Appendix

A Detailed experimental setup

In this appendix, we discuss in detail the experimental settings. We use the same setup of Cini et al.
[4ﬂﬂ Indeed, [Table 1 reports results from [4] whenever possible. We refer to [4] for details on these
baselines.

For SPIN, we use the same hyperparameters in all datasets: L = 4 layers, with first n = 3 layers
with masked connections; hidden size d;, = 32; 2 layers with hidden size 32 for every MLP; ReL.U
activation functions. For SPIN-H, we use similar hyperparameters, but 5 layers, withn = 3; K =4
hubs per node with d, = 128 units each. These hyperparameters have been selected among a small
subset of options on the validation set; we expect far better performance to be achievable with further
hyperparameter tuning. Depending on the dataset, the number of parameters ranges from ~ 55K
to ~ 95K for SPIN and ~ 540K to ~ 800K for SPIN-H. We use Adam optimizer [61]], learning
rate [r = 0.0008 and a cosine scheduler with a warm-up of 12 steps and (partial) restarts every
100 epochs. We train our models with 300 mini-batches of 8 random samples per epoch, fixing the
maximum number of epochs to 300 and using early stopping on the validation set with a patience
of 40 epochs. Due to constraints on memory capacity on some of the GPUs (see the description of
the hardware resources below), for SPIN-H we set the batch size to 6 and 16 in AQI and AQI-36,
respectively.

To train SPIN-based models, we minimize the following loss function:
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where £ ( -, - ) is the absolute error and aAcZT’(l) is [-th layer imputation for the i-th node at time step 7.
Note that, to provide more supervision to the architecture, the loss is computed and backpropagated
w.r.t. representations learned at each layer, not only at the last one. The error is computed only on
data not seen by the model at each forward pass. For this reason, we randomly remove p ratio of the
input data for each mini-batch sample, with p sampled uniformly from [0.2, 0.5, 0.8], and use them
to compute the loss. We never use data masked for evaluation to train any model.

For the spatiotemporal Transformer baseline, we use the same training strategy and a similar hyperpa-
rameters configuration of SPIN-H: L = 5 layers; 4 attention heads; hidden size and feed-forward
size of 64 and 128 units, respectively. For SAITS, we use the code provided by the authorsﬂ Hy-
perparameters for SAITS have been selected on the validation set with a random search by using
hyperparameter ranges from the original paper.

All the models were developed in Python [62] using PyTorch [S7], PyG [63] and Torch Spatiotempo-
ral [58]]. We use Neptun [64]] for experiments tracking. The code to reproduce the experiments of
the paper is available as supplementary material. All the experiments have been run in a cluster using
GPU-enabled nodes with different hardware setups. Running times of SPIN-H training on a node
equipped with a 12GB NVIDIA Titan V GPU range from 4 to 14 hours (depending on the dataset).
For SPIN we used a node with 40GB NVIDIA A100 GPU, with running times ranging from 4 to 26
hours.

B Datasets

In this appendix, we provide details on datasets and preprocessing used for the experiments. We
use temporal windows of T' = 24 steps for all datasets except AQI-36, for which we set 7' = 36.
For traffic datasets, we split the data sequentially as 70% for training, 10% for validation, and 20%
for testing. For air quality datasets, following Yi et al. [15]], we consider as the test set the months
of March, June, September, and December and we use valid observation w‘T as ground-truth if the

*https://github.com/Graph-Machine-Learning-Group/grin
https://github.com/TorchSpatiotemporal/tsl
https://github.com/WenjieDu/SAITS
"https://neptune.ai/
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Table 4: Ablation study to assess the contribution of the single components in the spatiotemporal
attention block. Performance averaged over 5 independent runs.

METR-LA (P) ‘ AQI-36
MAE | MRE (%) | MAE | MRE (%)
SPIN 1.90 + o001 | 3.29 +001 | 11.77 054 | 16.56 +0.76
SPIN-H 1.96 £003 | 3.40 005 | 10.89 +027 | 15.32 +o03s
Without cross-attention | 2.18 +oo01 | 3.78 +o001 | 1547 022 | 21.77 + 031
Without self-attention 2.21 £o08 | 3.82 +014 | 13.76 2030 | 19.37 £ 042
Transformer ‘ 2.16 +0.00 ‘ 3.74 +o01 ‘ 11.98 +o0s3 ‘ 16.87 + 075

value is missing at the same hour and day in the following month. For data preprocessing we use the
same approach of Cini et al. [4], by normalizing data across the feature dimension (graph-wise for
graph-based models) to zero mean and unit variance.

In line with [3} 4], we obtain the adjacency matrix from the node pairwise geographical distances
using a thresholded Gaussian kernel [[65]]
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where dist ( -, - ) is the geographical distance operator, ~ is a shape parameter and ¢ is the threshold.

C Virtual sensing

The spatiotemporal cross-attention mecha-
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(station no. 1015) and lowest (no. 1032) Figure 3: Visualization of completely missing se-
number of neighbors, reproducing the ex- quences rchnstructed by SPIN-H at nodes ma;ked out
perimental settings of [4]. shows during training. Imputations averaged over 5 indepen-
the performance of SPIN-H in reconstruct- dent runs.

ing a temporal window of 36 time steps for

the two virtual sensors at test time. Results qualitatively show that our method is able to reconstruct
observations for sensors with no available information other than their location in the network.

D Ablation study

[Table 4/shows the results of an ablation study on METR-LA (Point missing) and AQI-36. Here, we
evaluate the performance in terms of mean absolute error (MAE) and mean relative error (MRE). We
consider two different versions of SPIN-H in which we remove the spatiotemporal cross-attention
and the temporal self-attention components, respectively. We also report the performance of SPIN,
SPIN-H and the Transformer for reference. Results clearly show that both components contribute
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positively to imputation accuracy. We also point out that in METR-LA (P) observations are masked
out uniformly at random while the mask in AQI-36 reflects the empirical distribution of missing data
in the dataset.
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