
Pre-Trained Language Models for
Interactive Decision-Making Appendix

Shuang Li 1∗ , Xavier Puig1, Chris Paxton2, Yilun Du1, Clinton Wang1, Linxi Fan2,
Tao Chen1, De-An Huang2, Ekin Akyürek1, Anima Anandkumar2,3,†,

Jacob Andreas1,†, Igor Mordatch4,†, Antonio Torralba1,†, Yuke Zhu2,5,†

1MIT, 2Nvidia, 3Caltech, 4Google Brain, 5UT Austin
Junior authors are ordered based on contributions and senior authors† are ordered alphabetically.

In this appendix, we first show the convolutional encoding in BabyAI in Appendix A. We then
describe the environment details in Appendix B and the implementation details of the proposed
model in Appendix C. We show the algorithm of interactive evaluation in Section D and the data
gathering procedure in Appendix E. The goal predicates used in VirtualHome test subsets are shown
in Appendix F. We visualize the attention weights in language models in Appendix G.

A Convolutional encoding in BabyAI

In the main paper Section 7.1, we explore the role of natural language by investigating two alternative
ways of encoding policy inputs in VirtualHome. In this section, we show the third way of encoding
policy inputs in BabyAI.

We test a new model, LID-Conv (Ours), that converts environment inputs into convolutional
embeddings. We pass the 7× 7× 3 grid observation in BabyAI to convolutional layers and obtain
a 7 × 7 × d feature map, where d is the feature dimension. We flatten the feature map and get a
sequence of features to describe the observation. The rest of the model is the same as LID-Text
(Ours). Table 1 shows the results of policies using the text encoding and convolutional encoding.
LID-Text (Ours) and LID-Conv (Ours) have similar results given enough training data, but LID-Text
(Ours) is slightly better when there are fewer training data. This conclusion is coincident with the
results on VirtualHome.

Different input encoding schemes have only a negligible impact on model performance: the effective-
ness of pre-training is not limited to utilizing natural strings, but in fact extends to arbitrary sequential
encodings.

B Environments

We use BabyAI [1] and VirtualHome [3] to evaluate the proposed method. While both environments
feature complex goals, the nature of these goals, as well as the state and action sequences that
accomplish them, differ substantially across environments.

B.1 VirtualHome

VirtualHome is a 3D realistic environment featuring partial observability, large action spaces, and
long time horizons. It provides a set of realistic 3D homes and objects that can be manipulated to
perform household organization tasks.

∗Correspondence to: Shuang Li <lishuang@mit.edu>

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Table 1: Success rate of policies trained with text encoding vs. convolutional encoding on BabyAI. The
text encoding is more sample-efficient, but both models converge to near perfect performance given sufficient
training data.

Tasks Methods Number of Demos

100 500 1K 5K 10K

GoToRedBall LID-Text (Ours) 93.9 99.4 99.7 100.0 100.0
LID-Conv (Ours) 92.5 98.8 100.0 100.0 100.0

GoToLocal LID-Text (Ours) 64.6 97.9 99.0 99.5 99.5
LID-Conv (Ours) 69.5 86.0 98.2 99.9 99.9

PickupLoc LID-Text (Ours) 28.7 73.4 99.0 99.6 99.8
LID-Conv (Ours) 25.0 58.8 95.1 99.6 100.0

PutNextLocal LID-Text (Ours) 11.1 93.0 93.2 98.9 99.9
LID-Conv (Ours) 17.9 53.6 91.3 97.7 99.5

Goal Space. For each task, we define the goal as a set of predicates and multiplicities. For example,
Inside(apple, fridge):2; Inside(pancake, fridge):1; means “put two apples and one
pancake inside the fridge”. In each task, the initial environment (including initial object locations),
the goal predicates, and their orders and multiplicities are randomly sampled. There are 59 different
types of predicates in total.

Observation Space. The observation in VirtualHome by default is a graph describing a list of objects
and their relations in the current partial observation. Each object has an object name, a state, e.g.
open, close, clean, and 3D coordinates.

Action Space. Agents can navigate in the environment and interact with objects. To interact with an
object, the agent must predict an action name and the index of the interested object, e.g. Open(5) to
opening the object with index (5). The agent can only interact with objects that are in the current
observation or execute the navigation actions, such as Walk(bathroom). For some actions, such
as open, the agent must be close to the object. There are also strict preconditions for actions, e.g.
the agent must grab an object before it can put the object on a target position. As a result of these
constraints, the subset of actions available to the agent changes at every timestep.

We evaluate the success rates of different methods on VirtualHome. A given episode is scored as
successful if the policy completes its entire goal within T steps, where T = 70 is the maximum
allowed steps of the environment.

B.2 BabyAI

BabyAI is a 2D grid world environment designed to evaluate instruction following. Different from
VirtualHome, the observation in BabyAI by default is a 7 × 7 grid describing a partial and local
egocentric view of the state of the environment. Each tile in the grid contains at most one object,
encoded using 3 integer values: one for the object type, one for the object color, and a state for doors
indicating whether it is open, closed or locked. The goals in BabyAI are language instructions, e.g.
“put the blue key next to the purple ball”. BabyAI has 7 actions, e.g. “turn left”, “pick up”, and “drop”.

C More implementation Details of LID in VirtualHome

In Appendix C.1, we provide more details of the model architecture used in the main paper Section
4.1. We then introduce the training detail in Appendix C.2.

C.1 Model architecture details in VirtualHome

In this section, we provide more details of the policy network we used in VirtualHome. Our policy
model consists of three parts, i.e. inputs, the pre-trained LM, and outputs. As shown Figure 1, we
encode the inputs to the policy—including goal g, history ht, and the current partial observation ot—
as sequences of embeddings. These embeddings are passed to the LM (using its pre-trained embedding
layer Fθ) and used to obtain contextualized token representations. These token representations are
averaged to generate a context feature fc, which is then passed to fully-connected layer to predict the

2

Tokenization

Context feature fc

History ht

<walk> [kitchen]
…
<put> [apple] <in> [cabinet]

Cross-entropy loss

Average Pooling

F𝜃F𝜃 F𝜃

Tokenization

INSIDE(pancake, fridge):2
…
ON(apple, table):1

Goal g

Tokenization

agent

kitchen
apple

fridge
cabinet

Partial observation ot

Object embeddings

… … …F𝜃F𝜃 F𝜃 F𝜃 F𝜃

FC FC

FC

Intermediate values

Action probabilities

Training Inference

Pre-trained Language Model

(𝑥, 𝑦, 𝑧)

FC

(𝑥, 𝑦, 𝑧)

FC

Fine-tuned

Trained from scratch

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Pre-Trained Language Models for Interactive Decision-Making

observation into a sequence of image patches as in Vision
Transformer (Dosovitskiy et al., 2020).

4.1.1. POLICY NETWORK

We choose to convert the observations, goal predicates, and
history information into token sequences and pass them to a
pre-trained language model. We take the text tokens as an
example to explain the proposed method.

Goal. Each goal consists of a sequence of predicates and
multiplicities, and is translated into a templated English sen-
tence (e.g. “Inside(apple, fridge):2” becomes
“put two apples inside the fridge”). Observation. To en-
code the agent’s partial observation, we extract a list of
currently visible objects, their states (e.g. “open, clean”),
and 3D world coordinates. We use a fully-connected layer to
encode the 3D information and generate a feature represen-
tation of each object in the observation. See Appendix B.1
for more details. History. We store information about all
previous actions and convert them into templated English
sentences (e.g. “I have put the plate on the kitchen table and
the apple inside the fridge”).

Action prediction. VirtualHome features a large action
space, and the set of valid actions changes as the agent
moves through and interacts with the environment. Each
action consists of 1 verb and 1 object. In training, we maxi-
mize the probabilities of the verb and object selected by an
expert action. To produce the verb probabilities, we pool the
outputs of the pre-trained LM and pass this “context feature”
through a fully-connected layer as shown in Figure 2. To
determine the object probabilities, the model computes the
inner product of the context feature with the LM output vec-
tors corresponding to each object in the observation. This
design automatically filters out objects that are not in the ob-
servation and hence cannot be interacted with. In inference,
we select the valid action with the highest joint probability1.

at+1 = arg max
(at+1)2valid actions

p(at+1) (3)

4.2. Policy Learning on BabyAI

We further evaluate the effectiveness of the proposed method
on BabyAI (Hui et al., 2020). BabyAI contains program-
matically generated natural language instructions, e.g. “put
the green ball next to the box on your right” and requires
the agent to navigate the world and move objects to target
locations. BabyAI provides demos for 19 tasks of increasing
difficulty for testing imitation learning and reinforcement
learning algorithms. In our experiments, we compare the

1We assume that when constrained to valid actions, the mode
of the product distribution (of verb ⇥ object) is the same as the
mode of their joint distribution.

Tokenization

Context feature fc

History ht

<walk> [kitchen]
…
<put> [apple] <in> [cabinet]

Cross-
entropy

loss

Cross-
entropy

loss

Average Pooling

F!F! F!

Tokenization

INSIDE(pancake, fridge):2
…
ON(apple, table):1

Goal g

Tokenization

agent

kitchen
apple

fridge
cabinet

Partial observation ot

Object embeddings

… … …F!F! F! F! F!

FC FC

FC

Intermediate values

Verb probabilities

Output action

Training Inference

Object probabilities

Pre-trained Language Model

(", $, %)

FC

(", $, %)

FC

… <>Inner
product

<>

Fine-tuned

Trained from scratch

argmax

Figure 2: Policy network in VirtualHome. The objects in the
current observation, the goal predicates, and history actions are
first converted into tokens sequences and then passed through an
embedding layer F✓ . The observation embeddings are refined
by incorporating information about the state and position of each
object. The combined sequence is passed through a pre-trained
language model, and the output tokens are pooled into a context
feature vector, which is then used for action prediction.

proposed method and baselines on four representative tasks:
GoToRedBall, GoToLocal, PickupLoc, and PutNextLocal.

In our proposed method, we convert the observation into
7⇥7 text descriptions, e.g. “purple ball”, “grey wall”, “open
door”, and combine them into a long sentence. We then con-
vert the history actions into text descriptions, e.g. “turn
left” and “go forward”. We combine the language instruc-
tion (without modification) with the observation and history
text descriptions, and feed them to the pre-trained language
model to predict actions using the framework described in
Figure 1 (right).

5. Experiments
5.1. Experiments on VirtualHome

5.1.1. EVALUATION METRICS

We build three test sets that evaluate policies’ ability from
three aspects: (1) performance on in-distribution tasks; (2)
generalization to novel scenes; and (3) generalization to
novel tasks. (See Appendix E for more details.)

In-Distribution. The predicate types and their counts are
randomly sampled based on the same distribution as the
training data. There are 2 ⇠ 10 predicates in each task. The
objects are initially placed in the environment according to
common-sense layouts; (e.g. plates appear inside the kitchen
cabinets rather than the bathtub). Even goal predicates are

Output action:

Figure 1: Policy network in VirtualHome. The observation, goal, and history are first converted into sequences
and then passed through an embedding layer Fθ . The combined sequence is passed through a pre-trained LM,
and the output tokens are pooled into a context feature vector for action prediction.

fc

Observation otHistory htGoal g

F𝜃 F𝜃

FC FC

FC

Name (e.g.
“kitchen oven”)

State
vector

Position
vector

FC

FC

FC
F𝜃

FC

Token sequence

F𝜃

Avg pool

Concatenate

For each object in ot

FC

(𝑥, 𝑦, 𝑧) (𝑥, 𝑦, 𝑧)

Tokenization

ReLU

Figure 2: Object encoding. In VirtualHome, the partial observation of the environment state can be represented
as a list of objects in the agent’s view. Each object is represented by a name, a state vector, and position
vector. Object name encoding: each object’s name is an English phrase. We tokenize the phrase, embed the
tokens, and average the embeddings. Object state encoding: each object is assigned one of six states: “clean”,
“closed”, “off”, “on”, “open”, or “none”. This state is represented as a 6-dimensional binary vector and passed
through a fully-connected layer. Object position encoding: an object’s position vector is a 6-dimensional
vector containing its world coordinates alongside its displacement to the agent (i.e. the difference in their
world coordinates). This position vector is passed through two fully-connected layers. These three features are
concatenated and passed through a fully-connected layer to obtain the representation of an object in the current
observation.

3

next action at. The output action in VirtualHome consists of a verb and an object. For brevity, we
omit the time subscript t from now on.

In VirtualHome, the partial observation o of the environment state can be represented as a list of
objects in the agent’s view. We represent each object by its name, e.g. “oven”, a state description,
e.g. “open, clean”, and position both in the world and relative to the agent. In this part, we provide
more details of how LID-Text (Ours) encodes the name, state, and position of each object in the
observation. Figure 2 shows the model architecture we used to encode the observation.

Name encoding. For each object node, we serialize its object name as an English phrase so. We
extract its tokens and features using the tokenizer and the embedding layer of the pre-trained LM,
respectively. Since one object name might generate several English tokens using the tokenizer from
the pre-trained LM, e.g. the tokens of “kitchencabinet” is [15813, 6607, 16212, 500], we take the
averaged features of all the tokens in the object name and obtain a “name” feature fo,name

i for each
object node as shown in Figure 2.

State encoding. Some objects have a state description, e.g. “oven: open, clean”. There are six types
of object states in the environment: “clean”, “closed”, “off”, “on”, “open”, and “none”. For each
object node, we use a binary vector to represent its state. Taking the “oven” as an example, if the oven
is open and clean, its state vector would be [1, 0, 0, 0, 1, 0]. This state vector is then passed through a
fully-connected layer to generate a state feature fo,state

i of object oi.

Position encoding. To encode the position information of each object oi, we take their world
coordinates {oi,x, oi,y, oi,z} and their spatial distance to the agent {ax, ay, az} to generate a position
vector [oi,x, oi,y, oi,z, oi,x − ax, oi,y − ay, oi,z − az]. This position vector is then passed through two
fully-connected layers with a ReLU layer in the middle to generate a position feature fo,position

i of
object oi.

The final feature fo
i of each object node is obtained by passing the concatenation of its name feature

fo,name
i , state feature fo,state

i , and position feature fo,position
i through a fully connected layer. The

observation at a single step can be written as a set of features {fo
1 , · · · , fo

N}, where N is the number
of objects in the current observation.

C.2 Training details

Our proposed approach and baselines are trained on Tesla 32GB GPUs. We train every single model
on 1 Tesla 32GB GPU. All experiments used the AdamW optimizer with the learning rate of 10−5.
We utilize a standard pre-trained language model, GPT-2, in our experiments. GPT-2 is trained on the
Webtext dataset [5] using the Huggingface library [10].

D Interactive Evaluation

The algorithm for interactive evaluation is shown in Algorithm 1.

Algorithm 1: Interactive evaluation
A set of task goals G (each goal has a corresponding initial state);
Load the learned policy πϕ;
Successful trajectory count: n = 0;
for example=1, Ntest do

Sample a goal g and the an initial state;
for t = 0, T do

Sample an action at from policy πϕ(at|g, ht, ot);
Execute the action at and get a new observation ot+1;
if success then

n = n+ 1;
break;

end
end

end
success rate: r = n/Ntest;

4

E Data Gathering Details in VirtualHome

In this section, we provide more data gathering details in VirtualHome for training the decision-
making policies. We introduce the expert data collection and active data gathering in Appendix E.1
and Appendix E.2, respectively.

Goal: INSIDE(plate, dishwasher): 1; ON(plate, table): 1

Selected an unfinished
goal predicate:

INSIDE(plate, dishwasher): 1

Partial observation

Execute the
first action

Belief graph

Regression planner

Put glass
1. walk.plate
2. grab.plate
3. walk.dishwasher

Figure 3: Regression planner. Given a task described by goal predicates, the planner generates an action
sequence to accomplish this task. The agent has a belief about the environment, i.e. an imagined distribution
of object locations. As the agent explores the environment, its belief of the world becomes closer to the real
world. At every step, the agent updates its belief based on the latest observation, finds a new plan using the
regression planner, and executes the first action of the plan. If the subtask (described by the goal predicate) has
been finished, the agent will select a new unfinished subtask, otherwise, the agent will keep doing this subtask
until finish it.

E.1 Expert Data Collection

VirtualHome-Imitation Learning Dataset. To train the models, we collect a set of expert trajectories
in VirtualHome using regression planning (RP) [2]. We follow the implementation of the regression
planner used in [4]. Given a task described by goal predicates, the planner generates an action
sequence to accomplish this task. As shown in Figure 3, the agent has a belief about the environment,
i.e. an imagined distribution of object locations. As the agent explores the environment, its belief
of the world becomes closer to the real world. At every step, the agent updates its belief based on
the latest observation (see [4]), finds a new plan using the regression planner, and executes the first
action of the plan. If the subtask (described by the goal predicate) has been finished, the agent will
select a new unfinished subtask, otherwise, the agent will keep doing this subtask until it finishes.

Similarly to previous work [7, 6, 4], we generate training data using a planner that has access to
privileged information, such as full observation of the environment and information about the pre-
conditions and effects of each action. The planner allows an agent to robustly perform tasks in
partially observable environments and generate expert trajectories for training and evaluation. We
generate 20, 000 trajectories for training and 3, 000 trajectories for validation. Each trajectory has a
goal, an action sequence, and the corresponding observations after executing each action.

E.2 Active Data Gathering

The algorithm for active data gathering is shown in Algorithm 2. To sample the goal and initial state,
we first generate a set of initial states in VirtualHome using the code released by [4]. For each initial
state, we are able to get a set of feasible tasks that can be accomplished in this environment. For
example, in an initial state, if the apple is on the kitchen table, a feasible task goal could be “put the
apple inside the fridge”. In contrast, “put the banana inside the fridge” is not a feasible task if there is
no banana in the initial state.

We collect 9893 initial states, and randomly sample an initial state and its feasible goal every time
when we reset the environment. After each data collection iteration, we obtain a set of new goals
using the goal relabel function. We save the goal and its corresponding initial state in the replay
buffers and use the same strategy to sample the goal and initial state in the next iteration.

5

Algorithm 2: Active Data Gathering
Given: a goal relabel function fl;
Initialize: policy πϕ; goal set G; training replay buffer Rtrain = {}; validation replay buffer Rval = {};
for iteration=1, N do

for example=1, M do
Sample a goal g from G and an initial state s1;
for t = 1, T do

Sample an action from policy πϕ(at|g, ht, ot) or sample an action randomly;
Execute at and obtain a new observation ot+1;

end
Store the trajectory (o1, a1, · · · , oT , aT , g) in the replay buffer Rtrain or Rval;

end
Relabel each failure trajectory d = (o1, a1, · · · , oT , aT) in the replay buffers and get new goal
g′ = fl(d);

Put new goals g′ in the goal set G;
for k = 1,K do

repeat
Sample data from Rtrain and update policy πϕ;

until training episode ends;
Get validation accuracy using the data from Rval;

end
πϕ = πval_best

end

The hindsight relabeling stage is the key component for active data gathering. Here we provide
more implementation details of how we relabel “failed” trajectories with new goals in the hindsight
relabeling stage. For each “failed” trajectory, we extract its useful sub-trajectories and relabel a task
goal g′ for it. We design a goal relabel function fl that generates a goal based on the sequence of
observations and actions. To do this, we first use a hand-designed program to detect what tasks are
contained in a “failed” trajectory. This program find useful tasks based on the keywords in the action
list. For example in Figure 4, the program knows the trajectory containing a task of “On(apple,
kitchen table):1” based on the action “[put] < apple >< kitchentable >”.

The selected sub-trajectories are not always optimal. We thus design a rule to filter out bad trajectories,
i.e. for trajectories with the same goal, selecting the “shorter” ones. One example is shown in
Figure 5. Suppose that there are two trajectories having the same goal, e.g. “On(apple, kitchen
table):1”. The first trajectory has actions that are redundant or not related to the task, such as
“[walk] < bathroom >” and “[walk] < kitchen >” while the second trajectory is more optimal
given the goal. We select the second trajectory and delete the first trajectory from the replay buffer.
Note that the “shorter” does not mean fewer actions, but fewer actions that are not related to the task.
The hindsight relabeling stage allows sample-efficient learning by reusing the failure cases. The
relabeled data are used to train policies in the policy update stage.

F Test Sets in VirtualHome

In this section, we provide more details of each test set. We first introduce the test sets used for
evaluating the proposed model trained on expert data, i.e. LID, in Section F.1. We then show the test
sets used for evaluating the proposed model with active data gathering, i.e. LID-ADG, in Section F.2.

F.1 LID Test Sets

In Section 6.1, we compared the proposed method and baselines trained on expert data. In Table 2,
we provide a detailed description of each test subset, including the count of goal predicate types and
the number of goal predicates in each task. The In-Distribution setting has 37 goal predicates in
total and each task has 2 ∼ 10 goal predicates. The tasks are drawn from the same distribution as the
training tasks. The Novel Scenes setting also has 37 goal predicates and each task has 2 ∼ 10 goal
predicates. The objects are randomly placed in the initial environment. The Novel Tasks setting has

6

Interacted objectsNavigation trajectory

Useful sub-trajectory for hindsight relabeling

… [walk] <kitchen>; [walk] <kitchentable1>; … ; [walk]< kitchentable>; [put] <apple> <kitchentable>; [walk] <bedroom>; …
Extract the useful sub-trajectory and relabel a task goal:

Action generated by the current
policy or random exploration:
[walk] <kitchen>
[walk] <kitchen cabinet 1>
[open] <kitchen cabinet 1>
[walk] <kitchen cabinet 2>
[open] <kitchen cabinet 2>
[grab] <apple>
[walk] <kitchentable>
[put] <apple> <kitchentable>
[walk] <bedroom>
…

On (apple, kitchen table): 1

Figure 4: We first use a hand-designed program to detect what tasks are contained in the collected trajectory.
This program find tasks based on the keywords in the action list. For example, the program knows the
trajectory containing a task of “On(apple, kitchen table):1” based on the action “[put] < apple ><
kitchentable >”. Then the program extracts all previous actions related to this task using hand-designed rules.

Goal: On (apple, kitchen table): 1

Action list 1:
… [walk] <livingroom>; [grab] <apple>; [walk] <kitchen>; [walk] <bathroom>; [walk] <kitchen>; [put] <apple> <kitchentable> …

Action list 2:
… [walk] <livingroom>; [grab] <apple>; [walk] <kitchen>; [put] <apple> <kitchentable> …

Figure 5: Suppose there are two trajectories having the same goal, e.g. “On(apple, kitchen table):1”.
The first trajectory has actions that are redundant or not related to the task, such as “[walk] < bathroom >”
and “[walk] < kitchen >” while the second trajectory is more optimal given the goal. We select the second
trajectory and delete the first trajectory from the replay buffer. Note that the “shorter” does not mean fewer
actions, but fewer actions that are not related to the task.

22 goal predicates in total and each task has 2 ∼ 8 goal predicates. The tasks are never seen during
training.

F.2 LID-ADG Test Sets

As we have mentioned in the main paper Section 9, one limitation of active data gathering is that it
relies on hand-designed rules for task relabeling. In addition, it is sometimes challenging to define
effective rules to extract useful sub-trajectories and get high-quality hindsight labels, especially when
trajectories are long and tasks become more complex. Thus we only relabel short sub-trajectories,
where the goal consists of a single goal predicate, e.g. “On(apple, kitchen table):1”. During
testing, we evaluate the success rate of approaches on solving such tasks as well, i.e. the count of
the goal predicate equals to 1. The types of goal predicates are the same as Section F.1, i.e. 37 goal
predicates in the In-Distribution setting and the Novel Scenes setting, and 22 goal predicates in the
Novel Tasks setting.

G Visualization of Attention Weights

To better understand how does LM pre-trained policies make decisions, we visualize the attention
weights from the self-attention layers of GPT-2 [8] in Figure 6 and Figure 7. In the inference time,
when we are decoding the actions, we save the self-attention weights with respect to different layers
and different heads. Then, we use BertViz library [9] to visualize normalized attention weights. We
show the attention weights from the input to the output of LID-Text (Ours). The order of tokens in
the input and ouput is observation, goal, and history. In Figure 6 and Figure 7, the left side is the
query side. The boldness of the lines is proportional with the attention weight.

Figure 6 illustrates the attention weights of a layer named “Head 3 Layer 2”. We show attention
weights on two different tasks. We find that “Head 3 Layer 2” can capture objects in the goal

7

Table 2: Test sets used for evaluating the proposed model trained on the expert data. We show the count of
goal predicate types and the number of goal predicates used in each task.

Test Sets Predicate Types #Predicate Per Task Compared with the training set

In-Distribution 37 2 ∼ 10 Tasks are drawn from the same distribution as training tasks.

Novel Scenes 37 2 ∼ 10 The objects are randomly placed in the initial environment.

Novel Tasks 22 2 ∼ 8 Tasks are never seen during training.

predicates, such as “wineglass” and “cutleryfork” in the left figure, and “pancake” and “chicken” in
the right figure (the figures are cropped for visualization).

Figure 7 illustrates the attention weights of layers named “Head 1 Layer 2” (left) and “Head 4 Layer
11” (right). Given the goal predicates, history, and the current observation, the policy predicts the next
action as “grab milk”. We find that “Head 1 Layer 2” is able to capture objects in the goal predicates,
such as “milk”, “pancake”, and “chicken” while “Head 4 Layer 11” focuses on the interacted object
in the predicted action, such as “milk”.

The attention weights from different self-attention layers are significantly different—some self-
attention layers assign high attention weight to objects in the goal predicates while some layers focus
on the interacted object. There are also some layers that do not have interpretable meanings. The
attention weights just provide us an intuition of how does the internal language model works, more
quantified results are reported in the main paper.

8

Goal:
INSIDE (cutleryfork, dishwasher): 3
ON (wineglass, sink): 2
INSIDE (waterglass, dishwasher): 1
CLOSE (dishwasher)
TURNON (dishwasher)

Goal:
INSIDE (pancake, microwave): 1
ON (chicken, kitchentable): 2
ON (milk, kitchentable): 1
CLOSE (microwave)
TURNON (microwave)

Figure 6: Attention weights of a layer named “Head 3 Layer 2”. We show attention weights on two different
tasks. We find that “Head 3 Layer 2” is able to capture objects in the goal predicates, such as “wineglass” and
“cutleryfork” in the left figure, and “pancake” and “chicken” in the right figure (the figures are cropped for
visualization).

9

Goal:
INSIDE (pancake, microwave): 1
ON (chicken, kitchentable): 2
ON (milk, kitchentable): 1
CLOSE (microwave)
TURNON (microwave)

Action:
[grab] <milk>

Goal:
INSIDE (pancake, microwave): 1
ON (chicken, kitchentable): 2
ON (milk, kitchentable): 1
CLOSE (microwave)
TURNON (microwave)

Action:
[grab] <milk>

Figure 7: Attention weights of layers named “Head 1 Layer 2” (left) and “Head 4 Layer 11” (right).
Given the goal predicates, history, and the current observation, the policy model predicts the next action as “grab
milk”. We find that “Head 1 Layer 2” can capture objects in the goal predicates, such as “milk”, “pancake”, and
“chicken” while “Head 4 Layer 11” focuses on the interacted object in the predicted action, such as “milk”.

10

References
[1] D. Y.-T. Hui, M. Chevalier-Boisvert, D. Bahdanau, and Y. Bengio. Babyai 1.1, 2020.

[2] R. E. Korf. Planning as search: A quantitative approach. Artificial intelligence, 33(1):65–88,
1987.

[3] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba. Virtualhome: Simulating
household activities via programs. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8494–8502, 2018.

[4] X. Puig, T. Shu, S. Li, Z. Wang, J. B. Tenenbaum, S. Fidler, and A. Torralba. Watch-and-help:
A challenge for social perception and human-ai collaboration. arXiv preprint arXiv:2010.09890,
2020.

[5] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[6] B. Shen, F. Xia, C. Li, R. Martín-Martín, L. Fan, G. Wang, S. Buch, C. D’Arpino, S. Srivas-
tava, L. P. Tchapmi, et al. igibson, a simulation environment for interactive tasks in large
realisticscenes. arXiv preprint arXiv:2012.02924, 2020.

[7] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and
D. Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
10740–10749, 2020.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

[9] J. Vig. A multiscale visualization of attention in the transformer model. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
pages 37–42, Florence, Italy, July 2019. Association for Computational Linguistics.

[10] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771, 2019.

11

	Convolutional encoding in BabyAI
	Environments
	VirtualHome
	BabyAI

	More implementation Details of LID in VirtualHome
	Model architecture details in VirtualHome
	Training details

	Interactive Evaluation
	Data Gathering Details in VirtualHome
	Expert Data Collection
	Active Data Gathering

	Test Sets in VirtualHome
	LID Test Sets
	LID-ADG Test Sets

	Visualization of Attention Weights

