
A Proof

Theorem 1: Suppose that DARTS obtains the optimized architecture parameter α with supernet weights θ∗

after supernet training, α changes to α̂ when conducting architecture discretization, and the train-from-scratch
validation loss for α̂ is L(θ̂∗, α̂). If the third-derivative of the loss function L at optimum is zero or sufficiently
small [4], and with ∂L(θ̂∗,α̂)

∂θ
= 0, we have

∆L = L(θ̂∗, α̂)− L(θ∗, α) ≈ L(θ∗, α̂)− L(θ∗, α)

− 1/2 ∗ ∂L(θ∗, α̂)
∂θ

T

∗ ∂2L(θ∗, α̂)
∂θ∂θ

−1

∗ ∂L(θ∗, α̂)
∂θ

.
(9)

Proof of Theorem 1: Based on Eq.(4), we now only need to calculate ∆θ to get ∆L after we change the
α to α̂ as other parts could be directly obtained, while we try to avoid the time-consuming retraining process
through leveraging implicit function to estimating θ̂∗. First, based on the local optimal, we have

∂L(θ̂∗, α̂)
∂θ

= 0. (10)

When we consider the second-order Taylor expansion on θ, we have

∂(L(θ∗, α̂) + (∂L(θ∗,α̂)
∂θ

)T ∗∆θ +∆θT ∗ ∂2L(θ∗,α̂)
∂θ∂θ

∗∆θ)

∂θ
≈ 0. (11)

∂L(θ∗, α̂)
∂θ

+
∂2L(θ∗, α̂)

∂θ∂θ
∗∆θ ≈ 0. (12)

Eq. (12) is obtained since we assume the third-derivative of the loss function L at optimum is zero or sufficiently
small [4]. And we have

∆θ ≈ −∂2L(θ∗, α̂)
∂θ∂θ

−1

∗ ∂L(θ∗, α̂)
∂θ

. (13)

So,

∆θT
∂L(θ∗, α̂)

∂θ
≈ −∂L(θ∗, α̂)

∂θ

T

∗ ∂2L(θ∗, α̂)
∂θ∂θ

−1

∗ ∂L(θ∗, α̂)
∂θ

(14)

∆θT ∗ ∂2L(θ∗, α̂)
∂θ∂θ

∗∆θ ≈ ∂L(θ∗, α̂)
∂θ

T

∗ ∂2L(θ∗, α̂)
∂θ∂θ

−1

∗ ∂L(θ∗, α̂)
∂θ

(15)

In this way, based on Eq.(4), (14) and (15), we have

∆L = L(θ̂∗, α̂)− L(θ∗, α)

≈ L(θ∗, α̂)− L(θ∗, α)− 1/2 ∗ ∂L(θ∗, α̂)
∂θ

T

∗ ∂2L(θ∗, α̂)
∂θ∂θ

−1

∗ ∂L(θ∗, α̂)
∂θ

(16)

In this way, we can approximate every change in the α.

□

Corollary 1: Based on the Assumption 1-3, we could bound the error between the approximated validation
loss L(θ̂∗, α̂) and the ground-truth L̃2(θ̂

∗, α̂) in DARTS with E =
∥∥∥L(θ̂∗, α̂)− L̃(θ̂∗, α̂)

∥∥∥ ⩽ K3

6
max

∣∣∣ ∂L3

∂θ3

∣∣∣,
where K = CL

λ
∗ ∥∆α∥+ CH∗C2

a

2∗σ2
min∗λ ∗ ∥∆α∥2 + o(∥∆α∥4).

Proof of Corollary 1: Before our analysis on the error bound of approximation in Theorem 1, we first
restate the following common assumptions in the bi-level optimization [9, 15–17, 51].

Assumption 1: For any θ and α, L(·, α) and L(θ, ·) are Lipschitz continuous with constant Cf > 0 and
constant CL > 0, respectively.

14

Assumption 2: L(θ, α) is twice differentiable with constant CH and is λ-strongly convex with θ around
θ∗(α).

Assumption 3:
∥∥∇2

θαL
∥∥ is bounded with constant Ca > 0.

Now we can estimate the error bound produced by Theorem 1. First, the error is due to the second-order Taylor
expansion on θ in Eq. (4). We have the error

E =
∥∥∥L(θ̂∗, α̂)− L̃(θ̂∗, α̂)

∥∥∥ ≤ |∆θ|3

6
max

∣∣∣∣∂L3

∂θ3

∣∣∣∣ , (17)

where we should notice that the approximated validation loss L(θ̂∗, α̂) is Taylor expansion of L̂ in the point

θ̂∗ − ∆θ. Since we set that ∆θ = − ∂2L(θ∗,α̂)
∂θ∂θ

−1

∗ ∂L(θ∗,α̂)
∂θ

in Eq. 13, this error E could be easily bound.

However, we should notice that our ∆θ = − ∂2L(θ∗,α̂)
∂θ∂θ

−1

∗ ∂L(θ∗,α̂)
∂θ

is an approximation, that θ∗ +∆θ ̸= θ̂∗,
and we define that θ∗ +∆θ = θ̂∗e and ∆θe = θ̂∗ − θ̂∗e .

First, we have

∥∆θ∥ =
∥∥∥θ∗ − θ̂∗ + θ̂∗ − θ̂∗e

∥∥∥ ≤
∥∥∥θ∗ − θ̂∗

∥∥∥+
∥∥∥θ̂∗ − θ̂∗e

∥∥∥ (18)

For the first part in Eq. (18), based on Assumption 2 that L(θ, α) is λ-strongly convex with θ around θ∗, we
have: ∥∥∥∇L(θ̂∗, α̂)−∇L(θ∗, α̂)

∥∥∥ ≥ λ ∗
∥∥∥θ̂∗ − θ∗

∥∥∥ , (19)

and ∥∥∥θ∗ − θ̂∗
∥∥∥ ≤ 1

λ
∗ ∥∇L(θ∗, α̂∗)∥ . (20)

When we consider that L(θ∗, α) is CL Lipschitz continuous with α, we have

∥∇L(θ∗, α̂∗)−∇L(θ∗, α∗)∥ ≤ CL ∗ ∥∆α∥ . (21)

Baesd on Eq. (20) and (21), we have ∥∥∥θ∗ − θ̂∗
∥∥∥ ≤ CL

λ
∗ ∥∆α∥ (22)

As to the second part, when we assume that L(θ, α) is λ-convex near the local optimal, we also have∥∥∥∇L(θ̂∗, α̂)−∇L(θ̂∗e , α̂)
∥∥∥ ≥ λ ∗

∥∥∥θ̂∗ − θ̂∗e

∥∥∥ (23)

where θ̂∗ is the true optimal, and θ̂∗e is the approximate local optimal when we utilize the implicit function
theorem to approximate ∆θ in Eq. 13.

so that, we have

∥∆θe∥ =
∥∥∥θ̂∗ − θ̂∗e

∥∥∥ ≤ 1

λ
∗
∥∥∥∇L(θ̂∗, α̂)−∇L(θ̂∗e , α̂)

∥∥∥ (24)

Consider the local optimal that ∇L(θ̂∗, α̂) = 0, we have

∥∆θe∥ ≤ 1

λ
∗
∥∥∥∇L(θ̂∗e , α̂)

∥∥∥ (25)

Now, we need to bound
∥∥∥∇L(θ̂∗e , α̂)

∥∥∥.∥∥∥∇L(θ̂∗e , α̂)
∥∥∥ = ∥∇L(θ∗ +∆θ, α̂)∥ (26)

Since we utilize Eq. (13) that ∆θ = − ∂2L(θ∗,α̂)
∂θ∂θ

−1

∗ ∂L(θ∗,α̂)
∂θ

to conduct the second-order Taylor expansion,
we have

−∂2L(θ∗, α̂)
∂θ∂θ

∗∆θ=
∂L(θ∗, α̂)

∂θ
(27)

15

So ∥∥∥∇L(θ̂∗e , α̂)
∥∥∥ =

∥∥∇θL(θ∗ +∆θ, α̂)−∇θL(θ∗, α̂)−∇2
θL(θ∗, α̂) ∗∆θ

∥∥
=

∥∥∥∥∫ 1

0

(
∇2

θL(θ∗ + t ∗∆θ, α̂)−∇2
θL(θ∗, α̂)

)
∗∆θ dt

∥∥∥∥
=

∥∥∥∥∆θ ∗
∫ 1

0

(
∇2

θL(θ∗ + t ∗∆θ, α̂)−∇2
θL(θ∗, α̂)

)
dt

∥∥∥∥
= ∥∆θ∥ ∗

∥∥∥∥∫ 1

0

(
∇2

θL(θ∗ + t ∗∆θ, α̂)−∇2
θL(θ∗, α̂)

)
dt

∥∥∥∥
≤ ∥∆θ∥ ∗

∥∥∥∥∫ 1

0

CH ∗ t ∗∆θ dt

∥∥∥∥ =
CH

2
∥∆θ∥2

=
CH

2

∥∥∥∥∥∂2L(θ∗, α̂)
∂θ∂θ

−1

∗ ∂L(θ∗, α̂)
∂θ

∥∥∥∥∥
2

≤ CH

2 ∗ σ2
min

∥∥∥∥∂L(θ∗, α̂)∂θ

∥∥∥∥2

≤ CH ∗ C2
l

2 ∗ σ2
min

(28)

where the second row is calculated since
∫
∇θL2(θ∗ + t ∗∆θ, α̂) ∗∆θ dt = ∇θL(θ∗ + t ∗∆θ, α̂). The fifth

row is calculated as we assume that L is convex and twice-differentiable with CH . And we assume that the
∂L(θ∗,α̂)

∂θ
is bounded by Cl. σmin is the smallest eigenvalue of Hessian matrix ∂2L(θ∗,α̂)

∂θ∂θ
.

In addition, when we consider a more tight bound, and consider a Taylor expansion on α, we have∥∥∥∥∂L(θ∗, α̂)∂θ

∥∥∥∥2

=

∥∥∥∥∥∂(L(θ∗, α) + ∆α ∗ ∂L(θ∗,α)
∂α

+ o(∆α))

∂θ

∥∥∥∥∥
2

≤
∥∥∥∥∆α

∂2L(θ∗, α)
∂α∂θ

∥∥∥∥2

+ o(∥∆α∥2)

≤ C2
a ∥∆α∥2 + o(∥∆α∥2),

(29)

where the second row is obtained based on the local optimal ∂L(θ∗,α)
∂θ

= 0. So, we have

∥∇L(θ∗e , α̂)∥ ≤ CH ∗ C2
a

2 ∗ σ2
min

∗ ∥∆α∥2 + o(∥∆α∥2), (30)

and

∥∆θe∥ ≤ CH ∗ C2
a

2 ∗ σ2
min ∗ λ ∗ ∥∆α∥2 + o(∥∆α∥2). (31)

Based on Eq. (18), (22), and (31), we have

∥∆θ∥ ≤ CL

λ
∗ ∥∆α∥+ CH ∗ C2

a

2 ∗ σ2
min ∗ λ ∗ ∥∆α∥2 + o(∥∆α∥2) (32)

The final error bound can be calculated as:

E ≤ K3

6
max

∣∣∣∣∂L3

∂θ3

∣∣∣∣ (33)

where K = CL
λ

∗ ∥∆α∥+ CH∗C2
a

2∗σ2
min∗λ ∗ ∥∆α∥2 + o(∥∆α∥2).

□

Derivation of Eq. (6): In Section 4, when we consider a first-order Taylor expansion on α as we only apply
an infinitesimal change of α, and we alsoconsider a second-order Taylor expansion on θ, we have

16

∆L =L(θ̂∗, α̂)− L(θ∗, α) ≈ L(θ̂∗, α) + ∆αT ∂L(θ̂∗, α)
∂α

− L(θ∗, α)

≈ ∆θT ∗ ∂L(θ∗, α)
∂θ

+ 1/2∆θT ∗ ∂2L(θ∗, α)
∂θ∂θ

∆θ +∆αT ∗ ∂L(θ̂∗, α)
∂α

= 1/2∆θT ∗ ∂2L(θ∗, α)
∂θ∂θ

∆θ +∆αT ∗ ∂L(θ̂∗, α)
∂α

,

(34)

where the last row is obtained is obtained due to the local optimal ∂L(θ∗,α)
∂θ

= 0. □

Theorem 2: Supposed that DARTS obtains the optimized architecture parameter α with supernet weights
θ∗ after supernet training, and we pose an infinitesimal change on α. Based on implicit function theorem and
under the assumption that the third-derivative of the loss function at optimum is zero or sufficiently small [4],
the change of validation performance can be estimated as:

∆L = L(θ̂∗, α̂)− L(θ∗, α) ≈ −1/2∆αT ∗ ∂2L(θ∗, α)
∂α∂θ

∗H−1 ∗ ∂2L(θ∗, α)
∂θ∂α

∗∆α, (35)

where H = ∂2L(θ∗,α)
∂θ∂θ

is the Hessian matrix.

Proof of Theorem 2: Although Section 3 provides an iterative solution to measure the operation importance
based Eq. (5) through individually removing each operation, we need to calculate n times (the number of
all candidate operations in the supernet work) to estimate the importance of all candidate operations. More
important, since removing one operation poses a considerable change on α (αi → 0), the approximation error
produced by Eq.(5) is non-negligible which may affects the accuracy as stated by Corollary 1. So, a more
practical solution to illustrate the importance of each operation is to estimate how the validation performance
will change after posing an infinitesimal change on α, a.k.a. operation sensitivity, and we can directly get the
operation importance with one calculation.

When we consider that DARTS obtains the optimized architecture parameter α with supernet weights θ∗ after
supernet training, and we pose an infinitesimal change on α, we can conduct a first-order Taylor expansion on α
a second-order Taylor expansion on θ. So that we have get the Eq. (34) as stated in the above. When we further
conduct a second Taylor expansion on θ̂∗ for ∂L(θ̂∗,α)

∂α
, we have

∆L ≈ 1/2∆θT ∗ ∂2L(θ∗, α)
∂θ∂θ

∆θ +∆αT ∗ ∂L(θ̂∗, α)
∂α

≈ 1/2∆θT ∗ ∂2L(θ∗, α)
∂θ∂θ

∆θ +∆αT ∗ (
∂(L(θ∗, α) + ∆θT ∗ ∂L(θ∗,α)

∂θ
+∆θ ∗ ∂2L(θ∗,α)

∂θ∂θ
∗∆θT)

∂α
)

≈ 1/2∆θT ∗ ∂2L(θ∗, α)
∂θ∂θ

∆θ +∆αT ∗ ∂2L(θ∗, α)
∂α∂θ

∗∆θ,

(36)

where the last row is obtained when we neglect the third and higher derivatives of the loss function with
considering the chain rule that ∂L

∂α
= ∂L

∂θ
∗ ∂(θ∗(α))

∂α
, and assume α is a local optimal for the continuous

magnitude optimization after architecture search. From the above, we can find that, the challenge is still that it
is intractable to calculate ∆θ. Similar as before, when we consider implicit function and second-order Taylor
expansion on θ, we have

∂L(θ̂∗, α̂)
∂θ

= 0 (37)

∂(L(θ∗, α) + ∆αT ∗ ∂L(θ∗,α)
∂α

+∆θT ∗ ∂L(θ∗,α̂)
∂θ

+∆θ ∗ ∂2L(θ∗,α̂)
∂θ∂θ

∗∆θT)

∂θ
≈ 0 (38)

When we neglect the third and higher derivatives and the local optimal ∂L(θ∗,α)
∂θ

= 0, we have

∆θT ∗ ∂2L(θ∗, α̂)
∂θ∂θ

≈ −∆αT ∗ ∂2L(θ∗, α)
∂α∂θ

(39)

Then, similar as before, when we apply a first-order Taylor expansion on α̂, with the chain-rule and neglect third
and higher derivatives, we have

17

∆θT = −∆αT ∗ ∂2L(θ∗, α∗)

∂αθ
∗ ∂2L(θ∗, α∗)

∂θ∂θ

−1

(40)

After applying Eq. (40) on Eq. (36), we have

∆L = −1/2∆αT ∗ ∂2L(θ∗, α∗)

∂αθ
∗H−1 ∗ ∂2L(θ∗, α∗)

∂θ∂α
∗∆α (41)

□

B Practical Implementation

To practically calculate the proposed influential magnitude as Definition 1, we need to estimate the Inverse-
Hessian-Vector products (IHVPs) H−1v, and v ∗ ∂2L(θ∗,α)

∂α∂θ
. In the following, we first described two methods to

estimate H−1v, and the following DARTS to described the practical calculation on v ∗ ∂2L(θ∗,α)
∂α∂θ

.

B.1 Neumann series approximation for Lemma 1

The most common method for the IHVPs is the Neumann series that, for ∥I −A∥ < 1, we have:

A−1 =

∞∑
k=0

(I −A)k. (42)

However, it is impossible to guarantee that ∥I −H∥ < 1. Different from [22], we consider H−1 = γ(γH)−1.

When assuming H is bounded with σmax,
∥∥∥ ∂2L

∂θ∂θ

∥∥∥ < σmax. With γ < 1
σmax

, we have
∥∥∥I − γ ∂2L

∂θ∂θ

∥∥∥ < 1

[29, 36]. When we conduct the Neumann series approximation for
[

∂2L
∂θ∂θ

]−1

in the optimal point, we have:[
∂2L
∂θ∂θ

]−1

= γ(I − I + γ
∂2L
∂θ∂θ

)−1 = γ

∞∑
j=0

[
I − γ

∂2L
∂θ∂θ

]j

. (43)

H−1 = γ

∞∑
k=0

[
I − γ

∂2L
∂θ∂θ

]k

≈ γ

K∑
k=0

[I − γH]k , (44)

when we only consider the first K terms and H is positive in θ∗ (Please note that, generally, we could only
guarantee H is positive when in optimal point). Accordingly, the Lemma 1 is derived.

As suggested by [51], a medium K is large enough to approximate IHVPs, where K = 2 obtains similar results
as K ⩾ 3 while with less computational cost. In this paper, we also observed a similar phenomenon and also set
K = 2 by default in our Neumann series approximation based IHVPs.

B.2 Sherman-Morrison formula for Lemma 2

Apart from the Neumann series approximation, we could also follow the Sherman-Morrison formula to exactly
calculate the inverse of Hessian when we consider the empirical Fisher to replace the Fisher matrix. First, we
know that the Hessian equals to fisher information matrix in the optimal point.

H = ∇θ∇θL = F̂ − 1

n
(yi − f(xi))∇θ∇θf ∈ Rp×p (45)

We name the r = 1
n
(yi−f(xi))∇θ∇θf , which is the residual contribution to Hessian H . At the end of training,

if we can achieve zero training error, namely, yi = f(xi), the residual will converge to zero. We have

H = F̂ = ∇θf(∇θf)
T . (46)

Please note that the dimension of ∇θf is M ∗m where m is the number of classes (output dimension) and M is
the number of parameters. Practically, we usually consider an empirical Fisher to approximate the Fisher matrix
that

F =
1

N

N∑
n=1

∇θL(yn, f(xn))(∇θL(yn, f(xn))
T (47)

18

So, in the remaining text, the F indicates the empirical Fisher for simplicity.

The Sherman-Morrison formula is defined as:

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
(48)

When we define that Fn = 1
N

∑n
n=1 ∇θL(yn, f(xn))(∇θL(yn, f(xn))

T , we can notice that the empirical
Fisher can be represented as FN , and we have:

Fn = Fn−1 +
1

N
∇θLn ∇θLn

T (49)

where L = ℓ+ ηR(θ) that ℓ is a cross-entropy loss and R is the regularization term, and η is the weight-decay,
F0 = ηI . Ln is the loss for the n-th batch dataset. And based on the Sherman-Morrison formula, we have

F−1
n+1 = F−1

n − F−1
n ∇θLn+1∇θLn+1

TF−1
n

N +∇θLn+1
TF−1

n ∇θLn+1

(50)

Please notice that, whether using the Neumann series or the Sherman-Morrison formula, we always need
to calculate the Inverse-Hessian Vector Products (IHVPs) rather than only the Inverse-Hessian. It is easy to
implement the IHVPs based on the Neumann series through the Hessian-vector products based on Lemma 1. In
the following, we discuss how to implement the IHVPs based on Sherman-Morrison formula. When we assume
that we have n+ 1 batches datasets, we have

H−1v = F−1
N v = F−1

n v −
F−1
N−1∇θLN∇θLN

TF−1
N−1

N +∇θLN
TF−1

n ∇θLN

v (51)

We can find that, to solve the previous equation, we need to first recurrently calculate rN = F−1
N−1∇θLN .

F−1
n v = F−1

n−1v − rn
rnT v

N +∇θln
T rn

= λ−1v −
n∑

j=1

rj
rjT v

N +∇θLj
T rj

(52)

We first need to calculate the rn = F−1
n−1∇θLn.

rn = F−1
n−1∇θLn = λ−1∇θLn −

n−1∑
j=1

rj
rjT∇θLn

N +∇θLj
T rj

. (53)

So, we can first iterative calculate rn, and then calculate F−1
n v.

B.3 Practical Calculation on Matrix-Vector product

Apart from the IHVPs, we also need to calculate va ∗ ∂2L
∂α∂θ

and vm ∗ ∂2L
∂θ∂α

, which are called as matrix-vector
product and computational-expensive. Following DARTS [27], we also utilize the finite difference approximation
for the practical calculation.

Let ξ be a small scalar, and consider the function ∂L(θ,α+ξ∗va)
∂θ

with Taylor expansion on α, we have

∂L(θ, α+ ξ ∗ va)
∂θ

=
∂L(θ, α)

∂θ
+ ξ ∗ va

∂2L(θ, α)
∂α∂θ

+ ...,

∂L(θ, α− ξ ∗ va)
∂θ

=
∂L(θ, α)

∂θ
− ξ ∗ va

∂2L(θ, α)
∂α∂θ

+ ...,

(54)

when we only consider the first two terms, we have

va ∗ ∂2L
∂α∂θ

=
∂L(θ,α+ξ∗va)

∂θ
− ∂L(θ,α−ξ∗va)

∂θ

2ξ
. (55)

Similarly, the vm ∗ ∂2L
∂θ∂α

can be approximated as:

vm ∗ ∂2L
∂θ∂α

=
∂L(θ+ξ∗vm,α)

∂α
− ∂L(θ−ξ∗vm,α)

∂α

2ξ
. (56)

19

Table 4: Comparison results with NAS baselines on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet-16-120
Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

Random baseline 83.20±13.28 86.61±13.46 60.70±12.55 60.83±12.58 33.34±9.39 33.13±9.66
RandomNAS [26] 80.42±3.58 84.07±3.61 52.12±5.55 52.31±5.77 27.22±3.24 26.28±3.09
ENAS [33] 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
GDAS [10] 89.88±0.33 93.40±0.49 70.95±0.78 70.33±0.87 41.28±0.46 41.47±0.21
SETN [11] 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
SNAS [42] 90.10±1.04 92.77±0.84 69.69±2.39 69.35±1.98 42.84±1.79 43.16±2.64
PC-DARTS [43] 89.96±0.15 93.41±0.30 67.12±0.39 67.48±0.89 40.83±0.08 41.31±0.22
DARTS (1st) [27] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS (2nd) [27] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS-PT [40] 87.34±0.43 89.63±0.19 62.48±2.89 62.35±2.14 36.35±2.76 36.51±2.13

DARTS-IF 90.13±0.54 91.84±0.84 65.47±1.33 67.94±1.23 42.78±3.57 42.50±3.30
DARTS-IM 90.92±0.34 93.61±0.23 71.21±0.55 71.31±0.40 44.70±0.74 44.98±0.36

optimal 91.61 94.37 74.49 73.51 46.77 47.31

DARTS-IM best single run achieves 94.29%, 72.67%, and 45.93% test accuracy on CIFAR-10, CIFAR-100, and
ImageNet, respectively.

C Why perturbation-based method fails

The perturbation-based method, e.g. the leave-one-out retraining [22], is an intuitive way to measure the
importance of every candidate operations. More detailed, we can individually remove every candidate operation
in each edge, and then fine-tune the supernet to the validation performance drop L(θ̂∗, α̂)−L(θ∗, α). However,
DARTS-PT abandons the retraining part that directly measure the validation performance drop. An concern will
be raised here as the pruned supernet is not trained to optimal, and it is inaccurate to measure the performance
drop by L(θ∗, α̂) − L(θ∗, α). More importantly, since the skip-connection’s magnitude is generally much
higher than other candidate operations, and directly removing skip-connections usually greatly deteriorates the
supernet performance if we do not fine-tune the supernet. This is also the reason why we empirically find that
DARTS-PT still prefers skip-connection than other operations. Figure 8 (a) plots the searched architecture in
NAS-Bench-201 for DARTS-PT, which contains 3 skip-connections. In contrast, the architecture selected by our
influential magnitude only contains 1 skip-connection. This phenomenon also exists in the experiments on the
search space S1 and S2 of [45], where although DARTS-PT can avoid selecting all skip-connections in all edges,
its searched architectures still contains intensive skip-connections.

D Comparison with SOTAs on NAS-Bench-201

We also compared our DARTS-IM with different NAS baselines on the NAS-Bench-201 search space. Table 4
reports the comprehensive validation and test results on all three datasets, including CIFAR-10, CIFAR-100,
and ImageNet. As shown, DARTS is not a valid method for differentiable architecture search, which even
leads to poorer results than random baseline. Although considering other supernet training methods can also
improve the performance, we can also found that, with only replacing the operation selection metric with our
influential magnitude, our DARTS-IM can achieve more competitive results. Moreover, our DARTS-IM achieves
near-optimal results, a 94.29%, 72.67%, and 45.93% test accuracy on CIFAR-10, CIFAR-100, and ImageNet,
respectively, in a single run. Our DARTS-IF, which follows the perturbation-based selection as DARTS-PT
while with an additional approximation term, also outperforms DARTS-PT that again verifies the effectiveness
of the influence function explanation. In addition, due to the requirement of fine-tuning in the perturbation-based
paradigm, DARTS-PT cost much more than our DARTS-IM. Compared with the perturbation-based selection
paradigm, we found that the magnitude paradigm is more efficient and reliable 2.

E Comparison with SOTAs on DARTS space

DARTS search space is a much more complicated search space than NAS-Bench-201 and NAS-Bench-1shot1,
and it is intractable to get the ground truth for all architectures in this space. Generally, most existing works
only report the best searched architecture, making the reproducibility of architecture search weak in this space.
For fair comparison, we also follow the common setting [27, 43] to conduct the architecture search on the

2The example codes and training log files could be found in the supplementary material. The trained supernet
used in this experiment can be found in https://github.com/anonymous-submission1991/DARTS-IM.

20

https://github.com/anonymous-submission1991/DARTS-IM

Table 5: Comparison results with state-of-the-art differentiable NAS approaches.

Method Test Error (%) Param +× Search
CIFAR-10 CIFAR-100 ImageNet (M) (M) Cost

SETN [11] 2.69 17.25 25.7 / 8.0 4.6 610 1.8
SNAS [42] 2.85±0.02 20.09 27.3 / 9.2 2.8 474 1.5
PARSEC [6] 2.86±0.06 - 26.3 3.6 620 0.6
MdeNAS [54] 2.55 17.61 25.5 / 7.9 3.6 506 0.16
GDAS [10] 2.93 18.38 26.0 / 8.5 3.4 545 0.21
PC-DARTS [43] 2.57±0.07 17.11 25.1 / 7.8 3.6 586 0.3
DARTS (1st) [27] 2.94 17.76 - 2.9 513 0.15†
DARTS [27] 2.76±0.09 17.54 26.9 / 8.7 3.4 574 0.4†
DARTS-PT [27] 2.61±0.08 17.49 26.1 / 8.2 3.3 536 0.8†
DARTS-IM 2.50±0.10 17.02 25.0 / 7.6 3.8 599 0.4†

“Param" is the model size when applied on CIFAR-10, while “+×" (the number of multiply-add
operations) is calculated based on the ImageNet dataset. In our experiments, we adjust the number of
initial filters to restrict “+×" to be less than 600M on the ImageNet and CIFAR10. † means the
computational time is calculated with the same environment as [40]. The unit in “Search Cost" is
GPU day.

Table 6: Analyze different approximation method on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet-16-120
Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

Random baseline 83.20±13.28 86.61±13.46 60.70±12.55 60.83±12.58 33.34±9.39 33.13±9.66
DARTS [27] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS-PT [40] 87.34±0.43 89.63±0.19 62.48±2.89 62.35±2.14 36.35±2.76 36.51±2.13
DARTS-IM-I 89.89±0.24 93.11±0.17 69.50±0.60 70.17±0.60 44.45±0.73 44.44±0.32
DARTS-IM-D 89.62±1.70 92.82±1.20 69.17±2.61 69.45±2.72 42.16±3.97 42.07±3.50
DARTS-IM-NS 90.05±0.51 93.35±0.38 69.96±1.13 70.26±1.13 44.43±0.95 44.03±0.75
DARTS-IM-SM 90.92±0.34 93.61±0.23 71.21±0.55 71.31±0.40 44.70±0.74 44.98±0.36

CIFAR-10 dataset in this search space, where the best-found cell is repeatedly stacked to form the full structure
for evaluation on CIFAR-10, CIFAR-100, and ImageNet datasets. Please note that, rather than using a default 36
for the number of initial filters, we adjust it to restrict the number of multiply-add operations (“+×") to be less
than 600M on the ImageNet and to comparable model size with SOTAs on CIFAR10.

Table 5 presents the comparison results with the SOTA differentiable NAS methods. As shown, our DARTS-IM
improves the DARTS baselines by a large margin, in terms of test error on CIFAR-10, CIFAR-100, and ImageNet,
respectively, again verifying the effectiveness of the proposed influential magnitude. More interesting, instead of
changing the complicated supernet training part, we found that simply replacing the magnitude with the proposed
influential magnitude could consistently improve the performance of DARTS with only additional hundred
seconds computational time. Different from the DARTS-PT which contains the supernet retraining that greatly
increases the search time, our DARTS-IM only poses additional hundred seconds in DARTS space. We could
also find that, although the best CIFAR-10 test error by DARTS-PT is comparable with our DARTS-IM, our best
searched architecture obtains lower test error in CIFAR-100 and ImageNet, showing better transferability.

F Analyse the inverse Hessian approximation

In this section, we detailed discuss the effects of different inverse Hessian approximation methods on the
proposed influence magnitude. Apart from the two devised method, Neumann series and Sherman-Morrison
formula, we also consider two commonly-used approaches in approximating the inverse Hessian, identity
approximation and diagonal approximation, which consider the Hessian matrix as an identity matrix and
diagonal matrix, respectively. We conduct a series of experiments on NAS-Bench-201 to analyze different
approximation methods, and all comparison results are reported in Table 6. As shown, even with the identity
approximation, our influential magnitude IM can achieve satisfying results compared with the random baseline
and two heuristic methods. This result indicates that the second-order information ∂2L(θ∗,α)

∂α∂θ
and ∂2L(θ∗,α)

∂θ∂α
can

provide useful information for operation strength estimation. More interesting, when considering the diagonal
Hessian information, we found that our DARTS-IM-D could also achieve excellent performance. The results of

21

1 10 20 30 40

80

85

90

95

Neumann Series with N on CIFAR10

(a) Neumann series.
1 10 20 30 40

87

88

89

90

91

92

93

94

95

96
Sherman-Morrison with N on CIFAR10

(b) Sherman-Morrison formula.
1 10 20 30 40 50

86

88

90

92

94

96

Identity approximation with N on CIFAR10

(c) Identity

1 10 20 30 40

40

45

50

55

60

65

70

75

80
Neumann Series with N on CIFAR100

(d) Neumann series.
1 10 20 30 40

62

64

66

68

70

72

74

Sherman-Morrison with N on CIFAR100

(e) Sherman-Morrison formula.
1 10 20 30 40 50

56

58

60

62

64

66

68

70

72

74

76

Identity approximation with N on CIFAR100

(f) Identity

1 10 20 30 40
15

20

25

30

35

40

45

Neumann Series with N on ImageNet

(g) Neumann series.
1 10 20 30 40

32

34

36

38

40

42

44

46

48

50
Sherman-Morrison with N on ImageNet

(h) Sherman-Morrison formula.
1 10 20 30 40 50

30

32

34

36

38

40

42

44

46

48

50

Identity approximation with N on ImageNet

(i) Identity

Figure 5: Ablation study on N under two approximation methods, where x-axis is N and y-axis
represents test accuracy on CIFAR-10, CIFAR-100, and ImageNet, respectively.

=5e-4 =1e-3 =5e-3 =1e-2 =5e-2
70

75

80

85

90

95

100

A
cc

ur
ac

y

(a) CIFAR-10
=5e-4 =1e-3 =5e-3 =1e-2 =5e-2

50

55

60

65

70

75

A
cc

ur
ac

y

(b) CIFAR-100
=5e-4 =1e-3 =5e-3 =1e-2 =5e-2

20

25

30

35

40

45

A
cc

ur
ac

y

(c) ImageNet-16-120

Figure 6: Hyperparameter γ analysis of DART-IM-NS on the NAS-Bench-201 benchmark dataset.

identity approximation and diagonal approximation demonstrate the robustness of our influential magnitude,
which can still achieve excellent results with different inverse Hessian approximation methods.

However, we also found that an incorrect approximation may lead to poor performance. Similar to Figure 2,
we plots the full NAS-Bench-201 results of our influential magnitude under different inverse Hessian matrix
approximation methods along with the number of batches N , on the CIFAR10, CIFAR100, and ImageNet,
respectively. We compared our DARTS-IM with the DARTS baseline and also the DARTS-PT whose results are
directly obtained from [40]. Please note that, DARTS-PT smooth the line extremely with only report the tendency
of the architecture selection during the search. We can found that the Neumann series approximation could not
obtain stable results, especially when the number of batches increases that the performance of Neumann series
even performs more poorly than identity approximation. As discussed in Section 6.1, these results also verify
that the stochastic Neumann series estimation for IHVP is somehow erroneous. Generally, we found that the
Sherman-Morrison formula is the most practical in estimating the inverse Hessian for our influential magnitude.

Different from Sherman-Morrison formula that only has a hyperparameter N to be tuned and η is fixed in the
optimizer, the Neumann series approximation has a key hyperparameter γ [29, 36] to be tuned, which is assumed

22

0 10 20 30 40 50
Epoch

40

50

60

70

80

90

100

110

Te
st

 A
cc

CIFAR10
DARTS-PT
DARTS
SM(N=1)

(a) CIFAR-10 for SM (N=1).
0 10 20 30 40 50

Epoch

0

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

CIFAR100
DARTS-PT
DARTS
SM(N=1)

(b) CIFAR-100 for SM (N=1).
0 10 20 30 40 50

Epoch

10

15

20

25

30

35

40

45

50

55

Te
st

 A
cc

ImageNet
DARTS-PT
DARTS
SM(N=1)

(c) ImageNet for SM (N=30)

0 10 20 30 40 50
Epoch

40

50

60

70

80

90

100

Te
st

 A
cc

CIFAR10

DARTS-PT
DARTS
SM(N=30)

(d) CIFAR-10 for SM (N=30).
0 10 20 30 40 50

Epoch

0

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

CIFAR100
DARTS-PT
DARTS
SM(N=30)

(e) CIFAR-100 for SM (N=30).
0 10 20 30 40 50

Epoch

10

15

20

25

30

35

40

45

50

55

Te
st

 A
cc

ImageNet
DARTS-PT
DARTS
SM(N=30)

(f) ImageNet for SM (N=1)

Figure 7: Track performance of the derived architectures during the search on NAS-Bench-201
with Sherman-Morrison formula under different N for CIFAR-10, CIFAR-100, and ImageNet,
respectively.

to be small enough that γ < 1
σmax

in Appendix B.1. In this way, we conduct the hyperparameter analysis on γ
for our DARTS-IM when employing the Neumann series approximation. Figure 6 compares the performance of
DARTS-IM with different γ on the NAS-Bench-201. As shown, the Neumann series approximation is sensitive
to the γ, where a large γ significantly deteriorates the performance of DARTS-IM. For example, a γ = 0.05
even makes our DART-IM similar to the performance of the random baseline. Compared with the Neumann
series, we found that the Sherman-Morrison approximation is more robust.

G Visualization of Searched Architectures on Different Spaces

In Figure 8 and 9, we visualize all searched architectures by DARTS baselines, DARTS-PT and also our
DARTS-IM on different search space, including NAS-Bench-201 [12], tool search spaces proposed by [45], and
DARTS search space [27].

First, we analyze these architectures searched on NAS-Bench-201 [12] and tool search spaces proposed by
[40, 45], since which helps us to clearly demonstrate the robustness of different architecture selection methods.
As observed by [40, 45], the most notable drawback of DARTS baseline is the robustness and generalization,
where DARTS fails to select intensive skip-connections with the search progressing. Figure 8 (a-c) plots the
searched architectures on NAS-Bench-201, respectively. As shown, the DARTS baseline selects skip-connection
for all edges, while DARTS-PT can find a valid architecture with only 3 skip-connections when considering a
perturbation-based selection paradigm. More inspiring, the proposed influential magnitude (IM) can select more
competitive architecture which also only contains one skip-connection. Please note that, the trained supernet
keeps identical for DARTS, DARTS-PT, and our DARTS-IM, which only adopt different architecture selection
methods, e.g., argmax, perturbation-based selection, and the proposed influential magnitude.

Similarly, we can also observe this superiority of our IM in the tool search spaces proposed by [40, 45],
especially in the search space S1 and S2. We can find that, our DARTS-IM clearly outperforms DARTS and
DARTS-PT. Although DARTS-PT can partially relieves this instability, it still selects intensive skip-connections.
In the contrary, our DARTS-IM generally prefers convolutional operations. However, although our DARTS-IM
outperforms DARTS baseline in the search space S3, we found that DARTS-PT achieves excellent results in
this space. One potential is that this space contains intensive none operations which is naturally removed by
perturbation-based selection, since removing none will not affect the supernet performance. We also conduct the
architecture search on the search space S4, while we found that our DARTS-IM also performs poorly as DARTS
that select some noise operations. One underlying reason is that it is impossible to train the supernet to optimal
in this space since the noise operation will return a random noise regardless of the input. In addition, DARTS-PT
only locally compares the operations’ strength in each edge, and a fine-tuning is needed after every step of edge
discretization. Differently, our DARTS-IM in this paper consider a global comparison among all operations in a
supernet, which may bring some negative operation coupling. To further improve our proposed DARTS-IM,
a simple and straight approach is to gradually discretize edges in a supenet with fine-tuning, which we leave

23

Table 7: Comparison in test error (%) with DARTS baselines on S1-S4 space.

Dataset Space DARTS DARTS-ES DARTS-PT DARTS-IM (Avg.) DARTS-IM (Best)

C10

S1 4.66±0.71 3.05±0.07 3.50 2.85±0.17 2.68
S2 4.42 ± 0.40 3.41 ± 0.14 2.79 2.51±0.05 2.46
S3 4.12 ± 0.85 3.71 ± 1.14 2.49 3.91±0.07 2.83
S4 6.95 ± 0.18 4.17 ± 0.21 2.64 3.95±0.17 3.72

C100

S1 29.93 ± 0.41 28.90 ± 0.81 24.48 22.80 ± 0.32 22.45
S2 28.75 ± 0.92 24.68 ± 1.43 23.16 21.97 ± 0.61 21.27
S3 29.01 ± 0.24 26.99 ± 1.79 22.03 24.02 ± 0.81 23.12
S4 24.77 ± 1.51 23.90 ± 2.01 20.80 23.58 ± 0.73 22.70

SVHN

S1 9.88 ± 5.50 2.80 ± 0.09 2.62 2.47 ± 0.12 2.35
S2 3.69 ± 0.12 2.68 ± 0.18 2.53 2.50 ± 0.09 2.42
S3 4.00 ± 1.01 2.78 ± 0.29 2.42 2.38 ± 0.11 2.28
S4 2.90 ± 0.02 2.55 ± 0.15 2.42 2.84 ± 0.10 2.73

for our future work. We also show the comparison results in the Table 7 with different DARTS baselines. We
directly report the results of DARTS and DARTS-ES from [45], which contain the mean and std. The results of
DARTS-PT is also inherited from the original paper [40], which only report the best single run. In Table 7, we
report the average and best single run of our DARTS-IM together for better comparison.

Then, we also visualized our searched architectures in the DARTS search space. Interesting, compared with the
DARTS baseline, architecture searched by our DARTS-IM contains several sep_conv 5× 5 operations in the
normal cell, where this phenomenon has never been observed by existing popular DARTS based algorithms.
Similarly, we also found that our reduction cell contains several sep_conv 5 × 5 operations, which is also in
line with another influence based method DARTS-PT and PC-DARTS. More important, different from most
existing works that the normal cell generally contains more parameters than the reduction cell, we found that our
searched architecture prefers more parameters in the reduction cell. This observation is more consistent with the
common experience in the network pruning [24, 25, 39], where we found that most pruning methods will retain
more parameters in the reduction cell and prune more redundant parameters in the normal cell.

H Overall Algorithm Framework Description

In this paper, we proposed two different approaches for the operation selection in DARTS, called DARTS-IF
(described in Sec.3) and DARTS-IM (described in Sec.4). This two approaches are based on the influence
functions to measure the operation importance, where the main different is that DARTS-IF removes a candidate
operation in each step to measure the loss change in a perturbation manner, while DARTS-IM calculate the
loss sensitivity when applying an infinitesimal change on α. The framework of our DARTS-IF and DART-IM
are sketched in Algorithm 1 and 2. Our DARTS-IF shares a similar perturbation paradigm as DARTS-PT,
while without any fine-tuning. Rather than using the validation performance drop to indicate the operation
importance, DARTS-IF leverages influence functions to predict the loss change based on Eq. (5). In our practical
implementation, we consider the Neumann series as described in Lemma 1, or the Sherman-Morrison formula

as described in Lemma 2, to approximate the IHPV ∂2L(θ∗,α̂)
∂θ∂θ

−1
∂L(θ∗,α̂)

∂θ
. More important, different from

DARTS-PT that gradually discretize edges and finetune the supernet, our DARTS-IF only approximates the
effect of independently removing one candidate operation for each edge. In this way, we can get the strength for
all candidate operations under every edge in a supernet.

Different from DARTS-IF and DARTS-PT, our DARTS-IM is with a similar paradigm as DARTS, while
whose operation importance is calculated based on IM, rather that the optimized α. In addition, the operation
importance in our DARTS-IM can be calculated by one-shot, rather than iteratively going through all candidates
operations in a supernet as perturbation paradigm.

In calculating the influence magnitude in our DARTS-IM or the loss change in DARTS-IF, we have three
more hyperparameters, γ for Neumann series approximation, η for Sherman-Morrison approximation, and
batch size N for both. In our experiments, we set γ = 0.001 that is same as the learning rate in optimizing
θ, and η is the weight decay for regularization, which both can be obtained form the optimizer by default.
In the hyperparameter analysis in Figure 2, we found that N = 10 is enough for both Neumann series and
Sherman-Morrison approximation.

24

input

1skip_connect

2nor_conv_3x3 output
skip_connect

nor_conv_3x3

skip_connect

nor_conv_3x3

(a) DARTS-PT: NAS-BENCH-201

input

nor_conv_3x3 1

2
nor_conv_3x3 output

skip_connect

nor_conv_3x3
nor_conv_1x1

nor_conv_3x3

(b) DARTS-IM: NAS-BENCH-201

input

1skip_connect

2skip_connect output
skip_connect

skip_connect

skip_connect

skip_connect

(c) DARTS: NAS-BENCH-201

c_{k-2}

0

1skip_connect

2
skip_connect

3
sep_conv_3x3

 dil_conv_5x5
dil_conv_3x3 dil_conv_3x3

c_{k}dil_conv_3x3

dil_conv_3x3

c_{k-1}

(d) DARTS-IM: S1

c_{k-2}

0

sep_conv_3x3
2

3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

1

sep_conv_3x3

sep_conv_3x3

c_{k}sep_conv_3x3
sep_conv_3x3

c_{k-2}

(e) DARTS-IM: S2

c_{k-2}

0

1

2

skip_connect

c_{k-1}

skip_connect
skip_connect

skip_connect

3sep_conv_3x3

skip_connect

skip_connect

skip_connect

c_{k}

(f) DARTS-IM: S3

0

1
skip_connect

2skip_connect

dil_conv_3x3

skip_connect
skip_connect c_{k}

skip_connect

3dil_conv_3x3

dil_conv_5x5

c_{k-2}

c_{k-1}

(g) DARTS-PT: S1

c_{k-2}

0

1
skip_connect 3

skip_connect

c_{k-1}

sep_conv_3x3

skip_connect

2

sep_conv_3x3

sep_conv_3x3 c_{k}
skip_connect

sep_conv_3x3

(h) DARTS-PT: S2

c_{k-2} 0
sep_conv_3x3

1
sep_conv_3x3

2

skip_connect

3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

skip_connect

sep_conv_3x3

skip_connect

c_{k}

(i) DARTS-PT: S3

c_{k-2}

0

skip_connect

c_{k-1} skip_connect
1

skip_connect

2

skip_connect

3
skip_connect

skip_connect

skip_connect

skip_connect

c_{k}

(j) DARTS: S1

c_{k-2}

0

skip_connect
2skip_connect

c_{k-1}
skip_connect

1skip_connect

skip_connect

skip_connect

3skip_connect
c_{k}

sep_conv_3x3

(k) DARTS: S2

c_{k-2} 0
skip_connect

1
skip_connect

2skip_connect

3
skip_connect

c_{k-1}

skip_connect

skip_connect

skip_connect

skip_connect

c_{k}

(l) DARTS: S3

Figure 8: Searched architectures on NAS-Bench-201 and several tool search spaces in [40, 45].

Algorithm 1 N Differentiable Architecture Search with Influence Functions (DARTS-IF)
1: Input: A pretrained supernet after bi-level training process (θ∗, α), candidate operations for each

edge O, and set of edges E from the supernet.
2: output: A discrete architecture α∗.
3: for e ∈ E do
4: for o ∈ O do
5: Remove candidate operation o from edge e;
6: Calculate the predictive loss chance ∆Lo,e based on Eq. (5), that ∆Lo,e ≈ L(θ∗, α̂) −

L(θ∗, α)− 1/2∂L(θ∗,α̂)
∂θ

T ∂2L(θ∗,α̂)
∂θ∂θ

−1
∂L(θ∗,α̂)

∂θ , as the operation strength;
7: Restore o to O;
8: end for
9: end for

10: Apply argmax on the operation strength ∆L and derive the discrete architecture α∗ accordingly.

25

c_{k-2}
0

skip_connect

c_{k-1}

skip_connect

1max_pool_3x3

2
avg_pool_3x3

3
sep_conv_5x5

sep_conv_5x5

c_{k}dil_conv_3x3

sep_conv_5x5

(a) Influential Magnitude (IM):
Normal Cell

c_{k-2} 0
sep_conv_5x5

1
sep_conv_3x3

2
max_pool_3x3

c_{k-1}

sep_conv_5x5

3sep_conv_5x5

dil_conv_3x3

dil_conv_5x5 c_{k}

sep_conv_3x3

(b) Influential Magnitude (IM): Re-
duction Cell

c_{k-2} 0
sep_conv_3x3

1
sep_conv_3x3

2skip_connect

3
skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

dil_conv_3x3

c_{k}

(c) DARTS: Normal Cell

c_{k-2}

0

max_pool_3x3
2

max_pool_3x3

c_{k-1}

max_pool_3x3

1

max_pool_3x3

3

max_pool_3x3

skip_connect

skip_connect

skip_connect c_{k}

(d) DARTS: Reduction Cell

c_{k-2}

0

sep_conv_3x3

1

sep_conv_3x3

2

skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_3x3 3
sep_conv_3x3

skip_connect

c_{k}

skip_connect

(e) DARTS-PT: Normal Cell

c_{k-2} 0
avg_pool_3x3

c_{k-1}

sep_conv_5x5

1
max_pool_3x3 2

dil_conv_5x5

skip_connect 3
sep_conv_5x5

c_{k}
max_pool_3x3

skip_connect

(f) DARTS-PT: Reduction Cell

c_{k-2}
0

skip_connect

1
sep_conv_3x3

2

sep_conv_5x5 3

avg_pool_3x3

c_{k-1}

sep_conv_3x3

dil_conv_3x3

sep_conv_3x3

dil_conv_3x3 c_{k}

(g) PC-DARTS: Normal Cell

c_{k-2}

0

max_pool_3x3

2

sep_conv_3x3

c_{k-1}

sep_conv_5x5 1

sep_conv_5x5
3

sep_conv_3x3

sep_conv_5x5

sep_conv_3x3 c_{k}

sep_conv_3x3

(h) PC-DARTS: Reduction Cell

Figure 9: Searched architectures on DARTS search space.

Algorithm 2 Differentiable Architecture Search with Influence Magnitude (DARTS-IM)
1: Input: A pretrained supernet after bi-level training process (θ∗, α), candidate operations for each

edge O, and set of edges E from the supernet.
2: output: A discrete architecture α∗.
3: Calculate the influence magnitude IM = −1T ∂2L(θ∗,α)

∂α∂θ H−1 ∂2L(θ∗,α)
∂θ∂α based on Definition1;

4: Apply argmax on the influence magnitude IM and derive the discrete architecture α∗ accordingly.

26

	Introduction
	Preliminaries: DARTS and Influence Function
	Interpret Operation Selection through Influence Functions
	Influential Magnitude for Operation Selection in DARTS
	Practical Calculation on Operation Influence
	Experiments
	Reproducible Comparison on Benchmark Datasets
	Reproducible Comparison on DARTS Search Space
	Discussion on the Robustness of Search
	Discussion at Non-Convergence
	Discussion on the Limitations in Practice

	Conclusion and Future Work
	Proof
	Practical Implementation
	Neumann series approximation for Lemma 1
	Sherman-Morrison formula for Lemma 2
	Practical Calculation on Matrix-Vector product

	Why perturbation-based method fails
	Comparison with SOTAs on NAS-Bench-201
	Comparison with SOTAs on DARTS space
	Analyse the inverse Hessian approximation
	Visualization of Searched Architectures on Different Spaces
	Overall Algorithm Framework Description

