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A Derivation of Mean Value Coordinate
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Figure 1: MVC and cage deformation in 2D case.  Figure 2: MVC extended to 3D scenario

MVC defined by basis vertices vy,2 3 are visualized  via unit sphere projection. v, ;. are

through color. By translating the basis vertices t0  projected points on the unit sphere with

novel positions point p is shifted to p’ while main-  center p from Vi j.x of closed polygon

taining its MVC. mesh (2, and €; ; ;; are unit normals with
origin p.

Mean value coordinates (MVC) were first introduced in [2]] as a way of representing points using
convex combinations of vertices from a polygon. It was later extended to work with 3D closed
meshes [3}[7]. Mean value coordinates encode the position of a given point with respect to a set of
predefined vertices. The relationship between the MVC of a given point and the predefined vertices
is analogous to that between a vector and its corresponding basis in linear algebra, i.e., the predefined
vertices act as the basis in MVC space. Figure [I]illustrates the cage-based deformation using MVC
coordinates in the 2D scenario. Given the predefined vertices {v1, vo, v3}, which act as the basis in
the MVC space, we can express arbitrary points inside the enclosed triangle as linear combinations of
these vertices. For example, the midpoint of line segment V1 V5 can be expressed as % -vy + % - Vo
and hence having the MVC of (0.5, 0.5, 0). In Figure[1] we visualize the MVC of points inside the
triangle by using different colors, and provide the Cartesian plane with origin (2 as the reference
coordinate system. Compared to the left, basis vertices are translated to novel positions. All points
inside the enclosed triangle are shifted and thus have different coordinates in the Cartesian coordinate
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system. Notice that while the position of an arbitrary point p is shifted to p’ after the deformation, its
MVC remain unchanged, i.e., p and p’ share the same color.

In general, given an arbitrary point p inside the convex kernel K of a polygon 2 with n vertices, we
can calculate the MVC by constructing a series of non-negative functions ¢, ¢, -+ , ¢, : K = R,
such that:

D> ¢ip)=1 and > ¢(p)vi =Dp, (1
i=1 i=1

where v; is the i-th ordered vertex of 2. The MVC is defined by:

w; 1 ; Qi—1
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where «; is the angle Zv;pv;1, and r;(p) = ||v; — p||- To extend this case to the 3D scenario, given

a closed polygon mesh €2, its vertices v; € {2 are first projected to a unit sphere with p at its center.
As shown in Figure 2| {€;, €;, €, } are unit vectors from p to the projected vertices {v;, v;, Vi } on
the unit sphere. The MVC of the point p takes the same form as Equation |1} except that ¢; is defined
by:

w; 1
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where T is the spherical triangle enclosed by {v;, v;, vi} and p; r is given by:
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B Datasets

We train our framework on different datasets and evaluate CageNeRF on several tasks. In the
following section, we provide a detailed description of the employed datasets. We will make the
synthetic data publicly available.

For the task of Geometric Editing via Deformation Transfer, we use a synthetic dataset of an office
chair, which act as the static object inside the canonical space, to train our neural renderer. We also
employ the sampled objects from ShapeNet [1]] as deformation targets and comparison baseline to
evaluate the editing results. Our synthetic dataset of the office chair is created from a polygon mesh
with colored texture using 3D render software. The dataset contains around 1.2K 360° inward-facing
multiview images with corresponding masks and camera parameters. Some samples of the multiview
images and masks are shown in Figure[3] As for the camera parameters, we store the camera rotation
R € R3*3, camera translation T € R'*3, and the camera intrinsic parameters K € R3*3, Since we
use the same camera for the entire render process, the intrinsic parameters are shared across all the
images, while the rotation and translation vary with the rendering view.

In the experiment of Neural Animation, we use two types of datasets: 1) a synthetic dataset of
animated objects driven by linear blend skinning, and 2) a real-world dataset, i.e., Human3.6M [6],
which is often utilized as a benchmark for human body synthesis. The synthetic datasets contain
two characters, one contains a comic character Hulk, and the other contains a swimming blue whale.
The deformable meshes of both objects are fully rigged with corresponding skeletons and blend
weights. Both objects are capable of producing short animation clips using liner blend skinning
as driving method. Similar to the synthetic dataset used in Geometric Editing, we render 1.2K
360° inward-facing multiview images of the animatable objects at the starting frame. The deformed
polygon meshes of the following frames are also extracted as the animation target for our cage
deformer module to generate new deformation fields. The Human3.6M dataset was captured by 4
synchronized inward-facing cameras from different viewpoints. Every section of this dataset captures
a short clip of a posing performer with 2D and 3D joint annotations and per-frame masks. For each
frame in this clip, a SMPL [9] human model is estimated based on the annotations and masks for its
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Figure 3: Samples from synthetic dataset. We render the inward-facing 360° multiview images
along with corresponding masks. The masks are used during ray sampling on the training image to
improve sample efficiency.

position, rotation, and joint locations. This estimated SMPL model, similar to the animated mesh in
our synthetic dataset, is used in our cage deformer to generate deformations on the radiance field. We
provide additional results on synthesizing human body on different subjects in Figure 4]
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Figure 4: Additional results in comparison with AniNeRF. We render various poses of different
subjects in Human 3.6M dataset and achieve comparable results with the state-of-the-art human
synthesis method. Note that our framework does not require additional training or linear blend
skinning information when rendering novel poses.

As for Pose Reenactment, we also create a synthetic dataset in the same manner as the office chair
dataset used in Geometry Editing. We use a static robot model with colored texture, instead of an
office chair, to create this dataset. We sample our reenactment targets from the Surreal [4] dataset.



C Implementation Details

C.1 Training Configuration

We train our network on a single Nvidia RTX3090 GPU for 500 epochs, depending on the complexity
of the geometry and texture. The overall training process takes around 22 hours for a dataset with 1K
multi-view images. We take ADAM optimizer [8] with an exponential learning rate scheduler. We set
our initial learning rate to 5e — 4 and our learning rate decays by a factor of 10 for every 500 epochs.
We implement our entire framework using PYTORCH [[L1]] deep learning library. It roughly takes
12G GPU memory to train our framework. Our framework achieves the average test-time rendering
speed of 2.071 seconds per frame with the resolution of 800 x 800.

C.2 Network Structure

Different from the original NeRF [10], which optimizes two radiance fields, i.e., a coarse and a fine
model, the neural render in our framework only optimizes a single multi-layer perceptron (MLP)
network. We sample 128 points along each camera ray during volumetric rendering. We also provide
a trainable latent code to compensate for the texture and normal variances of the object inside the
canonical space. The structure of the neural renderer is shown in Figure[5] Our neural renderer has a
similar structure to the original NeRF network except for the additional latent code input. We take
inspiration from [14} 5] and design our cage deformer in a similar encoder-decoder manner. We use
the PointNet++ [[12] with multi-scale grouping strategy to extract the feature from 3D objects in our
encoder. For the decoder, we adopt an MLP network to predict the vertex-wise offset for the input
cage base on the extracted feature.
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Figure 5: Network structure of the Neural Renderer module. Our neural renderer adopts a
structure similar to the vanilla NeRF save for the additional latent code input. Numbers inside the
colored block indicate the dimension of the input or the linear layer. () is the embedding function.
The neural renderer takes in concatenated input of embedded position x and latent code ., and
outputs density o and estimated color C.

D Additional Experiment Analysis

D.1 Impact of the Network Structure

As mentioned in our paper, we design our framework in a

decoupled manner, the underlying structure of our neural  Taple 1: Impact of network structure
renderer module, which learns the implicit representation  jn render quality measured in PSNR.
of a static object in canonical space, can be replaced with

other designs without affecting the integrity of our frame- | Hulk  Whale H36M
work. To validate this point, we prepare two neural render- ~ NeRF | 34.672 35154 22.605
ers with different structures and carry out experiments for ~ Ours | 35280 35.857 23.583
the task of neural animation. Our neural renderer adopts a




modified NeRF structure, as described in Section [C.2] with additional latent code to represent the
appearance of the object inside the canonical space, while the other uses the vanilla version of NeRF.
Table[T]shows the impact of different network structures on the rendering quality across three datasets.
When using the vanilla NeRF structure as the neural renderer, the rendering quality slightly drops
w.r.t. PSNR. The introduced additional latent code is effective in improving the rendering quality for
both the synthetic and real-world datasets.

D.2 Impact of Mesh Accuracy

Our cage-based deformation method utilizes a geom-
etry proxy extracted from the learned radiance field
as a 3D mask. The quality of this geometry proxy
affects the point sampling process during volumetric
rendering. To examine its influence on our frame-

work, we apply deformation transfer to our canonical Reference
radiance field using the MVC field generated from

the ground truth mesh and the mesh reconstructed :

by the signed distance function [13]]. As shown in ¢ — S

Figure[6] while the reconstructed mesh has minor arti- ,;/\ & a Distorted

facts in terms of smoothness and geometric detail, the
overall shape and structure match the ground truth.
The artifacts and dilation in certain areas such as the Figure 6: Comparison between the ground
armrest causes blurred and distorted texture. This truth and mesh extracted using SDF.
result shows the accuracy of geometry proxy has a

noticeable effect in rendering quality. In the future, one possible direction to further improve the
flexibility of CageNeRF is to learn geometry directly from multi-view images.

Ground Truth SDF Output

D.3 Functionality of Explicit Mesh

The explicit mesh extracted in our method has the following functionalities:

Enhance Deformation Capability. While our framework supports explicit deformation by manually
editing the shape of the canonical cage, we want to enhance the deformation capability further. Neural
Cage [l14] offers impressive performance with explicit mesh in tasks like deformation transfer and
pose reenactment. By incorporating an explicit mesh into our framework, we are able to transfer the
capability of Neural Cage, i.e., a mesh-based method, to neural radiance field.

Increase Sampling Efficiency. As mentioned in our paper Section ??, the canonical radiance field is
sparsely occupied by the render target. Restricting the sample points inside the vicinity space of the
render target can effectively reduce the sample points down to 10% of the original number required
in volume rendering.

Provide Robust Correspondence. Our framework handles deformation by first learning a static
radiance field inside the canonical space. However, this canonical space is not always directly
accessible. For example, the Human 3.6M dataset only contains posing human subjects captured
by multi-view cameras, the canonical space, i.e., “T-pose” images of the target is not given. This
requires first estimating the deformed cages of the targets in various poses and performing cage-based
deformation backward to transform posing targets to canonical “T-pose”. An explicit mesh can be
used to generate correct MVC field which enables us to robustly establish this backward deformation.
Cage-based deformation can express the forward deformation correctly, i.e., from the canonical space
to the deformed space, but not always vice versa. In some cases, both Neural Cages and our cage
deformer module will output a deformed cage with overlapping faces or collapsed vertices. Naively
taking the MVC value calculated in such deformed cages will induce artifacts, since points that
reside in such regions cannot be correctly projected into the canonical space. This property can be
interpreted as: CBD using a cage with a self-overlapping structure is similar to applying a matrix that
is not full rank, and hence not invertible. We provide backward deformation results on SMPL model
using cage with and without self-overlapping structures in. Additionally, if the cage vertices are
manually edited without overlapping faces and collapsed vertices, we can generate MVC field directly
based on this deformed cage, i.e., without the need of an explicit mesh, since this cage deformation is
invertible from deformed space to canonical space.
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Figure 7: Comparison of inverse cage-based deformation w/o an explicit mesh. We perform a
backward deformation a SMPL model using a self-overlapping cage. The “A-pose” cage resides in
the deformed space, and the “T-pose” SMPL is the object in canonical space. As is shown in the
top row, backward deformation using only the cage will produce artifacts such as spikes and outlier
vertices, while using an explicit mesh can avoid this artifact. The difference between our backward
deformation result and the ground truth can be compensated by the sampling vicinity e.

E Broader Impacts

As shown in our experiments, our work is capable of producing high-fidelity results of edited and
animated 3D objects with 2D images as its input. Our framework may find application in 3D
animation, digital human creation, high fidelity 3D object editing. Especially, the deformation method
used in our framework is category-agnostic, our framework can be applied in cross-domain animation
retargeting and reenactment.
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