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1 Missing Proofs1

In this section, we will proof the main theorem in our paper. Before the detailed proof, we first recall2

the following assumptions that are commonly used for characterizing the convergence of non-convex3

stochastic optimization.4

Assumption 1. (Bounded Gradient.) It exists G ≥ 0 s.t. ||∇f(w)|| ≤ G.5

Assumption 2. (Bounded Variance.) It exists σ ≥ 0 s.t. E[||g(w)−∇f(w)||2] ≤ σ2.6

Assumption 3. (L-smoothness.) It exists L > 0 s.t. ||∇f(w)−∇f(v)|| ≤ L||w− v||, ∀w,v ∈ Rd.7

1.1 Proof of Theorem 18

Based on the objective function of Sharpness-Aware Minimization (SAM), suppose we can obtain9

the noisy observation gradient g(w) of true gradient ∇f(w), we can write the iteration of SAM:10 {
wt+ 1

2
= wt + ρ · g(wt)

||g(wt)||
wt+1 = wt − η · g(wt+ 1

2
)

(1)

Lemma 1. For any ρ > 0, L > 0 and the differentiable function f , we have the following inequality:11

⟨∇f(wt),∇f(wt + ρ
∇f(wt)

||∇f(wt)||
)⟩ ≥ ||∇f(wt)||2 − ρLG

Proof. We first add and subtract a term ||∇f(wt)|| to make use of classical inequalities bounding12

⟨∇f(w1)−∇f(w2),w1 −w2⟩ by ||w1 −w2||2 for smooth.13

LHS =⟨∇f(wt),∇f(wt + ρ
∇f(wt)

||∇f(wt)||
)−∇f(wt)⟩+ ||∇f(wt)||2

=
||∇f(wt)||

ρ
⟨ ρ

||∇f(wt)||
∇f(wt),∇f(wt + ρ

∇f(wt)

||∇f(wt)||
))−∇f(wt)⟩+ ||∇f(wt)||2

≥− L
||∇f(wt)||

ρ
|| ρ

||∇f(wt)||
∇f(wt)||2 + ||∇f(wt)||2

=− ||∇f(wt)||ρL+ ||∇f(wt)||2

≥−GρL+ ||∇f(wt)||2

where the first inequality is that14

⟨∇f(w1)−∇f(w2),w1 −w2⟩ ≥ −L||w1 −w2||2,

and the second inequality is the Assumption 1.15
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Lemma 2. For ρ > 0, L > 0, the iteration 1 satisfies following inequality:16

E⟨∇f(wt), g(wt+ 1
2
)⟩ ≥ 1

2
||∇f(wt)||2 − L2ρ2 − LρG

Proof. We denote the deterministic values of wt+ 1
2

as ŵt+ 1
2
= wt + ρ ∇f(wt)

||∇f(wt)|| in this section.17

After we add and subtract the term g(ŵt+ 1
2
), we have the following equation:18

⟨∇f(wt), g(wt+ 1
2
)⟩ =⟨∇f(wt), g(wt + ρ

g(wt)

||g(wt)||
)− g(ŵt+ 1

2
)⟩+ ⟨g(ŵt+ 1

2
),∇f(wt)⟩

For the first term, we bound it by using the smoothness of g(w):19

−⟨∇f(wt), g(wt + ρ
g(wt)

||g(wt)||
)− g(ŵt+ 1

2
)⟩ ≤1

2
||g(wt + ρ

g(wt)

||g(wt)||
)− g(ŵt+ 1

2
)||2 + 1

2
||∇f(wt)||2

≤L2

2
||wt + ρ

g(wt)

||g(wt)||
− ŵt+ 1

2
||2 + 1

2
||∇f(wt)||2

=
L2

2
||wt + ρ

g(wt)

||g(wt)||
− (wt + ρ

∇f(wt)

||∇f(wt)||
)||2 + 1

2
||∇f(wt)||2

=
L2ρ2

2
|| g(wt)

||g(wt)||
− ∇f(wt)

||∇f(wt)||
||2 + 1

2
||∇f(wt)||2

≤L2ρ2 +
1

2
||∇f(wt)||2

For the second term, by using the Lemma 1, we have:20

E⟨g(ŵt+ 1
2
),∇f(wt)⟩ =⟨∇f(ŵt+ 1

2
),∇f(wt)⟩

=⟨∇f(wt + ρ
∇f(wt)

||∇f(wt)||
),∇f(wt)⟩

≥||∇f(wt)||2 − ρLG

Asesmbling the two inequalities yields to the result.21

Lemma 3. For η ≤ 1
L , the iteration 1 satisfies for all t > 0:22

Ef(wt+1) ≤ Ef(wt)−
η

2
E||∇f(wt)||2 + Lη2σ2 + ηL2ρ2 + (1− Lη)ηLGρ

Proof. By the smoothness of the function f , we obtain23

f(wt+1) ≤f(wt)− η⟨∇f(wt), g(wt+ 1
2
)⟩+ Lη2

2
||g(wt+ 1

2
)||2

=f(wt)− η⟨∇f(wt), g(wt+ 1
2
)⟩+ Lη2

2
(||∇f(wt)− g(wt+ 1

2
)||2 − ||∇f(wt)||2 + 2⟨∇f(wt), g(wt+ 1

2
)⟩)

=f(wt)−
Lη2

2
||∇f(wt)||2 +

Lη2

2
||∇f(wt)− g(wt+ 1

2
)||2 − (1− Lη)η⟨∇f(wt), g(wt+ 1

2
)⟩

≤f(wt)−
Lη2

2
||∇f(wt)||2 + Lη2||∇f(wt)− g(wt)||2 + Lη2||g(wt)− g(wt+ 1

2
)||2

− (1− Lη)η⟨∇f(wt), g(wt+ 1
2
)⟩

≤f(wt)−
Lη2

2
||∇f(wt)||2 + Lη2||∇f(wt)− g(wt)||2 + Lη2L2||wt −wt+ 1

2
||2

− (1− Lη)η⟨∇f(wt), g(wt+ 1
2
)⟩

=f(wt)−
Lη2

2
||∇f(wt)||2 + Lη2||∇f(wt)− g(wt)||2 + η2L3ρ2

− (1− Lη)η⟨∇f(wt), g(wt+ 1
2
)⟩

2



Taking the expectation and using Lemma 2 we obtain24

Ef(wt+1) ≤Ef(wt)−
Lη2

2
E||∇f(wt)||2 + Lη2E||∇f(wt)− g(wt)||2 + η2L3ρ2

− (1− Lη)ηE⟨∇f(wt), g(wt+ 1
2
)⟩

≤Ef(wt)−
Lη2

2
E||∇f(wt)||2 + Lη2σ2 + η2L3ρ2

− (1− Lη)ηE⟨∇f(wt), g(wt+ 1
2
)⟩

≤Ef(wt)−
Lη2

2
E||∇f(wt)||2 + Lη2σ2 + η2L3ρ2

− (1− Lη)η

[
1

2
E||∇f(wt)||2 − L2ρ2 − LρG

]
=Ef(wt)−

η

2
E||∇f(wt)||2 + Lη2σ2 + η2L3ρ2 + (1− Lη)ηL2ρ2 + (1− Lη)ηLρG

=Ef(wt)−
η

2
E||∇f(wt)||2 + Lη2σ2 + ηL2ρ2 + (1− Lη)ηLGρ

25

Proposition 1. Let ηt = η0√
t

and perturbation amplitude ρ decay with square root of t, e.g., ρt = ρ0√
t
.26

For ρ0 ≤ Gη0 and η0 ≤ 1
L , we have27

1

T

T∑
t=1

E||∇f(wt)||2 ≤C1
1√
T

+ C2
log T√

T
,

where C1 = 2
η0
(f(w0)− Ef(wT )) and C2 = 2(Lσ2η0 + LGρ0).28

Proof. By Lemma 3, we replace ρ and η with ρt =
ρ0√
t

and ηt =
η0√
t
, we have29

Ef(wt+1) ≤Ef(wt)−
ηt
2
E||∇f(wt)||2 + Lη2t σ

2 + ηtL
2ρ2t + (1− Lηt)ηtLGρt.

Take telescope sum, we have30

Ef(wT )− f(w0) ≤−
T∑

t=1

ηt
2
E||∇f(wt)||2 + (Lσ2η20 + LGρ0η0)

T∑
t=1

1

t
+ (L2η0ρ

2
0 − L2Gη20ρ0)

T∑
t=1

1

t
3
2

Under ρ0 ≤ Gη0, the last term will be less than 0, which means:31

Ef(wT )− f(w0) ≤−
T∑

t=1

ηt
2
E||∇f(wt)||2 + (Lσ2η20 + LGρ0η0)

T∑
t=1

1

t
.

With32

ηT
2

T∑
t=1

E||∇f(wt)||2 ≤
T∑

t=1

ηt
2
E||∇f(wt)||2 ≤ f(w0)− Ef(wT ) + (Lσ2η20 + LGρ0η0)

T∑
t=1

1

t
,

we have33

η0

2
√
T

T∑
t=1

E||∇f(wt)||2 ≤f(w0)− Ef(wT ) + (Lσ2η20 + LGρ0η0)

T∑
t=1

1

t

≤f(w0)− Ef(wT ) + (Lσ2η20 + LGρ0η0) log T.

Finally, we achieve the result:34

1

T

T∑
t=1

E||∇f(wt)||2 ≤2 · (f(w0)− Ef(wT ))

η0

1√
T

+ 2(Lσ2η0 + LGρ0)
log T√

T
,

which shows that SAM can converge at the rate of O(log T/
√
T ).35
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1.2 Proof of Theorem 236

Suppose we can obtain the noisy observation gradient g(wt) of true gradient ∇f(wt), and the mask37

m, we can write the iteration of SAM: Consider the iteration of Sparse SAM:38

{
w̃t+ 1

2
= wt + ρ g(wt)

||g(wt)|| ⊙mt

wt+1 = wt − g(w̃t+ 1
2
)

(2)

Let us denote the difference as wt+ 1
2
− w̃t+ 1

2
= et.39

Lemma 4. With ρ > 0, we have:40

E⟨∇f(wt), g(w̃t+ 1
2
)⟩ ≥ 1

2
||∇f(wt)||2 − 2L2ρ2 − LρG− L2||et||2

Proof. Similar to Lemma 2, We denote the true gradient as ŵt+ 1
2
= wt + ρ ∇f(wt)

||∇f(wt)|| , and also add41

and subtract the item g(w̃t+ 1
2
):42

⟨∇f(wt), g(w̃t+ 1
2
)⟩ =⟨∇f(wt), g(w̃t+ 1

2
)− g(ŵt+ 1

2
)⟩+ ⟨g(ŵt+ 1

2
),∇f(wt)⟩

For the first term, we bound it by using the smoothness of g(w):43

−⟨∇f(wt), g(w̃t+ 1
2
)− g(ŵt+ 1

2
)⟩ ≤1

2
||g(w̃t+ 1

2
)− g(ŵt+ 1

2
)||2 + 1

2
||∇f(wt)||2

≤L2

2
||w̃t+ 1

2
− ŵt+ 1

2
||2 + 1

2
||∇f(wt)||2

=
L2

2
||wt+ 1

2
− et − ŵt+ 1

2
||2 + 1

2
||∇f(wt)||2

≤L2(||wt+ 1
2
− ŵt+ 1

2
||2 + ||et||2) +

1

2
||∇f(wt)||2

=L2(ρ2|| g(wt)

||g(wt)||
− ∇f(wt)

||∇f(wt)||
||2 + ||et||2) +

1

2
||∇f(wt)||2

≤2L2ρ2 + L2||et||2 +
1

2
||∇f(wt)||2

For the second term, we do the same in Lemma 2:44

E⟨g(ŵt+ 1
2
),∇f(wt)⟩ ≥||∇f(wt)||2 − ρLG.

Assembling the two inequalities yields to the result.45

Lemma 5. For η ≤ 1
L , the iteration 2 satisfies for all t > 0:46

Ef(wt+1) ≤Ef(wt)−
η

2
E||∇f(wt)||2 + Lη2σ2 + 2ηL2ρ2 + (1− Lη)ηLGρ

+ (1 + Lη)ηL2||et||2

4



Proof. By the smoothness of the function f , we obtain47

f(wt+1) ≤f(wt)− η⟨∇f(wt), g(w̃t+ 1
2
)⟩+ Lη2

2
||g(w̃t+ 1

2
)||2

=f(wt)− η⟨∇f(wt), g(w̃t+ 1
2
)⟩+ Lη2

2
(||∇f(wt)− g(w̃t+ 1

2
)||2 − ||∇f(wt)||2 + 2⟨∇f(wt), g(w̃t+ 1

2
)⟩)

=f(wt)−
Lη2

2
||∇f(wt)||2 +

Lη2

2
||∇f(wt)− g(w̃t+ 1

2
)||2 − (1− Lη)η⟨∇f(wt), g(w̃t+ 1

2
)⟩

≤f(wt)−
Lη2

2
||∇f(wt)||2 + Lη2||∇f(wt)− g(wt)||2 + Lη2||g(wt)− g(w̃t+ 1

2
)||2

− (1− Lη)η⟨∇f(wt), g(w̃t+ 1
2
)⟩

≤f(wt)−
Lη2

2
||∇f(wt)||2 + Lη2||∇f(wt)− g(wt)||2 + Lη2L2||wt − w̃t+ 1

2
||2

− (1− Lη)η⟨∇f(wt), g(w̃t+ 1
2
)⟩

=f(wt)−
Lη2

2
||∇f(wt)||2 + Lη2||∇f(wt)− g(wt)||2 + η2L3||wt −wt+ 1

2
+ et||2

− (1− Lη)η⟨∇f(wt), g(w̃t+ 1
2
)⟩

≤f(wt)−
Lη2

2
||∇f(wt)||2 + Lη2||∇f(wt)− g(wt)||2 + 2η2L3(||wt −wt+ 1

2
||2 + ||et||2)

− (1− Lη)η⟨∇f(wt), g(w̃t+ 1
2
)⟩

=f(wt)−
Lη2

2
||∇f(wt)||2 + Lη2||∇f(wt)− g(wt)||2 + 2η2L3(ρ2 + ||et||2)

− (1− Lη)η⟨∇f(wt), g(w̃t+ 1
2
)⟩

Taking the expectation and using Lemma 4 we obtain48

Ef(wt+1) ≤Ef(wt)−
Lη2

2
E||∇f(wt)||2 + Lη2E||∇f(wt)− g(wt)||2 + 2η2L3(ρ2 + ||et||2)

− (1− Lη)ηE⟨∇f(wt), g(wt+ 1
2
)⟩

≤Ef(wt)−
Lη2

2
E||∇f(wt)||2 + Lη2σ2 + 2η2L3(ρ2 + ||et||2)

− (1− Lη)ηE⟨∇f(wt), g(wt+ 1
2
)⟩

≤Ef(wt)−
Lη2

2
E||∇f(wt)||2 + Lη2σ2 + 2η2L3(ρ2 + ||et||2)

− (1− Lη)η

[
1

2
||∇f(wt)||2 − 2L2ρ2 − LρG− L2||et||2

]
=Ef(wt)−

η

2
E||∇f(wt)||2 + Lη2σ2 + 2ηL2ρ2 + (1− Lη)ηLGρ

+ (1 + Lη)ηL2||ρ g(wt)

||g(wt)||
⊙mt − ρ

g(wt)

||g(wt)||
||2

=Ef(wt)−
η

2
E||∇f(wt)||2 + Lη2σ2 + 2ηL2ρ2 + (1− Lη)ηLGρ

+ (1 + Lη)ηL2||et||2

49

Proposition 2. Let us ηt = η0√
t

and perturbation amplitude ρ decay with square root of t, e.g.,50

ρt =
ρ0√
t
. With ρ0 ≤ Gη0/2, we have:51

1

T

T∑
t=1

E||∇f(w)||2 ≤C3
1√
T

+ C4
log T√

T
,

where C3 = 2
η0
(f(w0 − Ef(wT ) + η0L

2ρ2(1 + η0L)
π2

6 ) and C4 = 2(Lσ2η0 + LGρ0).52
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Proof. By taking the expectation and using Lemma 4, and taking the schedule to be ηt = η0√
t
,53

ρt =
ρ0√
t
, we obtain:54

Ef(wt+1) ≤Ef(wt)−
ηt
2
E||∇f(wt)||2 + Lη2t σ

2 + 2ηtL
2ρ2t + (1− Lηt)ηtLGρt

+ (1 + Lηt)ηtL
2||et||2

By taking sum and bound ρ with Gη0

2 , we have:55

η0

2
√
T

T∑
t=1

E||∇f(wt)||2 ≤f(w0)− Ef(wT ) + (Lσ2η20 + LGρ0η0)

T∑
t=1

1

t

+

T∑
t=1

(1 + Lηt)ηtL
2||et||2

≤f(w0)− Ef(wT ) + (Lσ2η20 + LGρ0η0)

T∑
t=1

1

t

+ η0L
2ρ20

T∑
t=1

1

t
3
2

+ η20L
3ρ2

T∑
t=1

1

t2

≤f(w0)− Ef(wT ) + (Lσ2η20 + LGρ0η0)

T∑
t=1

1

t

+ η0L
2ρ20

T∑
t=1

1

t2
+ η20L

3ρ20

T∑
t=1

1

t2

≤f(w0)− Ef(wT ) + (Lσ2η20 + LGρ0η0) log T

+ η0L
2ρ20(1 + η0L)

π2

6

Finally, we achieve the result:56

1

T

T∑
t=1

E||∇f(wt)||2 ≤
2(f(w0 − Ef(wT ) + η0L

2ρ2(1 + η0L)
π2

6 )

η0

1√
T

+ 2(Lσ2η0 + LGρ0)
log T√

T

57

So far, we have completed the proof of the theory in the main text.58
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2 More Experimets59

VGG on CIFAR10. To further confirm the model-agnostic characteristic of our Sparse SAM, we test60

the VGG-style architecture on CIFAR10. Following [? ], we test SSAM training the VGG11-BN on61

CIFAR10 and the results are shown in the following Table 1. The perturbation magnitude ρ is set to62

0.05.63

Table 1: Test accuracy of VGG11-BN on CIFAR10 with proposed Sparse SAM.
Model Dataset Optimizer Sparsity Accuracy

VGG11-BN CIFAR10

SGD / 93.42%
SAM 0% 93.87%

SSAM-F/SSAM-D

50% 94.03%/93.79%
80% 93.83%/93.95%
90% 93.76%/93.85%
95% 93.77%/93.48%
98% 93.54%/93.54%
99% 93.47%/93.33%

SAM with different perturbation magnitude ρ. We determine the perturbation magnitude ρ by64

using grid search. We choose ρ from the set {0.01, 0.02, 0.05, 0.1, 0.2, 0.5} for CIFAR, and choose ρ65

from {0.01, 0.02, 0.05, 0.07, 0.1, 0.2} for ImageNet. We show the results when varying ρ in Table 266

and Table 3. From this table, we can see that the ρ = 0.1, ρ = 0.2 and ρ = 0.07 is sutiable for67

CIFAR10, CIFAR100 and ImageNet respectively.68

Table 2: Test accuracy of ResNet18 and WideResNet28-10 on CIFAR10 and CIFAR100 with different
perturbation magnitude ρ.

Dataset SAM ρ 0.01 0.02 0.05 0.1 0.2 0.5
ResNet18 96.58% 96.54% 96.68% 96.83% 96.32% 93.16%CIFAR10 WideResNet28-10 97.26% 97.34% 97.31% 97.48% 97.29% 95.13%
ResNet18 79.56% 79.98% 80.71% 80.65% 81.03% 77.57%CIFAR100 WideResNet28-10 82.25% 83.04% 83.47% 83.47% 84.20% 84.03%

Table 3: Test accuracy of ResNet50 on ImageNet with different perturbation magnitude ρ.
datasets SAM ρ 0.01 0.02 0.05 0.07 0.1 0.2

ImageNet ResNet50 76.63% 76.78% 77.12% 77.25% 77.00% 76.37%

Ablations of Masking Strategy. For further verification of our masking strategy, we perform more69

ablations in this paragraph. For the mask update in SSAM-F, the parameters with largest fisher70

information are selected. Compared with SSAM-F, we consider the random mask, i.e., the mask is71

randomly generated to choose which parameters are perturbated. For the mask update in SSAM-D,72

we first drop the flattest weights and then random grow some weights. Compared with SSAM-D,73

we experiment the SSAM-D which drops randomly or drops the sharpest weights, i.e., the weights74

with large gradients. The results of ablations are shown in Table 4. The results show that random75

strategies are less effective than our SSAM. The performance of SSAM-D dropping sharpest weights76

drops a lot even worse than random strategy, which is consistent with our conjecture.77

Influence of hyper-parameters We first examine the effect of the number of sample size NF78

of SSAM-F in Table 5. From it we can see that a certain number of samples is enough for the79

approximation of data distribution in SSAM-F, e.g., NF = 128, which greatly saves the computational80

cost of SSAM-F. In Table 6, we also report the influence of the mask update interval on SSAM-F and81

SSAM-D. The results show that the performance degrades as the interval becom longer, suggesting82

that dense mask updates are necessary for our methods. Both of them are ResNet18 on CIFAR10.83
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Table 4: Ablation of different masking strategy.
Model Dataset Optimizer Strategy Accuracy

ResNet50 ImageNet

SGD / 76.67%
SAM / 77.25%

Sparse SAM Random Mask 77.08%(-0.17)
SSAM-F Topk Fisher Information 77.31%(+0.06)

SSAM-D
Random Drop 77.08%(-0.17)

Drop Sharpnest weights 76.68%(-0.57)
Drop Flattest weights 77.25%(-0.00)

Table 5: Results of ResNet18 on CIFAR10 with dif-
ferent number of samples NF in SSAM-F. ‘Time’
reported in table is the time cost to calculate Fisher
Information based on NF samples.

Sparsity NF Acc Time

0.5

16 96.77% 1.49s
128 96.84% 4.40s
512 96.67% 15.35s

1024 96.83% 30.99s
2048 96.68% 56.23s
4096 96.66% 109.31s

0.9

16 96.79% 1.47s
128 96.50% 5.42s
512 96.43% 15.57s

1024 96.75% 29.24s
2048 96.62% 57.72s
4096 96.59% 110.65s

Table 6: Results of ResNet18 on CIFAR10
with different Tm intervals of update mask.
The left of ‘/’ is accuracy of SSAM-F, while
the right is SSAM-D.

Sparsity Tm Acc

0.5

1 96.81%/96.74%
2 96.51%/96.74%
5 96.83%/96.60%

10 96.71%/96.73%
50 96.65%/96.75%

Fixed 96.57%/96.52%

0.9

1 96.70%/96.65%
2 93.75%/96.63%
5 96.51%/96.69%

10 96.67%/96.74%
50 96.64%/96.66%

Fixed 96.21%/96.46%

3 Limitation and Societal Impacts84

Limitation. Our method Sparse SAM is mainly based on sparse operation. At present, the sparse85

operation that has been implemented is only 2:4 sparse operation. The 2:4 sparse operation requires86

that there are at most two non-zero values in four contiguous memory, which does not hold for us. To87

sum up, there is currently no concrete implemented sparse operation to achieve training acceleration.88

But in the future, with the development of hardware for sparse operation, our method has great89

potential to achieve truly training acceleration.90

Societal Impacts. In this paper, we provide a Sparse SAM algorithm that reduces computation burden91

and improves model generalization. In the future, we believe that with the development of deep92

learning, more and more models need the guarantee of generalization and also the efficient training.93

Different from the work on sparse networks, our proposed Sparse SAM does not compress the model94

for hardware limited device, but instead accelerates model training. It’s helpful for individuals or95

laboratories which are lack computing resources.96
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