
A Proof of theorem

Proof. We provide the proof below (first by submultiplicativity),
��ut+1 � u⇤��

2
=

����
�v2

2ku⇤k2

✓
I� u⇤>u⇤

ku⇤k22

◆
V3 �

�v2

2kutk2

✓
I� ut>ut

kutk22

◆
V3

����
2


����
�v2

2

����
2

kV3kF
����

1
ku⇤k2

✓
I� u⇤>u⇤

ku⇤k22

◆
� 1

kutk2

✓
I� ut>ut

kutk22

◆����
2

=

����
�v2

2

����
2

kV3kF
����

✓
1

ku⇤k2
� 1

kutk2

◆
+

✓
ut>ut

kutk32
� u⇤>u⇤

ku⇤k32

◆����
2

.

Then, we decompose the last term into two parts and have

1
ku⇤k2

� 1
kutk2

=
kutk2 � ku⇤k2
ku⇤k2kutk2

 kut � u⇤k2
ku⇤k2kutk2

 kut � u⇤k2
m2

,

ut>ut

kutk32
� u⇤>u⇤

ku⇤k32
=

✓
ut>ut

kutk32
� u⇤>ut

kutk32

◆
+

✓
u⇤>ut

kutk32
� u⇤>u⇤

kutk32

◆
+

✓
u⇤>u⇤

kutk32
� u⇤>u⇤

ku⇤k32

◆

=
(ut> � u⇤>)ut

kutk32
+

u⇤>(ut � u⇤)
kutk32

+
ku⇤k22(ku⇤k32 � kutk32)

kutk32ku⇤k32

 kut � u⇤k2
m2

+
Mkut � u⇤k2

m3
+

(M + 2m)kut � u⇤k2
m3

.

The proof is complete by triangular inequality.

B Analysis of the Iterative Rule

In this section, we study how many rounds of the iterative rules are needed to achieve a good
classification result. This study is conducted on HAR and Sleep-EDF with five random seeds.

Linear Convergence Speed. First, we study the convergence speed (when � = 2). We consider two
scenarios: (Scenario 1) when the bases {A,B,C} are initialized as random matrices; (Scenario 2)
when the based {A,B,C} are already learned. We use the average relative difference (of the F-norm)

as the convergence measure, i.e., 1
N

PN
k=1

kx(k)
t+1�x(k)

t k
kx(k)

t k
= 1

N

PN
k=1

kx(k)
impr�x(k)

initk
kx(k)

initk
, where x(k) means

the k-th row of X and t means the number of rounds of the iterative rule. We test on t = 1, 2, 3, 4, 8.
The comparison is shown in Figure 3. Both scenarios verify the linear convergence speed.

Figure 3: Verification of Convergence Speed. When the # of iteration t becomes larger, the average
relative difference can exceed the minimum precision and go to zero (like Scenario 2 on Sleep-EDF).

One Round is Enough. We consider the performance of downstream classification with different
rounds of iterative rules. The results are shown in Table 3 and Table 4.

Table 3: Performance with Different Rounds (on HAR)

of rounds (t) 1 2 3 4 8

time per sweep 8.774s 10.316s 11.224s 12.781s 17.402s
accuracy (%) 93.30 ± 0.413 93.35 ± 0.172 93.35 ± 0.150 93.35 ± 0.122 93.35 ± 0.122

15

Table 4: Performance with Different Rounds (on Sleep-EDF)

of rounds (t) 1 2 3 4 8

time per sweep 148.375s 160.924s 173.361s 188.193s 242.386s
accuracy (%) 85.25 ± 0.209 85.33 ± 0.173 85.31 ± 0.178 85.31 ± 0.177 85.31 ± 0.177

We observe that with an increasing number of rounds of iterative rule, the classification results will
not improve further, however, the time consumption increases. Thus, we use only one round of the
iterative rule in our experiments.

C Experimental Details

C.1 Dataset Processing

Sleep-EDF is publicly available, which contains 153 full-night EEG (from Fpz-Cz and Pz-Oz electrode
locations), EOG (horizontal), and submental chin EMG recordings, under Open Data Commons
Attribution License v1.0 and MGH Sleep is provided by (Biswal et al., 2018), where F3-M2, F4-M1,
C3-M2, C4-M1, O1-M2, O2-M1 channels are used, containing 6,478 recordings. These two EEG
datasets are processed in a similar way. First, the raw data are (long) recordings of each subject.
On subject-level, these recordings are categorized into unlabeled and labeled sets by 90% : 10%.
Then the labeled sets are further separated into training and test by 5% : 5%. Next, within each set
(unlabeled, training, test), recordings are further segmented into disjoint 30-second-long periods,
which are the data samples in our study. Each data sample is represented as a matrix, channel by
timestamp, and they are associated with one of five sleep stages, Awake (W), Non-REM stage 1 (N1),
Non-REM stage 2 (N2), Non-REM stage 3 (N3), and REM stage (R). HAR is also public, collected
as 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz by the embedded
accelerometer and gyroscope. It has been randomly partitioned into 70% and 30%. We use 70% as
the unlabeled data (labels removed) and split the other part: 15% as training data and 15% as the test
data. The license of this dataset is included in their citation. PTB-XL is a public ECG dataset, which
contains 21,837 clinical 12-lead ECGs (male: 11,379 and female: 10,458) of 10-second length with
a sampling frequency of 500 Hz. We randomly split the dataset into unlabeled (remove the labels)
and labeled sets by 90% : 10%; then the labeled sets are further separated into training and test by
5% : 5%. This dataset is under Open BSD 3.0.

All datasets are de-identified (e.g., no names, no locations), and there is no offensive content. All the
labels are also provided along with the datasets. The label distributions are shown in Table 5.

Table 5: Class Label Distribution

Name Label Distribution

Sleep-EDF W: 68.8%, N1: 5.2%, N2: 16.6%, N3: 3.2%, R: 6.2%
HAR Walk: 16.72%, Walk upstairs: 14.99%, Walk downstairs: 13.65%,

Sit: 17.25%, Stand: 18.51%, Lay: 18.88%
PTB-XL Male: 52.11%, Female: 47.89%

MGH Sleep W: 44.3%, N1: 9.9%, N2: 14.4%, N3: 17.6%, R: 13.8%

All data processing and model implementations largely follow Yang et al. (2021b)3.

C.2 STFT Transform

We find that directly using the raw data (spatial information) does not provide good results, even for
the deep learning models. Thus, we take Short-Time Fourier Transforms (STFT) as a preprocessing
step. From a single channel, we can extract both the amplitude and phase information, which is then
stacked together as two different channels. After STFT, each data sample becomes a three-order
tensor, channel by frequency by timestamp. The FFT size is 256 and hop length is 32 for Sleep-EDF;
the FFT size is 64 and hop length is 2 for HAR; the FFT size is 256 and hop length is 64 for PTB-XL;

3https://github.com/ycq091044/ContraWR

16

and the FFT size is 512 and hop length is 128 for MGH. We use these third-order tensors as final
input data samples for all models.

C.3 Data Augmentation

In our work, we build our feature extractor f(·) from tensor decomposition tool, which may not
be as expressive/flexible as deep neural networks in SSL, and thus we also ask the augmentation
methods to allow a similar component-based representation for the perturbed data. Use EEG signals
as an example, we consider jittering and bandpass filtering as two augmentation methods in the
experiments, which perturb the signal frequency information and will not significantly change the
low-rank structure of the data.

As mentioned in the main text, we consider three different augmentation methods: (i) Jittering adds
additional perturbations to each sample. We consider both high and low-frequency noise on each
channel independently. For high-frequency noise, we first generate a noisy sequence s, which has the
same length as the signal channel, and each element of s is i.i.d. sampled from a uniform distribution
U [�1, 1]. We then control the amplitude of s by the noisy degree d 2 R. Finally, we add the scaled
noisy sequence d · s to the channel. In the experiment, d = 0.05 for Sleep-EDF, d = 0.002 for HAR,
d = 0.001 for PTB-XL and d = 0.01 for MGH. For low-frequency noise, we generate a short noisy
sequence (the length is randomly sampled from a uniform distribution U [100, length of channel]) in
the same way and then use scipy.interpolate.interp1d to interpolate the noisy sequence to be at the
same length as the channel. The choice of high-frequency noise or low-frequency noise, or both are
coin-tossed with equal probability. (ii) Bandpass filtering reduces signal noise. We use the order-1
Butterworth filter by scipy.signal.butter to preserve only the within-band frequency information.
The high-pass and low-pass are (1Hz, 30Hz) and (10Hz, 49Hz) for Sleep-EDF, (1Hz, 20Hz)
and (5Hz, 24.5Hz) for HAR, (1Hz, 30Hz) and (10Hz, 50Hz) for PTB-XL, (1Hz, 30Hz) and
(10Hz, 50Hz) for MGH. Low-pass or high-pass or both are selected with equal probability. Also,
the bandpass filtering is applied to each channel independently. The intuition is that the low-pass
signals and high-pass signals might be both useful. (iii) 3D position rotation is an augmentation
technique used only for HAR datasets, which have x-y-z axis information from accelerometer and
gyroscope sensors. We apply a 3D x-y-z coordinate system rotation by a rotation matrix to mimic
different cellphone positions. All augmentation methods are applied in sequence (i) (ii) (iii). The
STFT is performed after the data augmentation.

Figure 4: Backbone CNN Architecture (HAR). The architectures for other three datasets are similar.

C.4 Implementation

Since all deep learning baselines are based on CNN, we use the same backbone model, shown in
Figure 4. The model is adopted from (Cheng et al., 2020). Based on the backbone model, we
add a fully connected layer for the reference CNN model, add non-linear layers for self-supervised
models (they also have their respective loss), and add corresponding deconvolutional layers for
autoencoder models. The reference CNN models is end-to-end, and they are trained on the training
set; other baselines learn a low-dimensional feature extractor from an unlabeled set, and then a
logistic classifier is trained on the training set, on top of the feature extractor. Without loss of
generality, we use 128 as batch size. For deep learning models, we use Adam optimizer with a
learning rate 1 ⇥ 10�3 and weight decaying 5 ⇥ 10�4. We use 2 ⇥ 10�3 as the learning rate for
our ATD. Since the paper deals with unsupervised learning and uses standard logistic regression

17

(sklearn.linear_model.LogisticRegression) to evaluate, the hyperparameters of all models (except
supervised model) are chosen based on the classification performance on the training data. For our
ATD model, by default, we use R = 32,↵ = 1⇥ 10�3,� = 2, � = b (which is the batch size), and
all the reference configurations for each experiments are listed in code appendix. The choice of R
depends on the trade-off between model fitness and time complexity. Specifically, a larger R means
better fitness and more preserved information in the extracted representations, while the number of
learnable parameters and time complexity also increases linearly with R. In our paper, we run simple
CP decomposition on a small subset of the tensor and monitor the fitness curve. We find that the
fitness does not improve much around R = 32 for all datasets (which means the real tensor might
have a smaller rank and the residual part might be just noise). Thus, we choose R = 32 throughout
the paper.

C.5 Ablation Studies on Data Augmentation

Effect of High-quality Data Augmentations. We study the effects of high-quality data augmen-
tation methods. Let us assume (a): jittering, (b): bandpass filtering, (c): 3D position rotation. We
test on different combinations of the augmentation methods. The experiments are conducted on two
datasets: (i) for the MGH dataset, we use 50,000 unlabeled data, 5,000 training samples, and all test
samples; (ii) for the HAR dataset, we use all data. We use 128 as the batch size for MGH Sleep, 64
for HAR, and R = 32 as the tensor rank.

Table 6: Ablation Studies on Data Augmentation (MGH Sleep)

Method Acc (%) Method Acc (%) Method Acc (%)
(a) 72.53 ± 0.652 (b) 73.60 ± 0.270 (a)+(b) 74.15 ± 0.203

Table 7: Ablation Studies on Data Augmentation (HAR)

Method Acc (%) Method Acc (%) Method Acc (%)
(a) 92.06 ± 0.621 (a)+(b) 92.70 ± 0.266 (a)+(b)+(c) 93.35 ± 0.357
(b) 91.99 ± 0.274 (a)+(c) 92.93 ± 0.590 / /
(c) 92.29 ± 0.330 (b)+(c) 92.26 ± 0.479 / /

Table 6 and Table 7 conclude that the augmentation methods influence the final classification results.
However, for different datasets, the effects are different. We observe that for the MGH Sleep dataset,
bandpass filtering works better than jittering. In HAR, combinations of augmentations work better
than the individual augmentations. Overall, we find that with more diverse data augmentation methods,
the final results are relatively better. The study of how to choose/design (or even automatically
generate) better augmentation techniques will be our future work.

Impact of Low-quality Data Augmentations. We also study the impact of low-quality data
augmentations. We use the SALS model (mini-batch tensor baseline without data augmentation) and
our ATD as the reference models and conduct the following experiments on MGH and HAR:

• MGH-d: we change the d values for the jittering data augmentation, d means the ratio of the
amplitude of the high/low frequency noise over the amplitude of the signal.

• MGH-(A): on MGH data, we set the degree of the jittering method to an unrealistic value d = 1 as
the low-quality augmentation method, meaning that the magnitude of the noise is the same as the
magnitude of the signals. We keep the bandpass filtering unchanged.

• MGH-(B): on MGH data, we randomly create a bandpass filter from (1Hz, 10Hz) or
(30Hz, 50Hz) as the low-quality augmentation method, which drops the critical middle-band
information. We keep the jittering unchanged.

• MGH-(C): on MGH data, we combine the above two low-quality augmentation methods.
• HAR-(A)(B)(C): follow the similar low-quality data augmentation method design on HAR. For

(B), we use (1Hz, 5Hz) and (20Hz, 24.5Hz) as the low-quality bandpass.

18

Table 8: Performance of Low-quality Data Augmentation (on MGH and HAR)
MGH d = 0.02 d = 0.05 d = 0.1 d = 0.5 d = 5

Accuracy 74.18 ± 0.326 74.10 ± 0.302 73.85 ± 0.530 73.39 ± 0.493 72.18 ± 0.676

MGH SALS ATD (A) (B) (C)
Accuracy 71.93 ± 0.379 74.15 ± 0.431 72.73 ± 0.624 72.10 ± 0.719 70.75 ± 0.771

HAR SALS ATD (A) (B) (C)
Accuracy 91.86 ± 0.295 93.35 ± 0.357 92.04 ± 0.308 92.48 ± 0.469 91.43 ± 0.835

Figure 5: Ablation Studies on Hyperparameters

Table 9: Comparison with Tensor-based Methods with Different R (on HAR)
Model R = 8 R = 16 R = 32 R = 64 R = 128

SALS 69.59 ± 0.526 83.92 ± 0.416 91.84 ± 0.295 91.89 ± 0.217 91.55 ± 0.388
GR-SALS 69.62 ± 0.458 84.20 ± 0.727 92.33 ± 0.282 92.28 ± 0.359 91.84 ± 0.534
ATDss� 70.27 ± 0.488 84.84 ± 0.557 92.41 ± 0.391 92.71 ± 0.243 92.32 ± 0.330
ATD 71.91 ± 0.253 85.61 ± 0.294 93.35 ± 0.357 93.43 ± 0.411 92.97 ± 0.273

The performances are shown in Table 8. We find that low-quality data augmentations will hurt the
learned tensor bases and hinder the downstream classification. With d changing from 0.02 to 5, the
jittering method becomes more unrealistic and the generated samples deviate from the real signal
data distribution. Thus, we can find that the final classification performance also becomes worse
gradually. If all data augmentation methods are of low-quality, the performance cannot surpass the
base SALS model. We also find that the performance drop is not significant. The reason might
be that even the augmentation methods are of low-quality, the Frobenius loss can still enforce the
model to learn decent subspaces for better fitness and find generic low-rank features (opposed to the
classification-oriented low-rank features), in this case, the features only follow fitness principle not
the alignment principle, so the performance will be similar compared to SALS.

C.6 Ablation Studies on Hyperparameters

This section conducts ablation studies for decomposition rank R and other hyperparameters, ↵, �, �.
The experiments are conducted on Sleep-EDF with 50,000 random unlabeled data, 5,000 random
training samples, and all test samples, and the HAR dataset.

The results are shown in Figure 5. First, we can conclude that with a larger decomposition rank R, the
performance will be better generally. Though we observe that the performance worsens from R = 64
to R = 128, with limited training data, if the representation size (equals to R) becomes larger, the
logistic regression model can overfit. We compare our model to other tensor-based methods with

19

Table 10: Comparison with Tensor-based Methods with Different R (on Sleep-EDF)
Model R = 8 R = 16 R = 32 R = 64 R = 128

SALS 81.26 ± 0.345 82.59 ± 0.638 84.27 ± 0.481 84.55 ± 0.527 84.49 ± 0.317
GR-SALS 81.72 ± 0.664 82.74 ± 0.481 84.33 ± 0.356 84.87 ± 0.486 84.90 ± 0.781
ATDss� 81.27 ± 0.568 82.5 ± 0.674 84.19 ± 0.221 84.47 ± 0.258 84.44 ± 0.577
ATD 82.49 ± 0.464 83.31 ± 0.591 85.01 ± 0.224 85.30 ± 0.483 85.32 ± 0.305

Table 11: Result Significance and Running Time (%) for Sleep-EDF and HAR
Sleep-EDF (5,000) HAR (1,473)

Accuracy # of Params. Time per sweep Accuracy # of Params. Time per sweep

Self-sup models:
SimCLR-32 84.98 ± 0.358 210,384 260.299s 74.75 ± 0.723 53,286 8.459s
SimCLR-128 85.19 ± 0.358 222,768 265.809s 76.69 ± 0.697 65,670 8.532s
BYOL-32 84.29 ± 0.405 211,440 255.614s 73.71 ± 2.832 54,342 8.430s
BYOL-128 83.26 ± 0.337 239,280 257.266s 71.79 ± 1.866 82,182 8.478s

Auto-encoders:
AE-32 74.78 ± 0.723 217,216 153.684s 63.13 ± 0.775 62,940 7.530s
AE-128 75.17 ± 0.897 241,888 156.813s 60.52 ± 1.604 87,612 7.662s
AEss-32 80.92 ± 0.345 217,216 301.773s 71.70 ± 2.135 62,940 7.765s
AEss-128 81.84 ± 0.259 241,888 307.546s 72.43 ± 1.370 87,612 7.804s

Tensor models:
SALS 84.27 ± 0.481 (0.0041) 7,328 86.281s 91.86 ± 0.295 (2e-5) 2,688 7.535s
GR-SALS 84.33 ± 0.356 (0.0019) 7,328 109.916s 92.33 ± 0.282 (0.0003) 2,688 7.829s
ATDss� 84.19 ± 0.221 (9e-5) 7,328 147.568s 92.41 ± 0.391 (0.0011) 2,688 8.604s
ATD 85.01 ± 0.224 7,328 148.375s 93.35 ± 0.357 2,688 8.672s
result format: mean ± standard deviation (p-value)

R = 8, 16, 32, 64, 128 and the Table 9 and Table 10 shows that ATD outperforms the tensor baselines
consistently with different R.

Also, we find that the choices of ↵ do not affect the final performance a lot. Finally, we find that
it is easy for users to select the � values from a large range in general. For example, selecting a
� 2 [5, 125] would guarantee good results on Sleep-EDF while on HAR, the selection range is [5, 25].
The choice of � does affect the final performance, but it is not tricky to search for a � for good
performance. We also find that the accuracy score first increases then decreases with an increasing
value of �. The reason might be that a large � will negatively affect the fitness loss.

C.7 Statistical Testing and Running Time Comparison

In this section, we conduct T-test on the result in main text and calculate the p-values in the parenthesis
of Table 11 and Table 12 (the experimental results are copied from Table 2). Commonly, a p-value
smaller than 0.05 would be considered as significant. We can see that our model show significant
performance gain over all baselines on all tasks.

We have also reported the running time per sweep/epoch in the tables. When recording the running
time, we duplicated the environment mentioned in Section 4.1, stopped other programs and ran all
the models one by one on GPUs. We record the first 8 sweeps/epochs of all models and drop the first
3 sweeps (since they might be unstable). The average running time of the last 5 epochs are reported
in Table 11 and Table 12 while the accuracy results are from Table 2. Note that on HAR, PTB-XL
and Sleep-EDF, all methods use 128 as the batch size and on MGH, all methods use 512 as the batch
size. The tensor based methods all use R = 32 as the rank. We can conclude that the tensor based
methods are generally more time-efficient than the deep learning methods with fewer parameters.
Since our model ATD and the variant ATDss� use the augmented tensors, they cost more compared to
other tensor based methods (since the size of training tensors doubles), however, we also observe
empirically that they can converge faster with around half number of the epochs.

C.8 Comparison with Supervised Tensor Learning

In this subsection, we compare our model with two supervised tensor learning baselines, UMLDA Lu
et al. (2008) and supervised tensor learning (STL) Tao et al. (2005). UMLDA extracts uncorrelated
discriminative features by sequential tensor-to-vector projections, and it includes two stages: in the

20

Table 12: Result Significance and Running Time (%) for PTB-XL and MGH
PTB-XL (2,183) MGH (5,000)

Accuracy # of Params. Time per sweep Accuracy # of Params. Time per sweep

Self-sup models:
SimCLR-32 69.25 ± 0.355 200,960 18.714s 67.34 ± 0.970 212,624 1449.368s
SimCLR-128 68.19 ± 0.793 237,920 19.037s 66.98 ± 1.331 246,608 1457.283s
BYOL-32 65.08 ± 1.535 202,016 18.410s 68.83 ± 1.168 214,736 1451.468s
BYOL-128 65.49 ± 0.612 254,432 18.680s 68.55 ± 1.339 279,632 1461.181s

Auto-encoders:
AE-32 59.01 ± 0.896 224,528 11.229s 68.58 ± 0.427 220,088 851.118s
AE-128 58.29 ± 0.412 298,352 11.396s 67.05 ± 1.375 257,048 815.858s
AEss-32 68.47 ± 0.231 224,528 18.263s 71.46 ± 0.386 220,088 1486.244s
AEss-128 68.88 ± 0.604 298,352 18.465s 70.19 ± 0.617 257,048 1504.545s

Tensor models:
SALS 69.15 ± 0.483 (0.0023) 7,296 8.988s 71.93 ± 0.379 (5e-6) 9,984 782.763s
GR-SALS 69.02 ± 0.477 (0.0012) 7,296 9.747s 72.35 ± 0.228 (8e-6) 9,984 970.292s
ATDss� 69.38 ± 0.612 (0.0129) 7,296 12.560s 72.78 ± 0.522 (0.0005) 9,984 1327.188s
ATD 70.26 ± 0.523 7,296 12.599s 74.15 ± 0.431 9,984 1360.569s
result format: mean ± standard deviation (p-value)

Table 13: Comparison with Supervised Tensor Learning
Model Sleep-EDF (5,000) HAR (1,473) PTB-XL (2,183) MGH (5,000)

UMLDA (supervised pretrain + supervised LR) 81.06 ± 0.093 85.73 ± 1.169 65.55 ± 0.267 62.04 ± 0.722
STL (end-to-end supervised) 77.86 ± 0.816 80.52 ± 0.189 61.83 ± 0.712 41.44 ± 0.597

ATD (unsupervised pretrain + supervised LR) 85.01 ± 0.224 93.35 ± 0.357 70.26 ± 0.523 74.15 ± 0.431

first stage (supervised pre-training stage), it uses label information to maximize the Fisher’s discrimi-
nation criterion (FDC) as the objective and extract uncorrelated features (i.e., representations); in the
second stage (supervised learning stage), it uses another supervised model to map the representations
to the labels. To make a fair comparison, we use 32 as the uncorrelated feature dimension (thus, it
has the same number of learnable parameters as our model) and also use logistic regression (LR)
for the second stage. STL is an end-to-end supervised tensor learning baseline, and it is originally
proposed for binary classification with a rank-one parameterized tensor (i.e., outer product of multiple
vectors). In the comparison, we extend STL for mult-class classification by including more rank-one
parameterized tensors (one for each class). We use cross entropy loss to optimize the revised STL
model. Both baselines are implemented with PyTorch and use the training and test set only. We have
carefully turned the baseline models to achieve higher accuracy.

Result Analysis. The results are shown in Table 13. We can conclude that our methods outperform
these two supervised tensor learning baselines significantly. The performance gap between UMLDA
and our model can be explained by (i) UMLDA uses FDC criterion to design the loss function and
also forces the learned feature dimensions to be uncorrelated, which might discard some essential
class-dependent information; (ii) our model utilizes a large set of unlabeled data. STL gives poor
performance because it is essentially a multilinear method with much fewer parameters than UMLDA
and our ATD, which hurts the expressive.

D Batch-based Optimization Algorithm

We have shown our optimization algorithm for handling smaller tensors in the main text. Here, we
present the batch-based algorithm for handling larger tensors that are optimized batch-by-batch in
Algorithm 2.

21

Algorithm 2: Mini-batch Alternating Least Squares
1 Input: Data tensor T 2 RN⇥I⇥J⇥K ; initialized {A1,B1,C1}; batch size b; learning rate ⌘; other

hyperparameters ↵,�, �; initial counter l = 1;
2 repeat
3 shuffle the data tensor T ; /⇤ start a new sweep ⇤/
4 for a tensor batch T l 2 Rb⇥I⇥J⇥K and its augmentation T̃ l do
5 use Al,Bl,Cl to initialize X based on T l;
6 use Al,Bl,Cl to initialize X̃ based on T̃ l;
7 Use Al,Bl,Cl, X̃ to update X by our iterative rules (one iteration) in Eqn. (15);
8 Use Al,Bl,Cl,X to update X̃ by our iterative rules (one iteration) in Eqn. (15);
9 Use Bl,Cl,X, X̃ to obtain Al+1 by solving least square problem;

10 Use Al+1,Cl,X, X̃ to obtain Bl+1 by solving least square problem;
11 Use Al+1,Bl+1,X, X̃ to obtain Cl+1 by solving least square problem;
12 l = l + 1 /⇤ increment the counter ⇤/;
13 end
14 until max sweep exceeds or change of loss < 0.1% within 3 consecutive sweeps;
15 Output: the learned bases {AL,BL,CL}.

E Derivation of Two-sided Bound

We recall the definition of Lss and L⇥
ss from Section 3.1.

Lss = Lpos + �Lneg

= E


�

1� rp
sim (f (Xp) , f (Yq))

�
� E

✓
�rp

1� rp
+ 1

◆
sim (f (Xp) , f (Yq)) | p = q

�
,

L⇥
ss(�) = (� + 1)E [sim (f (Xp) , f (Yq))]� E [sim (f (Xp) , f (Yq)) | p = q] ,

and we want to prove that

C1L⇥
ss

✓
�� 1

C1

◆
 Lss  C2L⇥

ss

✓
�� 1

C2

◆
, C1 = 1 +max

p

�rp
1� rp

, C2 = 1 +min
p

�rp
1� rp

,

where rp is the label rate of class-p.

22

Proof. We start by arranging Lss,

Lss = E


�

1� rp
sim (f (Xp) , f (Yq))

�
� E

✓
�rp

1� rp
+ 1

◆
sim (f (Xp) , f (Yq)) | p = q

�

= E
✓

�rp
1� rp

+ �

◆
sim (f (Xp) , f (Yq))

�
� E

✓
�rp

1� rp
+ 1

◆
sim (f (Xp) , f (Yq)) | p = q

�

= E
✓

�rp
1� rp

+ 1

◆
sim (f (Xp) , f (Yq))

�
+ E [(�� 1) sim (f (Xp) , f (Yq))]

� E
✓

�rp
1� rp

+ 1

◆
sim (f (Xp) , f (Yq)) | p = q

�
(16)

= EpEq,Xp,Yq

✓
�rp

1� rp
+ 1

◆
sim (f (Xp) , f (Yq))

�
+ E [(�� 1) sim (f (Xp) , f (Yq))]

� EpEq,Xp,Yq

✓
�rp

1� rp
+ 1

◆
sim (f (Xp) , f (Yq)) | p = q

�
(17)

= Ep

✓
�rp

1� rp
+ 1

◆
Eq,Xp,Yq [sim (f (Xp) , f (Yq))]

�
+ E [(�� 1) sim (f (Xp) , f (Yq))]

� Ep

✓
�rp

1� rp
+ 1

◆
Eq,Xp,Yq [sim (f (Xp) , f (Yq)) | p = q]

�

= Ep

✓
�rp

1� rp
+ 1

◆�
Eq,Xp,Yq [sim (f (Xp) , f (Yq))]� Eq,Xp,Yq [sim (f (Xp) , f (Yq)) | p = q]

��

+ E [(�� 1) sim (f (Xp) , f (Yq))] (18)
 Ep

⇥
C2

�
Eq,Xp,Yq [sim (f (Xp) , f (Yq))]� Eq,Xp,Yq [sim (f (Xp) , f (Yq)) | p = q]

�⇤

+ E [(�� 1) sim (f (Xp) , f (Yq))] (19)
= (C2 + �� 1)E [sim (f (Xp) , f (Yq))]� C2E [sim (f (Xp) , f (Yq)) | p = q]

= C2L⇥
ss

✓
�� 1

C2

◆
.

From Eqn. (16) to Eqn. (17), we use the fact that “E[·] means the expectation is taken over four
interdependent random variables, i.e., p, q,Xp,Yq", which is mentioned in Section 3.1. From
Eqn. (18) to Eqn. (19), we use the fact that given p, the similarity of random pairs is smaller than the
similarity of positive pairs Eq,Xp,Yq [sim (f (Xp) , f (Yq))]  Eq,Xp,Yq [sim (f (Xp) , f (Yq)) | p = q].
The upper bound is derived by replacing �rp

1�rp
+ 1, 8p with C2 = 1 + minp

�rp
1�rp

. Similarly, we

can also derive the other side (lower bound) by using C1 = 1 +maxp
�rp
1�rp

, which eventually gives

C1L⇥
ss

⇣
��1
C1

⌘
.

23

	Introduction
	Background
	Tensor Modeling
	Problem Formulation

	Augmented Tensor Decomposition
	Self-supervised Loss
	The Objective of ATD
	Alternating Least Squares Optimization

	Experiments
	Experimental Setup
	Experimental Results
	Better Classification Accuracy with Fewer Parameters
	Better Performance in Low-label Rate Scenarios
	Stable Results with Hyperparameter Variation

	Related Work
	Conclusion
	Proof of theorem
	Analysis of the Iterative Rule
	Experimental Details
	Dataset Processing
	STFT Transform
	Data Augmentation
	Implementation
	Ablation Studies on Data Augmentation
	Ablation Studies on Hyperparameters
	Statistical Testing and Running Time Comparison
	Comparison with Supervised Tensor Learning

	Batch-based Optimization Algorithm
	Derivation of Two-sided Bound

