A Appendix (MAtt: A Manifold Attention Network for EEG Decoding)

A.1 Time complexity

The original time complexity of training the query, key, and value in Algorithm 1 is O(p), where p is
the number of time iterations. We simplify this procedure for better reducing the time complexity.
If parallel processing is available in the computational environment, the time complexity poses
significant influence on the efficiency of executing Algorithm 1. We first define the notations:
Suppose A € R™*™ B € R™*™2 then Concat(A, B) means concatenating A and B. Given
a sequence of SPD data {X;}’_, as the input of the manifold attention module, for the query
Q = Concat({Q;}7_,), key K = Concat({K;}'_,), and value V = Concat({V; },_,), Wy, Wi,
and W, are parameters to determine @), K, and V:

Q=[Q1 Q2 - Q)]

= [WlequT WqXQWqT WqXquT]
= W,Concat(Xy, -+, X)W/
same for K and V:
K = WyConcat(Xy,--- , X)WL

V =W,Concat(Xy, - ,Xp)WvT

Then we can reduce the time complexity of computing @, K, and V, to O(3), a constant complexity.
Moreover, we have another perspective to reduce the time complexity from linear to a unit constant:

Q Wy
K| =diag | |Wi| Concat(Xy,---, Xp) (WS W W[
14 W,

We use two cores in Intel(R) Xeon(R) W-2133 CPU to train the proposed model. TableE] shows the
average training time for the three datasets, BCIC-IV-2a, MAMEM-SSVEP-II, and BCI-ERN.

Table 1: A comparison of the mean training time (seconds) per iteration across models. The error
denotes the standard deviation.

| BCIC-IV-2a | MAMEM-SSVEP-II | BCI-ERN
ShallowNet | 0.58=+ 0.0503 0.11£ 0.0165 2.20£0.3533
EEGNet 0.45+ 0.0308 0.72£ 0.0285 7.79£0.7059
SCCNet 0.06=£ 0.0070 0.20+ 0.0274 0.43£0.3064
EEG-TCNet | 0.36£0.0019 0.22£0.0136 0.33£0.0264
TCNet-Fusion | 0.26=£ 0.0045 0.07£0.0012 0.20£0.0027
FBCNet 0.93+ 0.0047 0.15+ 0.0035 0.13+0.0017
MBEEGSE 0.72£0.0051 0.41£0.0012 2.24+0.0066
MAtt 0.96+ 0.0843 2.26+ 0.1598 0.52+0.0169

A.2 Affine invariant metric

The geodesic distance between two points P, and P, is defined by the infimum of length of all
curves go through from P; to P, on the Riemannian manifold. Suppose a piecewise smooth curve
v :[0,1] = R with y(0) = Py, v(1) = P, the geodesic distance from P; to P; on (M, g) can be
defined as:

34(Pr, Py) = inf{ Length()} = inf{ fy |7/ ()| dt}

Given a Riemannian metric (i.e. affine invariant metric) [[1l], we have Riemannian geodesic as follows:

1
n 2
Sr(P1, P2) = ||Log(Py ' Py) || = || Log(Py " /2 PP~ /?) || o = [Z log2)\i]
=1
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Figure 1: (a) Confusion matrix of S3 in the BCICIV2a dataset. *Left’ and "Right’ refer to *Left hand’
and 'Right hand’ respectively. (b) Confusion matrix of S11 in the MAMEM dataset. (c) Confusion
matrix of S7 in the BCI-ERN dataset.

The following is the definition of the Riemannian mean (denoted as B). Suppose there are k& SPD
matrices on the SPD manifold, called Py, P, ..., Py:

k

B(Py,...P;) = argmin ZJ%(P,Pl)
PeSymt(n) 1—1

However, the solution to the above optimization problem doesn’t have a closed-form solution. Thus,
we should compute the final B in an iteration manner [2, [3]] until conditions of convergence are
satisfied. Due to the high computational complexity of computing Riemannian mean, we herein,
alternatively, use the Log-Euclidean metric to measure the distance between two points on the
manifold in our method.

A.3 Confusion matrices

Figure|l|depicts the confusion matrix of single-subject classification results on all three datasets. As
shown in Figure[T] (a), the "Left hand’ and "Right hand” are relatively classified correctly, while there
are 12 MI EEG samples of *Tongue’ being misclassified as 'Feet’. According to the visualization
of model interpretation, both 'Feet’ and *Tongue’ are characterized by symmetric topographical
distribution, which may cause the samples of these two classes to be misclassified. On the other hand,
Figure [T| (b) presents the classification result of the MAMEM-SSVEP-II dataset. The accuracy of
each class may be determined by its SNR, because the SNR of SSVEP is unevenly distributed across
frequencies [4, 15, 16, [7]. Figure (c) shows the confusion matrix of a single subject in the BCI-ERN
dataset. We observe a biased classification where most trials were classified as ’correct’ due to the
imbalance of class samples within this dataset. [8].

A.4 Additional results of model interpretation

This part aims to uncover the characteristics learned from EEG signals. Figure 2] illustrates the
gradient response of S3 when performing MI across the channel and the time domains. C4 and C3
channels located on the contralateral side of the brain are activated during the left/right hand MI.
Strong responses of left hand MI almost occur across the whole trial, and the conspicuous responses
for right hand MI arises at 1-2 seconds. For feet/tongue MI, the responses are strong at the CPz
channel located in the midline of the motor cortex. A strong response of the tongue occurs at 0.8-1
seconds, and the strong response of the feet is at 0.9-1.5 seconds in the early experiment. The
spatiotemporal distribution of the SSVEP signals is illustrated in Figure[3] Five heatmaps exhibit
strong responses at the Oz channel over the visual cortex for all visual stimulation frequencies. In
contrast, the distribution across the channel and time domains differs from the one of MI. However,
the spatiotemporal distribution within all visual stimulation frequencies is analogous. Figure 4 and
[3]depict the gradient response and the spatial topoplot of S7 in BCI-ERN dataset respectively. As
shown in the two figures aforementioned, vivid activation in FCz channel located in the midline of
the frontal region is elicited on both error and correct stimuli around 0.1 and 0.4 seconds, which is
consistent with the observation in [9]]. Moreover, Figure [5]exhibits the strong activation distributed
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Figure 2: Heatmaps illustrate the gradient response across EEG channels (y-axis) and time (x-axis in
seconds) from the visualization of the model S3 in the BCIC-IV-2a dataset for the four motor-imagery
classes (left hand, right hand, feet, and tongue). Red/blue pixels indicate strong positive/negative
gradient response on the input 22-channel MI EEG data. The discernible gradient responses indicate
strong importance of specific EEG channel locations corresponding to the four classes, as observed at
C4 (over right motor cortex) for the left hand, C3 (over left motor cortex) for the right hand, CPz
(over motor cortex) for the feet and the tongue motor imagery.

over the frontal-central area on the scalp and moderate activation around the occipital region in both
classes. In summary, Figure E], E], and@present different characteristics between MI, SSVEP, and
ERN EEG signals learnt by our model.

Regardless of the stimulation frequency, all SSVEP signals present strong activations at the Oz
channel (see Figure[6) located visual cortex. The discernible patterns of stimulation frequencies are
shown in Figure[7, where we observe strong responses at the fundamental and harmonic frequencies
corresponding to the visual stimuli. These results match the traits of SSVEP signals that oscillatory
brain activity arises from the visual cortex and resonates with the flickering visual stimulus [10].

Figure [§indicates the brain activity at each epoch when S3 performs four types of MI. The tendency
of all spatial topoplots of the left/right hand MI shows the gradient response activation occurs in the
right/left cerebral hemisphere respectively, which matches the model interpretability in the previous
part. When it comes to the feet/tongue MI, responses above the midline of the motor cortex are vivid.
Moreover, the topoplots across epochs present different but analogous brain activities during the
whole trial for all MI classes. Figure [9] presents the spatial distributions across epochs for all types of
visual stimulatioi of the MAMEM-SSVEP-II dataset. All epochs present analogous spatial topoplots
with strong activation at the Oz channel, and the duration of the activation at the Oz channel lasts
until to the end of the trial. In addition, the major gradient responses on each epoch over the scalp
are similar for each visual stimulation frequency. In a nutshell, the proposed MALtt can reveal subtle
differences underlying similar spatial distributions of each epoch topoplot for five frequencies that
are utilized to decode the SSVEP-EEG signals. Our results justify the efficiency and capability of the
proposed MALtt in capturing the elusive non-stationarity in the dynamical brain.
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Figure 3: Heatmaps illustrate the gradient response across EEG channels (y-axis) and time (x-axis,
in seconds) from the visualization of the model S11 in the MAMEM-SSVEP-II dataset for the five
frequency classes (6.66, 7.50, 8.57, 10, and 12 Hz). Red/blue pixels indicate strong positive/negative
gradient response on the input 8-channel SSVEP EEG data. The discernible gradient responses
indicate strong importance of channel Oz over the visual cortex for all stimulation frequencies.

A.5 Network parameters

The different parameter setups are adopted for different types of EEG tasks. Herein we modified
the suggestion in [11]] for time-asynchronous SSVEP datasets. The kernel size of the first temporal
convolution block is enlarged to (1, 125) and the corresponding number of temporal filters is 100.
The number of separable filters is 10, and the number of spatial filters to learn per temporal filter is 8
for this application. Analogous setup for ShallowConvNet, 125 filters with kernel size (1, 40), or
about 0.3 seconds for the first temporal convolution block, and 15 spatial filters with kernel size (8,
1), where 8 corresponds to the input number of electrodes per EEG input, in the second layer. For
SCCNet, 125 spatial filters are adopted in the spatial convolution block, and the corresponding kernel
size is (8, 1). 15 temporal filters with kernel size (1, 36).

A.6 Future work

We still need to investigate the extension of the presented MAtt including the choice of the Riemannian
metrics on SPD manifold since the different choices of Riemannian metrics on SPD manifold adopted
in the manifold attention module may lead to distinct evolution of the presented MAtt. Meanwhile,
although the experimental results justify the robustness of MAtt applied in three different types of
EEG datasets (including time-synchronous and time-asynchronous EEG data), we will further validate
our proposed method on other EEG datasets to assess its generalizability. As other neuromonitoring
modalities such as MEG (magnetoencephalogram), ECoG (electrocorticography), LFP (local field
potential), and fNIRS (functional near-infrared spectroscopy) are also multi-channel time series that
represents brain activity, we will extend our exploration to test the capability of MAtt on decoding
non-EEG neural signals. Last but not least, the neuroscientific insight associated with the attention
score in our model requires further investigation including designing new experiments to explore the
deeper relevance of this model interpretation.

A.7 Statistical result

Table[2] 3] and 4] depict the multiple-comparison significance testing results with Wilcoxon signed
rank test based on Bonferroni correction for MI, SSVEP, and ERN datasets respectively. The aim of
the multiple comparison tests (MCT) is to reduce the chance of type I error in this section. Among
a variety of correction methods, to rigorously scrutinize the significance of proposed MAtt, herein
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Figure 4: Heatmaps of the gradient response across EEG channels (y-axis) and time (x-axis, in
seconds) from the visualization of the model S7 in the BCI-ERN dataset for the classes of "error’ and
"correct’ feedback given by the BCI speller. Red/blue pixels indicate strong positive/negative gradient
response on an input EEG segment. Consistent gradient response is observed for both classes at FCz
around 0.1 and 0.4 second, which is highly consonant with the ERP waveform discrepancy between

error/correct stimuli [9]].

Table 2: P-value matrix for multiple comparison test (Wilcoxon signed rank test based on Bonfferoni
correction) on MI dataset. * statistical significance at reliability levels of 95%.

EEGNet EEG-TCNet FBCNet MAtt MBEEGSE SCCNet ShallowConvNet

EEG-TCNet 0.11 - -

FBCNet 0.11 0.77 -
mAtt 0.11 0.11 0.77
MBEEGSE 0.11 1.00 0.55
SCCNet 0.11 1.00 1.00
ShallowConvNet| 1.00 1.00 0.22
TCN-Fusion 1.00 0.55 0.11

0.33
0.33
0.11
0.11

0.33
1.00
1.00

Bonferroni correction is adopted since it is insensitive to moderate differences [12]]. As shown in
table 2] the p-value matrix of the MI dataset demonstrates the smallest p-value between the MAtt
against all baseline models are EEG-TCNet, EEGNet, TCNet-fusion, and ShallowConvNet. The first
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Figure 5: Spatial topomaps for the mean absolute gradient response across time from the visualization
of the model S7 in the BCI-ERN dataset for two classes (error and correct). Dark red marks the brains
region presenting strong gradient activation at channel FCz over the frontal region for all stimulation
frequencies.
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Figure 6: Spatial topomaps for the mean absolute gradient response across time from the visualization
of the model S11 in the MAMEM-SSVEP-II dataset for five frequency classes (6.66, 7.50, 8.57, 10,
and 12 Hz). Dark red marks the brains region presenting strong gradient activation at channel Oz
over the visual cortex for all stimulation frequencies.

Table 3: P-value matrix for multiple comparison test (Wilcoxon signed rank test based on Bonfferoni
correction) on SSVEP dataset. * statistical significance at reliability levels of 95%.

EEGNet EEG-TCNet FBCNet MAtt MBEEGSE SCCNet ShallowConvNet

EEG-TCNet 1.00 - - - - - -
FBCNet 1.00 1.00 - - - - -
mAtt 0.14 0.03* 0.38 - - - -
MBEEGSE 1.00 1.00 1.00  0.14 - - -
SCCNet 0.19 0.08 052 1.00 0.52 - -
ShallowConvNet| 1.00 1.00 1.00  0.08 1.00 0.19 -

TCN-Fusion 0.14 0.68 1.00  0.06 0.14 0.06 0.38

three models are based on the temporal-causal-convolution-based DL models. We infer the three
models may contribute insignificantly to the MI-EEG decoding task. Other attention-based (such
as MBEEGSE) and self-defined temporal feature exploration method (FBCNet) has a little higher
p-values against MAtt on the other hand. Table [3]illustrates the p-value matrix for the second SSVEP
dataset. The p-value in the cell that corresponds to MAtt and EEG-TCNet denotes the significant
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Figure 7: Time-frequency spectrograms from the visualization of the model S11 in the MAMEM-
SSVEP-II dataset for the five frequency classes (6.66, 7.50, 8.57, 10, and 12 Hz). Strong response of
SSVEP is marked by dark red at specific frequency bands and time intervals. Increased response of
SSVEP is found at the fundamental and harmonic frequency corresponding to each stimulation.
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Figure 8: Spatial topoplots for each epoch of S3 on the BCIC-IV-2a dataset for four MI tasks(left
hand, right hand, feet, and tongue). Strong mean absolute gradient activation of MI is marked by
dark red in specific brain regions over the scalp.

Table 4: P-value matrix for multiple comparison test (Wilcoxon signed rank test based on Bonfferoni
correction) on ERN dataset. * statistical significance at reliability levels of 95%.

EEGNet EEG-TCNet FBCNet MAtt MBEEGSE SCCNet ShallowConvNet

EEG-TCNet 1.00 - - - - - -
FBCNet 0.05 0.01* - - - - -
mA(tt 1.00 1.00 0.01* - - - -
MBEEGSE 1.00 1.00 0.03*  1.00 - - -
SCCNet 1.00 1.00 0.06 0.43 1.00 - -
ShallowConvNet| 1.00 1.00 0.07 1.00 1.00 1.00 -

TCN-Fusion 0.81 0.43 0.31 1.00 1.00 1.00 1.00

difference between the proposed MAtt and EEG-TCNet. By contrast, MCT is insensitive to detect
the difference between MAtt and SCCNet. For ERN dataset, the p-value matrix is shown in table
Ml The table exhibits the corresponding p-value between all models with each other. Although
the EEG-TCNet ourperofrms the proposed MAtt slightly on the ERN decoding, the difference is
statistically significant according to the p-value. Furthermore, among all baseline models, the p-values
between the MAtt and FBCNet suggest that MAtt has a stronger capacity than FBCNet in decoding
the ERN dataset. In summary, the p-value matrices above illustrate the significance of performance
comparison among all models.

A.8 Limitation

In our framework, vacuum permittivity € is added on all main diagonal elements of covariance cz;z}

to ensure the rigor of SPD matrix. But the operation may cause the repeated singular value € in .S;.
Therefore, we proposed possible solutions for this issue: 1) Let m < n when dividing the embeddings
into several time segments, reducing the possibility of getting low-rank S;; 2) Let € be randomly
drawn from a specific distribution, such as Uni form (le — 8, le — 4) to solve this issue, which is
also a practicable solution; 3) Use the derivative of a low-rank matrix [[13]] to cope with this issue.
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Figure 9: Spatial topoplots over the occipital region on the scalp for each epoch of S11 on the
MAMEM-SSVEP-II dataset for five visual stimulation frequencies(6.66, 7.50, 8.57, 10, and 12 Hz).
Strong mean absolute gradient activation of SSVEP is marked by dark red in specific brain regions
over visual cortex.
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