
A Details of Rearrangement Tasks

A.1 Ball Rearrangement

The three tasks in ball rearrangement only differ in state representation, target distribution and
pseudo-likelihood function:

Circling: The state is represented as a fully-connected graph where each node contains the two-
dimensional position of each ball si = [x, y]. The target examples are drawn from an explicit process
with an intractable density function: We first uniformly sample a legal centre o = [xo, yo] that allows
all balls to place in a circle around this centre without overlap. Then we uniformly sample a radius ro
from the legal radius range based on the sampled centre. After sampling the centre and radius, we
uniformly place all balls in a circle centred in o with radius ro. The pseudo-likelihood function is
defined as Fproxy(s) = exp−(σθ+σr), where σθ and σr denote the standard deviation of the angle
between two adjacent balls and the distances from each ball to the centre of gravity of all balls,
respectively. Intuitively, if a set of balls are arranged into a circle, then the σr and σθ should be close
to zero, achieving higher pseudo-likelihood.

Clustering: The state is represented as a full-connected graph where each node contains the two-
dimensional position of each ball si = [x, y] and the one-dimensional category feature of each ball
ci ∈ {0, 1, 2}. We generate the target examples in two stages: First, we sample the positions of each
ball from a Gaussian Mixture Model(GMM) pGMM : RK∗2 → R+ with two modes:

pGMM (s) =
1

2

∏
1≤i≤K

3

N ((0.18 sin(
0

3
π), 0.18 cos(

0

3
π)), 0.05I)(si)

∏
K
3 ≤i≤ 2K

3

N ((0.18 sin(
1

3
π), 0.18 cos(

1

3
π)), 0.05I)(si)

∏
2K
3 ≤i≤K

N ((0.18 sin(
2

3
π), 0.18 cos(

2

3
π)), 0.05I)(si)

+
1

2

∏
1≤i≤K

3

N ((0.18 sin(
0

3
π), 0.18 cos(

0

3
π)), 0.05I)(si)

∏
K
3 ≤i≤ 2K

3

N ((0.18 sin(
2

3
π), 0.18 cos(

2

3
π)), 0.05I)(si)

∏
2K
3 ≤i≤K

N ((0.18 sin(
1

3
π), 0.18 cos(

1

3
π)), 0.05I)(si)

(6)

where K = 21 denotes the total number of balls. In the second stage, we slightly adjust the positions
sampled from the GMM to eliminate overlaps between these positions by stepping the physical
simulation. Since the results mainly depend on the GMM, we take the density function of GMM as
the pseudo-likelihood function Fproxy(s) = pGMM (s)

Circling+Clustering: The state representation is the same as that of Clustering. To generate the
target examples, we first generate a circle using the same process in Circling. Then, starting with
any ball in the circle, we colour the ball three colours, in turn, K

3 for each. The order is randomly
selected from red-yellow-blue and red-blue-yellow. This sampling is also explicit yet with an
intractable density similar to Circling. The pseudo-likelihood function is defined as Fproxy(s) =

exp−(σθ+σr) · exp−(σR+σG+σB)−σC where σR denotes the standard deviation of the angle between
two adjacent red balls, and σG and σB and σC denotes the standard deviation of the positions of red,
green and blue centres. Intuitively, the first term exp−(σθ+σr) measures the pseudo-likelihood of
balls forming a circle and the next term exp−(σR+σG+σB)+σC measures the pseudo-likelihood of
balls being clustered into three piles.

The common settings shared by each task are summarised as follows:

Horizon: Each training episode contains 100 steps.

15

Initial Distribution: We first uniformly sample rough locations for each ball, and then we eliminate
overlaps between these positions by stepping physical simulation.

Dynamics: The floor and wall are all absolutely smooth planes. All the balls are bounded in an
0.3m x 0.3m area, with a radius of 0.025m. We set the friction coefficients of all balls to 100.0
since we observe that setting a small(e.g.not larger than 1.0) friction coefficient does not significantly
affect the dynamics. Besides, to increase the complexity of the dynamics, we set the masses and
restitution coefficients of all green and blue balls to 0.1 and 0.99, respectively. All red balls’ masses
and restitution coefficients are set to 10 and 0.1, respectively. We observe that under these dynamics,
the collision may significantly harm the efficiency of the rearrangement process. Hence, the agent
has to adapt to the dynamics for more efficient object rearrangement.

Target Examples: We collect 100,000 examples for each task as target examples.

A.2 Room Rearrangement

Dataset and Simulator: We clean the 3D-Front dataset [46] to obtain bedrooms of rectangular
shape and three to eight objects. We also drop the rooms with large objects or small free spaces.
Since the number of different types of objects varies greatly, we drop the rooms with objects of rare
category (e.g., top cabinet). Each room is augmented by flipping two times and rotating four times
to get eight variants. We import these rooms into iGibson [56] to run the physical simulation. For
a more efficient environment reset and physical simulation, we build a ‘proxy simulator’ based on
PyBullet [57] to replace the original iGibson simulator. We use iGibson to load and save the metadata
of each room. Then we reload these rooms in the proxy simulator, where each object is replaced by a
simple box-shaped object with the same geometry.

The 756x8 rooms are used for target examples. The target examples are used for training the target
score network, the classifier-based baselines and the VAE in goal-conditioned baselines. The other
83x8 rooms are used to initialise the room in the test phase: We first sample a room from the test split
and then perform 1000 Brownian steps to obtain the initial state.

State and Action Spaces: The state consists of a aspect ratio ra ∈ R+ and an object state so ∈ RK×6

where K denotes the number of objects. The aspect ratio indicates the shape of the rectangular room
ra = tanh(bxby) where bx and by denotes the horizontal and vertical wall bounds. The object state is
the concatenation of sub-states of all the objects so = [s1, s2, ...si, ..., sK] where the sub-state of the
i-th object si ∈ R6 consists of 2-D position, 1-D orientation, 2-D bounding box and a 1-D category
label. The action is also a concatenation of sub-actions of all the objects ao = [a1,a2, ...ai, ...,aK].
For the i-th object, the action ai ∈ R3 consists of a 2-D linear and a 1-D angular velocity. The whole
action space is normalised into a 3×K dimensional unit-box [−1, 1]3×K by the velocity bounds.

Horizon: Each training episode contains 250 steps.

Initial Distribution: To guarantee the initial state is accessible to the high-density region of the
target distribution, we sample an initial state in two stages: First, we sample a room from the 83x8
rooms in the test dataset. Then we perturb this room by 1000 Brownian steps.

Dynamics: We set the friction coefficient of all the objects in the room to zero, as the room’s
dynamics are complex enough.

B Details of Our Method

B.1 Training the Target gradient Field

Complete training objective: The complete training objective is the SDE-based score-matching
objective proposed by [23]:

Et∼U(0,1)Es(0)∼ptar(s)Es(t)∼p0t(s(t)|s(0))[Φtar(s(t), t)−∇s(t) log p0t(s(t) | s(0))∥22]. (7)

where p0t(s(t) | s(0)) = N (s(t); s(0), 1
2 log σ (σ

2t − 1)I) and σ = 25 is a hyper-parameter.

Using this objective, we can obtain the estimated score w.r.t. different levels of the noise-perturbed
target distribution pttar(s(t)) =

∫
p0t(s(t) | s(0))ptar(s(0))ds(0) simultaneously. This way, we

16

can efficiently try different noise levels for efficient hyperparameter tuning. The choice of t will be
described in Sec. B.4.

Network Architecture: All the networks (e.g., score network, actor and critic networks used in
learning-based methods) used in our work are designed into three stages, pre-processing stage,
message passing stage and output stage. The pre-processing stage aims at extracting node features
for each object via linear layers to construct a fully connected graph for the next stage. The message
passing stage takes the initial graph as input and passes them through several graph convolutional
layers. After the above two stages, output stage further encodes the feature of each node to obtain the
node-wise output (e.g., score, action). We denote the hidden dimension as dh and the embedding
dimension as de. In room rearrangement, dh = 128, de = 64 and in ball rearrangement dh =
64, de = 32. We recommend looking up the other trivial details in our open-sourced codes.

We first encode the static feature f i
s ∈ Rde and state feature f i

a ∈ Rdh for the i-th node with 2 linear
layers. We further encode the noise feature ft ∈ Rde by a Gaussian Fourier projection layer (used
in [23]). For room rearrangement, we additionally encode the wall feature fw ∈ Rde from the aspect
ratio via two linear layers.

Then we construct a fully connected input graph where the content of the i-th node is the concate-
nation of static, state, noise and wall feature [f i

s, f
i
a, ft, fa] ∈ R3∗de+dh (for room rearrangement,

[f i
s, f

i
a, ft, fa, fw] ∈ R4∗de+dh).

The input graph is passed through 3 (2 for room rearrangement) Edge Convolutional Layers where
the inner network is two layers of MLPs with hidden size dh. After the message passing, the 2 (3 for
room rearrangement) dimensional node features serve as the score components on objects.

Following the parameterisation trick proposed by [58], we divide the score components by
1

2 log σ (σ
2t − 1).

B.2 Details of ORCA and Planning-based Framework

We set τ = 0.1 and the simulation duration of each timestep ∆t = 0.02. For each agent(object),
ORCA only considers the 2-nearest agents as neighbours since we observe that ORCA often has no
solution when the number of neighbours is larger than 2.

In all (ball) rearrangement tasks, we choose t = 0.1 as the initial noise scale for the target score
network. The noise level linearly decays to 0 within an episode.

B.3 Complete Derivation of Surrogate Objective

J(π) ⇐⇒ Eρ(s0),τ∼π[
∑
st∈τ

γt log ptar(st)]−
Eρ(s0)[log ptar(s0)]

1− γ︸ ︷︷ ︸
constant

=Eρ(s0),τ∼π[
∑
st∈τ

γt log ptar(st)]− Eρ(s0),τ∼π[
∑
st∈τ

γt log ptar(s0)]

=Eρ(s0),τ∼π[
∑
st∈τ

γt[log ptar(st)− log ptar(s0)]]

=Eρ(s0),τ∼π[
∑

1≤t≤T

γt
∑

1≤k≤t

[log ptar(sk)− log ptar(sk−1)]]
def
= J∗(π)

J∗(π) ≈Eρ(s0),τ∼π[
∑

1≤t≤T

γt
∑

1≤k≤t

⟨∇s log p(sk−1), sk − sk−1⟩]

≈Eρ(s0),τ∼π[
∑

1≤t≤T

γt
∑

1≤k≤t

⟨Φtar(sk−1), sk − sk−1⟩︸ ︷︷ ︸
rt−1

]
def
= Ĵ(π)

(8)

17

B.4 Details of Learning-based Framework

Reward Function: For all the ball rearrangement tasks, we choose t = 0.1 for the target score
network when outputting the gradient-based action agt = G(Φtar(st, 0.1)) and t = 0.01 when
estimating the immediate reward rt = ⟨Φtar(st, 0.01), st+1 − st⟩. Our experiments found that
the choice of t = 0.01 for the gradient-based action works better. For a fair comparison with
Ours(ORCA), we still set t = 0.1 for the gradient-based action. At each time step t, each object
also receives a collision penalty cit. So the total reward for the i-th object at timestep t is rit =
⟨Φtar(st, 0.01), st+1 − st⟩ + λ ∗ cit where λ denotes a hyper-parameter to balance the immediate
reward and the collision penalty. We choose λ = 5 for Clustering and Circling+Clustering, λ = 3 for
Circling and λ = 0.2 for room rearrangement. We conduct reward normalisation for both immediate
reward and the collision penalty, which maintains a running mean µt and a standard deviationσt

of a given reward sequence and returns a z-score zt =
rt−µt

σt
as the normalised reward. For room

rearrangement, we choose t = 0.01 to output the gradient-based action and estimate the immediate
reward.

RL Backbone: We use Soft-Actor-Critic (SAC) [45] as our RL backbone and implement SAC
based on an open-sourced PyTorch implementation on GitHub [59] with 300+ stars. We keep all the
hyperparameters the same except that γ = 0.95 since the reward signal is dense in our case. We set
training iteration to 500,000 for ball rearrangement and 1,000,000 for room rearrangement.

Actor Network: Similar to the target score network, we first encode the state feature f i
a ∈ Rdh

and static feature f i
s ∈ Rde for the i-th agent. We also compute the target gradient on the state

g = Φtar(s, t). For room rearrangement, we also additionally encode the wall feature fw ∈ Rde

from the aspect ratio via two linear layers.

The content of the i-th node of the input graph is the concatenation of the state feature, static
feature and gradient component on the i-th object [f i

s, f
i
a,gi] ∈ Rde+dh+3 (For room rearrangement

[f i
s, f

i
a, fw,gi] ∈ Rde∗2+dh+3). After 1 (2 for room rearrangement) layers of message passing via

Edge Convolution where the inner network is two layers of MLPs with hidden size dh, the 2×2 (3×2
for room rearrangement) dimensional node features serve as the mean and variance of the action
distribution of the objects.

Critic Network: The architecture of the critic network is similar to the actor network. We additionally
encode the action feature f i

ac ∈ Rde from the i-th object’s action component and then concatenate
the action feature with the graph node content. After the message passing, each node contains a
one-dimensional output. We mean pooling the outputs across all nodes to get the output of the critic
network.

C Details of Baselines

Here we briefly describe the implementation details of baselines. We recommend directly searching
for more details in the supplementary codes.

C.1 Goal-based Baselines

These baselines refer to the Goal-SAC and Goal-ORCA in experiments.

Goal Proposal: This type of baseline first train a VAE on the target examples and then leverages the
trained VAE for the goal proposal. The VAE is implemented as a GNN, and the model capacity is
similar to our target score network for a fair comparison. We choose λkl = 0.01 for Circling and
Clustering and λkl = 0.02 for Circling+Clustering.

Execution: At the beginning of each episode, the agent first proposes a goal for this episode using
the VAE and then reaches the goal via a control algorithm. In Goal-ORCA, the agent reaches the
goal by a planning-based method: The agent first assigns velocities for each ball that points to the
corresponding goal. Then these velocities are updated by the ORCA planner ϕ to be collision-free. In
Goal-SAC, the agent trains a multi-agent goal-conditioned policy via goal-conditioned RL to reach
the goal: Similar to Ours-SAC, the reward of the i-th object at timestep t is rit = ||st−sgoal||1+λ∗cit
where sgoal denotes the goal proposal, λ is a hyper-parameter and cit =

∑
j ̸=i coli,j is the total

18

number of collisions between the i-th object and the others. Here coli,j = 1 when We choose λ = 3
for ball rearrangement and λ = 0.2 for room rearrangement.

C.2 Classifier-based Baselines

These baselines refer to the RCE, SQIL and GAIL in experiments.

RCE and SQIL are implemented based on the codes [21] released by RCE’s authors. We only
modify γ = 0.95, the training steps decrease to 0.5 million for ball rearrangement (i.e., the same
number of training steps as other methods) and the model architecture. The architecture of actor and
critic networks is implemented the same as ours(i.e., the same feature extraction layers and Edge
Convolutional layers, except for the target gradient feature).

GAIL is actually a modification of our learning-based framework: Keeping the RL agent the same(i.e.,
multi-agent SAC), GAIL’s reward is given by a discriminator. The architecture of the discriminator is
the same as our critic network, except that the input graph does not contain the action feature.

At each training step, we update the discriminator by distinguishing between the agents’ and the
expert’s states(for one step) and then update the RL policy under the reward given by the discrimi-
nator(for one step). The agent also receives a collision reward during training similar to Ours-SAC
and Goal-SAC: rit = D(st+1) + λ ∗ cit where D denotes the classifier trained by GAIL. We do not
conduct reward normalisation for GAIL as the learned reward is unstable. We choose λ = 10 for
room rearrangement, Circling and Circling+Clustering, λ = 100 for Clustering.

D Details of Evaluations

D.1 Ball rearrangement

We collect 100 trajectories for each task starting from the same set of initial states. To calculate
the coverage score, we sample fixed sets examples from the target distribution serving as Sgt for
Circling, Clustering, and Circling+Clustering, respectively. We sample 20 examples for Circling
and Circling+Clustering and 50 examples for Clustering. Since the balls in the same category can
actually be viewed as a two-dimensional point cloud, we measure the distance between two states by
summing the CDs between each pile of balls by category.

D.2 Room rearrangement

For each room in 83 test rooms, we collect eight initial states. Then we collect 83x8 trajectories
starting from these initial states for each method. The coverage score is calculated by averaging the
coverage score in each room condition since the state dimension differs in different rooms. For each
room in 83 test rooms, we calculate the coverage score between the eight ground truth states and eight
rearrangement results and then the averaged coverage score over the 83 rooms is taken as the final
coverage score for a method. We measure the distance between two states by calculating the average
L2 distance between the positions (i.e., we ignore the orientations) of the corresponding objects.

E Additional Results

E.1 Single-mode Problem of Ours w/o Residual

In Fig. 7 we show qualitative results of Ours w/o Residual. Apparently, the balls are arranged into a
single pattern in all three ball rearrangement tasks, while the examples from the target distribution are
diverse. In the most difficult task Circling + Clustering, the agent cannot even reach a terminal state
with a high likelihood. This result indicates that Ours w/o Residual failed to explore the high-density
region of target distribution without residual learning.

E.2 Effectiveness of Reward Learning

In each ball rearrangement task, we collect 100 trajectories, each of which is run by a hybrid policy.
The hybrid policy takes the first 50 steps using the Ours (ORCA) and the next 50 steps using random

19

actions. To evaluate the effectiveness of our method on reward learning, we compare the estimated
reward curve of Ours (SAC) and GAIL with the pseudo likelihood(PL) curve of the trajectories.

As shown in 8, the reward curve of Ours (SAC) best fits the trend of the pseudo-likelihood curve,
which shows the effectiveness of our reward estimation method.

E.3 Efficiency Problem of Goal-conditioned Baselines

In Fig. 1, we report the comparative results of our framework and goal-based baselines(e.g.,
Goal (SAC), Goal (ORCA)) on a new metric named absolute state change(ASC). The ASC measures
the sum of the absolute paths of all small balls in the rearrangement process.

ASC =
∑

1≤t≤T

∑
1≤k≤K

||skt − skt−1||1 (9)

As shown in Fig. 1, Ours (SAC) and Ours (ORCA) are significantly better than Goal (SAC) and
Goal (ORCA), respectively. This result explains why our method’s likelihood curves are better than
the goal-based baselines’: The proposed goal is far away from the initial state, which harms the
efficiency of goal-based approaches.

Table 1: Quantitative comparison results of our framework(Ours (ORCA), Ours (SAC)) and goal-based
baselines(Goal (ORCA), Goal (SAC)) in rearrangement efficiency. For each method, we report the
mean and standard deviation of absolute state change over 100 episodes on each ball rearrangement
task.

Method Circling Clustering Circling+Clustering
21 balls 30 balls 21 balls 30 balls 21 balls 30 balls

Ours-ORCA 23.16 +- 2.42 29.08 +- 2.43 13.72 +- 1.40 16.60 +- 1.68 19.54 +- 2.19 23.29 +- 2.18
Goal-ORCA 28.05 +- 2.82 31.98 +- 2.90 27.57 +- 2.90 33.37 +- 4.06 27.77 +- 2.86 32.47 +- 2.99

Ours-SAC 56.76 +- 4.83 78.18 +- 6.75 65.35 +- 4.64 110.06 +- 4.25 48.93 +- 4.68 80.01 +- 6.19
Goal-SAC 108.25 +- 7.53 139.26 +- 8.24 118.15 +- 5.84 142.05 +- 7.56 122.72 +- 5.93 161.01 +- 6.84

E.4 Visualisations of Goals Proposed by the VAE

We demonstrate the visualisations of goal proposals by the VAE used in goal-based baselines.
Typically, the proposed goals indeed form a reasonable shape that is similar to the target examples.
However, it is hard to generate a fully legal goal since the VAE is not accessible to the dynamics of
the environment or has enough data to infer the physical constraints of the environment. As shown in
Fig. 9, there exist many overlaps between balls in generated goals, which causes the balls to have
conflicting goals and thus harms the efficiency of goal-based baselines.

Circling + ClusteringClusteringCircling

Figure 7: We visualise rearrangement results of Ours w/o Residual to demonstrate the ‘single pattern’
phenomenon.

20

0 25 50 75 100
Time Step

0.5

0.0

0.5

1.0

1.5

ER

Circling

Oracle
Ours (SAC)
GAIL (SAC)

0 25 50 75 100
Time Step

0.0

0.5

1.0

ER

Clustering

Oracle
Ours (SAC)
GAIL (SAC)

0 25 50 75 100
Time Step

0.5

0.0

0.5

1.0

ER

Circling + Clustering

Oracle
Ours (SAC)
GAIL (SAC)

Figure 8: Given a set of identical trajectories, we compare the estimated reward(ER) of different
methods and pseudo likelihood(PL). All curves are normalised to the range of [- 1,1].

Circling + ClusteringClusteringCircling

Figure 9: We visualise the goals proposed by the VAE used in Goal (ORCA) and Goal (SAC).

E.5 Six-modes Clustering

Task Settings: This task is a six-modes extension of Clustering, where the centres of clusters are
located in the following six patterns.

Locations Mode1 Mode2 Mode3 Mode4 Mode5 Mode6

(0.18 cos(2π3), 0.18 sin(2π3)) R R B B G G
(0.18 cos(4π3), 0.18 sin(4π3)) G B G R B R
(0.18 cos(2π), 0.18 sin(2π)) B G R G R B

Defining the joint centres’ positions as a latent variable C = (Cr, Cg, Cb) where Cr, Cg and Cb

denote centres of red, green and blue balls, respectively and the above six modes as {ci}1≤i≤6, the C
obeys a categorical distribution p(C = ci) =

1
6 .

The target distribution of six-modes clustering is a Gaussian Mixture Model:

pGMM (s) =
∑

1≤k≤6

p(C = ck)p(s|C = ck)

p(s|C = ck) =
∏

1≤i≤K
3

N (Ck
r , 0.05I)(s

i)
∏

K
3 ≤i≤ 2K

3

N (Ck
g , 0.05I)(s

i)
∏

2K
3 ≤i≤K

N (Ck
b , 0.05I)(s

i)

(10)

Notably, the ‘mean mode’ of the above six modes is the origin, i.e., 1
6

∑6
i=1 ci =

((0, 0), (0, 0), (0, 0)). If the policy arranges the balls into this mean pattern, then the balls should
be centred around (0, 0) (i.e., all positions of balls obey N (0, 0.05I)). As shown in Fig. 10 (a), we
illustrate an example for each mode.

Implementation Details: We evaluate Ours (SAC) and Ours (ORCA) on this task. The performances
are normalised by the Oracle.

21

Methods Average Entropy ↓ Mode1 Mode2 Mode3 Mode4 Mode5 Mode6

GT 0.0066 0.17 0.17 0.17 0.17 0.17 0.17
Ours(SAC) 0.0037 0.15 0.18 0.31 0.14 0.10 0.13

Ours(ORCA) 0.0056 0.17 0.17 0.16 0.11 0.19 0.19

Results: We report the pseudo-likelihood curves of our methods. As shown in Fig. 10 (b), the
rearrangement results are close to ground truth examples from the target distribution.

Figure 10: Pseudo likelihood curves and qualitative results of six-modes clustering.

We further compute the latent distributions for rearrangement results of Ours (SAC) using the
Bayesian Theorem:

p(C = ci|s) =
p(s|C = ci)p(C = ci)∑
j p(s|C = cj)p(C = cj)

(11)

p(C = ci|s) indicates which mode a state belongs to. To demonstrate our rearrangement results are
close to one of the six modes, instead of concentrating on a ‘mean’ pattern, we evaluate the average
entropy of the latent distributions E[H(p(C|s))]. As shown in Fig. E.5, the average entropy of our
methods is even lower than ground truths’. This indicates each state in our rearrangement results
distinctly belonging to one of the categories.

We also report the average latent distribution E[p(C|s)]. As shown in Fig. E.5, our methods’ averaged
latent distribution (overall rearrangement results) achieve comparable orders of magnitude in different
modes. This shows the rearrangement of our methods can cover all the mode centres.

E.6 Move One-ball at a Time

Task Settings: This task is an extension of Clustering where the policy can only move one ball at
a time. We increase the horizon of each episode from 100 to 300. At each time step, the agent can
choose one ball to take a velocity-based action for 0.1 seconds.

Implementation Details: We design a bi-level approach based on our method as shown in Fig. 11
(b): Every 20-time steps, the high-level planner outputs an object index it with the largest target
gradient’s component:

it = argmax
i

||gi
t||2 (12)

where gi
t ∈ R2 denotes the component of the target gradient on the i-th object. In the following 20

steps, the ORCA planner computes the target velocity according to gi
t and masks all other objects’

velocities to zero.

We compare our method with a goal-based baseline where the agent generates goals for each object
via the VAE used in Goal (ORCA). Then the high-level planner chooses the object with the farthest
distance to the goal, denoted as it. The low-level planner of this baseline is the same as ours.

Results: As shown in Fig. 11 (a), (c), our method achieves more appealing results, better efficiency
and performance compared with the goal-based baseline.

22

Figure 11: (a): Quantitative results. (b): Illustration of our bi-level policy. (c): Qualitative results.

E.7 Force-based Dynamics

Task Settings: This task is an extension of Circling + Clustering where the agent can only impose
forces on the objects instead of velocities. At each time step, the agent can assign a two-dimensional
force fi ∈ R2 on each object.

Implementation Details: Similar to the ‘one at a time’ experiment, we design a bi-level approach
to tackle this task, as Fig. 12 (b) illustrates. The high-level policy outputs a target velocity every
eight steps. In the following eight steps, after the target velocities are outputted, the low-level PID
controller receives the target velocity and outputs the force-based action to minimise the velocity
error. We set KP = 10.0,KI = 0.0,KD = 0.0 for PID controller.

This policy is compared with Ours (SAC) in the main paper.

Results: As shown in Fig. 12. (a) and (c), this force-based policy achieves comparable performance
with Ours (SAC) yet suffers from a slight efficiency drop due to the control error of PID.

Figure 12: (a): Quantitative results. (b): Illustration of our bi-level policy. (c): Qualitative results.

E.8 Image-based Reward Learning

0 25 50 75 100
Time Step

0.00

0.25

0.50

0.75

1.00

PL

Clustering

Ours(Image)
Goal(State)
Ours(State)

Figure 13: Quantitative results of image-
based reward learning experiment.

Task Settings: The target score network is trained on
image-based target examples. We simply render the state-
based target example set used in Ours (SAC) to 64x64x3
images and

Implementation Details: Our target score network of
Ours(Image) is trained on the image-based examples set.
The policy network and gradient-based action are state-

23

based since we focus on image-based reward learning
instead of visual-based policy learning.

This approach is compared with Ous(SAC) and Goal (SAC) in the main paper.

Results: Results in Fig. 13 show that Ours(Image) achieves slightly better performance than
Goal (SAC) yet is lower than Ours (SAC) due to the increment of the dimension. This indicates that
our reward learning method is still effective in image-based settings.

24

	Details of Rearrangement Tasks
	Ball Rearrangement
	Room Rearrangement

	Details of Our Method
	Training the Target gradient Field
	Details of ORCA and Planning-based Framework
	Complete Derivation of Surrogate Objective
	Details of Learning-based Framework

	Details of Baselines
	Goal-based Baselines
	Classifier-based Baselines

	Details of Evaluations
	Ball rearrangement
	Room rearrangement

	Additional Results
	Single-mode Problem of Ours w/o Residual
	Effectiveness of Reward Learning
	Efficiency Problem of Goal-conditioned Baselines
	Visualisations of Goals Proposed by the VAE
	Six-modes Clustering
	Move One-ball at a Time
	Force-based Dynamics
	Image-based Reward Learning

