ -`
/# - �$.����*0'� -�# - _��0/�4*0���))*/�'$!/��)4�(*- `
/# - �$.�)*/#$)"�# - �/*�+$�&�0+`
) 1 -�($)�`
+# 2[
4*0�+0.#�/# ��*0'� -�$)/*�/# �2�/ -`
)*2�4*0���)��-*..�$/[
$/�.$)&.�2$/#*0/���/-�� [

)����:R'�^0HGLXP�+DUG`

��g���0)�0-. ��!'$)/�./*) �t�$)�,0$1 -�+*0�#�u`
��g�)�0)�0-. ��!'$)/�./*) �t�$)�,0$1 -�+*0�#�u`
$)�2#�/��$- �/$*)]
$/j.���2�''`
4*0��*)j/�#�1 ��)4/#$)"�/*�5�+`
4*0�. �# - ���2�)�`
4*0�. �# - ���0)�0-. ��!'$)/�./*) `
4*0�. �# - �)�0)�0-. ��!'$)/�./*) .`
/# - �$.�)*/#$)"�# - �/*�+$�&�0+`
2#�/���./-�)" ��$- �/$*)[
/# �./�$-.��- �.*'$�'4�!$3 ��/*�/# �!'**-`
/# - �$.���./�$-��. �0+�# - `
!�g���2�)�`
/# �� �/#�-�4��*0)� .[
/#�/�$.���.$''4�/#$)"�/*�5�+`
2#�/��*�4*0�2�)/�/*�/#-*2]
2#�/��*�4*0�2�)/�/*�5�+]
/# �2�)��"'*2.��)��!�� .`
/# �� �/#�-�4�2#$55 .��4�4*0[
)*/#$)"�#�++).`
��g���|�8�.'$)"`
/# �2�)��/0-).�/*��0./`
��g����' .. ��|�8�.'$)"`
/# �!'$)/�./*) �($.. .�/# �($)*/�0-`
��2�)��.#�// -.�$)/*���/#*0.�)��+$ � .[
��g�)�0)�0-. ��!'$)/�./*) .`
��g���0)�0-. ��!'$)/�./*) `
/# �!'$)/�./*) �#$/.��)*/# -�*�% �/`
/# �!'$)/�./*) �#$/.��)*/# -�*�% �/��)��!�''.��*2)�/# �./�$-.`
4*0�. �# - ���($)*/�0-��*-+. `
2 '�*(�/*� 3+ -$)� �' 1 '�8`
/# �!'$)/�./*) �#$/.�/# �($)*/�0-`
/# �!'$)/�./*) �#$/.�*/# -�*�% �/.`
�*)/$)0]�t�,�u
!-*(�/# �$(+��/_�/# �*/# -�*�% �/�!�''.`
(*1 ()/�$.�1 -4�#�-�`
4*0�./�"" -�0)� -�4*0-�# �14�'*��`
4*0�&$''�/# �($)*/�0-[
/# �.'$)"�($.. .�/# �($)*/�0-`
4*0�#�1 �(0�#�/-*0�' �'$!/$)"���($)*/�0-��*-+. `
/# �!'$)/�./*) �!�''.��*2)�/# �./�$-.`
/# �!'$)/�./*) �#$/.�/# �($)*/�0-[
/# �� �/#�-�4�($.. .�/# �($)*/�0-`
4*0�. �# - ���|�8�.'$)"`
!-*(�/# �$(+��/_�/# �*/# -�*�% �/.�!�''`
/# �($)*/�0-��0//.[
/# �.'$)"�#$/.�/# �($)*/�0-[
/# �.'$)"�#$/.�/# �($)*/�0-`
/# �2�)��($.. .�/# �($)*/�0-`
/# �2�)��!�''.��*2)�/# �./�$-.`
/# �.'$)"�#$/.��)*/# -�*�% �/`
"�g���($)*/�0-��*-+. `
4*0�#�1 � 3/- (��$!!$�0'/4�'$!/$)"���($)*/�0-��*-+. `

/# �2�)��#$/.��)*/# -�*�% �/`
4*0�. �# - ����' .. ��|�8�.'$)"`
/# �($)*/�0-�#$/.[
/# �!'$)/�./*) �#$/.�*/# -�*�% �/.��)��!�''.��*2)�/# �./�$-.`
/# �.'$)"�#$/.��)*/# -�*�% �/��)��!�''.��*2)�/# �./�$-.`
/# �2�)��#$/.��)*/# -�*�% �/��)��!�''.��*2)�/# �./�$-.`
4*0-�(*1 ()/.��- �)*2�0))�0(� - �`
4*0-�(*1 ()/.��- �.'*2 ��.'$"#/'4�� ��0. �*!�4*0-�'*��`
4*0���)���- '4�(*1 ���#�)�.+�)�2$/#�/#$.�'*��[

)����4XHVW�^(DV\�0HGLXP`

��) (4��'*�&.�4*0-�+�/#`
���-0� ���"" -�($.. .�4*0`
��g���0)�0-. ��!'$)/�./*) �t�$)�,0$1 -�+*0�#�u`
!�g���#*-)`
"�g���2�)�`
#�g���) (4��*-+. `
#�g����-0� ���"" -`
#�g���.�-*''`
#�g�)���-/.`
$�g���" (`
/# �2�)��"'*2.��)��!�� .`
/# �) (4�%0./�($.. .[
/# �) (4�#$/.[
/# �) (4�+$�&.�0+���0)�0-. ��!'$)/�./*) `
/# �) (4�/#-*2.����-0� ���"" -[
/# �) (4�/*0�# .�4*0[
/# �) (4��$/ .[
/# �) (4�2$ '�.����-0� ���"" -[
/# �) (4�($.. .[
/# �) (4�/#-0./.�# -��-0� ���"" -`
/# �./�$-.��- �.*'$�'4�!$3 ��/*�/# �!'**-`
/# ��*'/�*!��*'���*0)� .[
/# �!'$)/�./*) �($.. .�/# �) (4
/# �'�1���**'.��)��.*'$�$!$.`
$)�2#�/��$- �/$*)]
/#�/�$.���.$''4�/#$)"�/*�5�+`
$/j.���2�''`
4*0��- ��'(*./�#$/��4����-0� ���"" -`
4*0��- �#$/��4����-0� ���"" -`
4*0�" /�5�++ �[
4*0�./*+��/�/# � �" �*!�/# �'�1�`
4*0�&$''�/# �) (4
4*0�($..�/# �) (4
4*0�� ./-*4�/# �) (4
/# - �$.�)*/#$)"�# - �/*�+$�&�0+`
2#�/���./-�)" ��$- �/$*)[
2#�/��*�4*0�2�)/�/*�5�+]
4*0-�(*1 ()/.��- �.'*2 ��.'$"#/'4�� ��0. �*!�4*0-�'*��`
$)1�'$���$- �/$*)�!*-j"j+- !$3`
#�g���2�)�`
#�g�)�/#-*2$)"�./�-.`
$�g���+*/$*)`
/# �) (4�/#-*2.�����-/[
/# �) (4� .��+ .�/# ��0)" *)[
/# ��*'/�*!��*'��#$/.�4*0[
/# �!'$)/�./*) �#$/.�/# �) (4
4*0��- �#$/��4�����-/`
��'$/�!$ '��.0--*0)�.�4*0[
#�g���.&0''���+`
#�g���!**��-�/$*)`
#�g���/*2 '`
#�g�����-/`
$�g���!**��-�/$*)`
$�g���.�-*''`
$�g�)���-/.`
/# ��*'/�*!��*'��#$/.�/# �) (4
/# ���-/�($.. .�/# �) (4
%�g�����-/`
4*0��- ��'(*./�#$/��4�����-/`
4*0���))*/� .��+ �!-*(�/# �) (4

doors (in what direction?, as you kick the door, it crashes open, WHAAAAM!, sometimes repeated up
to 3 times per door, of which there are 1–3 doors).

H Raw MiniHack Messages

Messages are located on the next page. Each shows the list of messages encountered by a single agent
trained on an environment in the corresponding categories. Separate training runs will encounter
different messages.

25

����-/�($.. .�4*0`
#�g���+*/$*)`
/# �) (4�$.�&$'' �[
��g�)�0)�0-. ��!'$)/�./*) �t�$)�,0$1 -�+*0�#�u`
$�g���2�)�`
/# �2�)��/0-).�/*��0./`
/# ��-0� ���"" -�#$/.�/# �) (4
/# ��-0� ���"" -�.'$+.��.�/# �) (4�/#-*2.�$/[
4*0��*)j/�#�1 �)*0"#�./�($)��/*�(*1 `
4*0��*)j/�#�1 ��)4/#$)"�/*�5�+`
4*0�- ��'�)� �4*0-�'*��`
)*/#$)"�#�++).`
(*1 ()/�$.��$!!$�0'/`
$�g����*)$��'�#�/`
4*0�+0''�!- �!-*(�/# �) (4
4*0-�(*1 ()/.��- �*)'4�.'*2 ��.'$"#/'4��4�4*0-�'*��`
#�g���-$)"`
#�g��� ""`
$�g����-0� ���"" -`
#�g����0-. ���-0� ���"" -`
$�g���-$)"`
/# �) (4�+$�&.�0+�)��-0� ���"" -.`
/# �) (4�2$ '�.�)��-0� ���"" -.[
/# �) (4�/#-0./.�*) �*!�# -��-0� ���"" -.`
/# ��*'/�*!��*'��2#$55 .��4�4*0[
/# ��-0� ���"" -�2 '�.�$/. '!�/*�/# �"*�'$)j.�#�)�[
#�g���/-$+ �-�/$*)`
4*0�#$/�/# �) (4
4*0-�(*1 ()/.��- �)*2�0))�0(� - �`
#�g���" (`
$�g���) (4��*-+. `
/# �) (4�+$�&.�0+���" (`
#�g����++' `
/# �) (4�+$�&.�0+����-0� ���"" -`
#�g����' �-�+*/$*)`
$�g���.&0''���+`
4*0�#�1 ���'$//' �/-*0�' �'$!/$)"�#�g���) (4��*-+. `
4*0�#�1 ���'$//' �/-*0�' �'$!/$)"�$�g���!**��-�/$*)`
/# ��-0� ���"" -�($.. .�/# �) (4

)����0XOWL5RRP�1^���`�([WUHPH

���-0� ���"" -�($.. .�4*0`
����-/�($.. .�4*0`
"�g���.&0''���+`
"�g���) (4��*-+. `
"�g���!**��-�/$*)`
#�g���) (4��*-+. `
#�g���'*�&�+$�&`
#�g����-0� ���"" -`
2#�((([[[
/# �) (4�$.�&$'' �[
/# �) (4�%0./�($.. .[
/# �) (4�#$/.[
/# �) (4�/#-*2.����-0� ���"" -[
/# �) (4�/*0�# .�4*0[
/# �) (4�%0(+._�)$(�'4� 1��$)"�4*0-�&$�&`
/# �) (4��$/ .[
/# �) (4�2$ '�.����-0� ���"" -[
/# �) (4�($.. .[
/# �) (4�/#-0./.�# -��-0� ���"" -`
/# �'$//' ��*"�($.. .�/# �) (4
/# ��-0� ���"" -�($.. .�/# �) (4
/# �&$//)�%0(+._�)$(�'4� 1��$)"�4*0-�&$�&`
/# �&$//)��$/ .�/# �) (4
/# �&$//)� �/.���) (4��*-+. `
/# �&$//)�($.. .�/# �) (4
$)�2#�/��$- �/$*)]
�.�4*0�&$�&�/# ��**-_�$/��-�.# .�*+)[
/#�/�#0-/.[
$/��0-).�0+[
4*0��- �#$/��4����-0� ���"" -`
4*0�" /�5�++ �[
4*0�. �)*��**-�/# - `

4*0�#$/�/# �) (4
4*0�&$''�/# �) (4
4*0�($..�/# �) (4
4*0���))*/� .��+ �!-*(�/# �) (4
4*0�+0''�!- �!-*(�/# �) (4
4*0�&$�&�/# �) (4
4*0�&$�&�/# �&$//)`
4*0�&$�&��/� (+/4�.+�� `
4*0�� ./-*4�/# �) (4
4*0�./-�$)���(0.�' `
4*0�.2�+�+'�� .�2$/#�4*0-�&$//)`
/#$.��**-�$.�'*�& �`
2#�/���./-�)" ��$- �/$*)[
�*�4*0�2�)/�4*0-�+*.. ..$*).�$�)/$!$ �]�t�)�u
4*0-�' "�! '.�� // -`
) 1 -�($)�`
- �''4��//��&�/# �'$//' ��*"]�t�)�u
- �''4��//��&�/# �'$//' ��*"]�t�)�u�)
- �''4��//��&�/# �&$//)]�t�)�u
�0(��(*1 [
*0�#[
"�g���+*/$*)`
#�g���+*/$*)`
#�g���/-$+ �-�/$*)`
/# �) (4� .��+ .�/# ��0)" *)[
/# �) (4�($.. .�/# �'$//' ��*"`
/# ��-0� ���"" -�#$/.�/# �) (4
/# ���-/�($.. .�/# �) (4
4*0��- ��'(*./�#$/��4�����-/`
4*0�.2�+�+'�� .�2$/#�4*0-�'$//' ��*"`
�*�4*0�2�)/�/*�. �4*0-��//-$�0/ .]�t�)�u
/#0(+[
"�g�)���-/.`
#�g�)���-/.`
$�g���) (4��*-+. `
%�g���1$*' /�" (`
/# �) (4��'*�&.�4*0-�&$�&`
/# �) (4�./-$& .��/�4*0-��$.+'�� ��$(�" ��)��($.. .�4*0[
/# �) (4�/#-*2.�����-/[
/# �'$//' ��*"��$/ .�/# �) (4
/# ��*-+. �($.. .�/# �) (4
4*0��- ��'(*./�#$/��4����-0� ���"" -`
4*0��- �#$/��4�����-/`
4*0�# �-�/# �-0(�' �*!��$./�)/�/#0)� -```
"�g����-0� ���"" -`
"�g���4 ''*2$.#�" (`
"�g�)�!*-/0) ��**&$.`
#�g���2�)�`
#�g�)��--*2.`
/# �) (4�+$�&.�0+����-0� ���"" -`
/# �) (4�($.. .�.$-$0.`
/# ��-0� ���"" -�.'$+.��.�/# �) (4�/#-*2.�$/[
4*0�./*+`
4*0�.2�+�+'�� .�2$/#�#��#$`
4*0�.2�+�+'�� .�2$/#�.$-$0.`
#��#$�($.. .�/# �) (4
.$-$0.��$/ .�/# �) (4
.$-$0.�($.. .�/# �) (4
#�g���.&0''���+`
.$-$0.�$.�$)�/# �2�4[
"�g���.�-*''`
#�g���!�� ��+�''`
#�g���4 ''*2$.#�" (`
%�g���) (4��*-+. `
/# �.���' ��+*)4��-*+.���) (4��*-+. `
/# �.���' ��+*)4��$/ .�/# �) (4
"�g���-$)"`
/# �.���' ��+*)4�+$�&.�0+���) (4��*-+. `

26

�E��.H\&RUULGRU6�5�

�G��2EVWUXFWHG0D]H��'O

�L��:DQG�RI�'HDWK��+DUG�

�N��4XHVW��0HGLXP�

�D��.H\&RUULGRU6�5� �F��.H\&RUULGRU6�5�

�H��2EVWUXFWHG0D]H��'OKE �I��2EVWUXFWHG0D]H��4

�J��5LYHU

�K��:DQG�RI�'HDWK��0HGLXP�

�M��4XHVW��(DV\�

�O��0XOWL5RRP�1��([WUHPH �P��0XOWL5RRP�1��([WUHPH

0LQL*ULG 0LQL+DFN

Figure S9: Examples of all tasks evaluated in this work. (a–f) MiniGrid tasks; (g–m) MiniHack
tasks.

27

	Introduction
	Related Work
	Problem Statement
	L-AMIGo
	Adversarially Motivated Intrinsic Goals (AMIGo)
	Extension to L-AMIGo

	L-NovelD
	NovelD
	Extension to L-NovelD

	Experiments
	Environments

	Results
	Interpretability
	Do semantics matter?

	Discussion
	L-AMIGo algorithm
	Details on naive message reward and equivalencies to prior work
	Architecture and training details
	MiniGrid
	MiniHack
	Compute Details

	Additional tables visualizations of main results
	Full numeric tables
	Probability of improvement
	Area Under the Curve (AUC).

	MiniGrid experiments with language encoded into the state representation
	Ablations
	L-AMIGo grounding network
	L-NovelD components

	Full description of tasks and language
	MiniGrid
	MiniHack

	Raw MiniHack Messages

