A Appendix

A.1 Appendix A : Algorithm

The structure of the neural network (VNN) mentioned in Section [3.2] for simultaneously learning the
neural Lyapunov function and the nonlinear controller is detailed in Fig. @] [3].
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Figure 4: Algorithmic structure of learning a neural Lyapunov function and the corresponding
nonlinear controller with a one-hidden layer neural network and an SMT solver.

A.2 Appendix B: Proofs

We first begin by defining notions of stability that are necessary to the proofs.

Definition 4 (Set stability). A closed set A C R™ is said to be uniformly asymptotically stable (UAS)
for the closed-loop system (2), if the following two conditions are met:

(1) (Uniform stability) For every € > 0, there exists a 6. > 0 such that ||z(0)||a < d. implies that
(t) is defined for t > 0 and ||z|| a4 < € for any solution x of [2)) for all t > 0; and

(2) (Uniform attractivity) There exists some p > 0 such that, for every ¢ > 0, there exists some
T > 0 such that x(t) is defined for t > 0 and ||z(t)||a < € for any solution x(t) of (2) whenever
lz(0)||la < pandt>T.

Definition 5 (Reachable Set). Let R! (o) denote the point x(t) reached by the solution of (2)) at time
t starting at xo. For T' > 0 define the finite time horizon reachable set as

ROStST(Jbo) — UogthRt (x0).

Similarly, for a set W C D, define
ROSST () = Uy RS (ay).
Similarly, if solutions are defined for all t > 0, then the reachable set is defined as
R(W) := Uggew U0 R (20)-

Before we prove Theorem [3| we introduce some lemmas. First we state an extension of the universal
approximation theorem that states it is possible to simultaneously pointwisely approximate a function
and its partial derivatives by a neural network. The proof of this result can be found in [31].

Theorem 5. Let K C R™ be a compact set and suppose f : K — R™ € C*(R"™). Then, for every
€ > 0 there exists a neural network ¢ : K — R of the form ¢(x) = C(o o (wz + b)) for o € C1(R)
and not a polynomial, w € RF*™ b € R* and C € RF*™ for some k € N such that

If = &lloc = sup | f(z) — ¢(x)] <€ (16)
rzeK
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and forall i =1,...,n, the following simultaneously holds

af 99

< €. o))

To make the connection between the topology of the dynamical system and the compact set guaranteed
by Lemma 2] we consider the reachable set. The following result states that the finite time horizon
reachable set is compact and can be found in [[14].

Lemma 3. Suppose that K C R" is a compact set, then the set ROS'<T(K) is compact for any
T>0.

We recall theorem [3

Theorem 3. Suppose that the origin is UAS for system (2)) and T is a forward invariant set contained
in the ROA of the origin. Fix any 1,72 > 0. There exists a forward invariant and compact set
K C T satisfying the under approximation (Z \ K) < 1. On K there exists a neural network Vy
that satisfies the Lyapunov conditions on K \ A, where A is a closed neighborhood of the origin. The
neural Lyapunov function Vy can certify that a closed invariant set B containing A and satisfying
w(B\ A) < 9 is UAS. Furthermore, the set K is contained in the ROA of B.

Proof. By the converse Lyapunov theorem [22], there exists a function V satisfying the Lyapunov
conditions on Z. Lemma |2 states that there exists a compact set W such that u(Z \ W) < /2.
Since unions preserve compactness we can suppose without loss of generality that W contains the
closed ball of radius r for » > 0 sufficiently small, denoted as B,., which lies in the interior of Z.
By virtue of 7 being a forward invariant set contained in the region of attraction, for autonomous
systems, asymptotic stability is equivalent to uniform attractive stability, so in particular there exists
atime T > 0 such that all solutions starting in W will enter A, := {z € B, : V(z) < p} for any
p > 0 without leaving Z. The continuity of measure and the Lyapunov condition V' (0) = 0 implies
there exists a constant py > 0 such that p(A,,) < /2 since N,>0A, = {0} and this is a set of
measure zero. For ease of notation, we simply refer to .4, as A. Let " > 0 be the time such that all
solutions starting in W enter A. By Lemma the reachable set RO<'<T (W) is compact and satisfies
w(Z \ ROS!ST(W)) < ~/2. Denote

K := R<S'T(W)U A.

We see that K which contains the origin is compact and forward invariant. Similarly, by the
continuity of of V" and the continuity of measure, it follows that N, .4, = A and this implies there
exists a level set A, such that ;1(A,, \ A) < 2.

By the continuity of V' there exists a constant 6 > 0 such that V' > § and V;V(z) < —¢
on K \ A. We can suppose that 6 < p; — pp in the inequality above. By Theorem [5] there exists a
neural network approximation of V' denoted V, satisfying the pointwise bounds ||V — Ve < 6/2
and |[V;V — V;Vy|leo < §/2 0n K \ A. This proves that V,, satisfies the Lyapunov conditions on
K\ A. To summarize we have established that

Vo(z) > 0/2Ve € K\ A,
and
VfV¢($) < —5/2; Vx € K\.A
By this pointwise bound ||V — V||oc < §/2 it follows that
ACB:Z{:L’GBTIV¢SPQ+52}CAPI.

This proves that u(B \ A) < ~2. Now we show that V,, verifies that the set 55 is uniformly
asymptotically stable.

(Uniform Stability) Given € > 0 as per the definition of uniform stability. Denote
B (B) := UzepBc(z).

Without loss of generality by taking € < r we can assume that B.(B) C K. Choose ¢ > 0 such that
0<e< miriev¢(x)

lll
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holds. Then by a contradiction argument the set
Q¢ :={z € B(B) : Vy(z) < ¢}

is contained in the interior of B,(5). By the continuity of V}, and compactness of B, V, is uniformly
continuous on B. Thus, there exists 0 < d, < e such that

lzo — z|| < 6 = |V(z) — V(x0)| < ¢ — po/2 forall zg € B.

In particular, this prove that Bs_(B) C ¢ C B(B). A standard argument shows that the set Q° is
forward invariant and hence for all o € Bs_(B) this implies that z(¢) € Q¢ for all ¢ > 0 and proves
uniform stability.

(Uniform Attractivity). Given that K is a compact positive invariant set that contains .4 we claim
that there exists some time 7" > 0 for which the solution enters .A. Indeed, suppose otherwise this
means that 2(t) € K \ Aforall ¢ > 0. By Lemmal5| we get that VsV (2(t)) < —6/2 forall t > 0
on K \ A. It follows that

V(z(t)) = V(2(0)) +/0 ViV (z(1))dr < V(2(0)) — dt/2.

As the right hand side will eventually become negative, this is a contradiction to the Vi > 0 on K \ A.
To conclude, note that the set A is forward invariant which implies that ||z (¢)||4 = 0 forall t > T..
In particular, as A is contained in B this proves the uniform attractivity of B.

Suppose further that Z is the ROA of the system (2)). It was mentioned as a closing remark that if
the Lyapunov function V' is radially unbounded, this means that V(z) — oo when  — ¢Z (the
boundary of 7), then the level sets of V" approach the ROA. If the origin is UAS for system (2)), then
by the converse Lyapunov theorem, it follows that V() is radially unbounded. We show that the
neural Lyapunov function inherits a similar property where the level sets approach K.

Theorem 6. In addition to the assumptions of Theorem[3] suppose that T is the region of attraction
which is bounded. Set W¢ := {x € K : Vy(x) < c}. Then, for any sequence k, — oo,
UneNWk" =K.

Proof. Without loss of generality suppose that k,, is an increasing sequence and € < k1. Again, define
V¢ ={z eD:V(x)<c}. Notethatif x € K satisfies V(x) < ¢, then V() < ¢ + €. Therefore,
Whn c VEatenK. A similar argument shows that V¥»—¢NK C Wk» C VF»+eNK. Since K C D
this implies that U,,enV* =N K = K N UpenVF»~¢ = K. Therefore, U,enWF» = K. O

Now that we have established guarantees for the existence of neural Lyapunov functions. The proof
of Theorem []is analogous, so we defer the proof of Theorem 2]to the end of this section.

Theorem 4. (Stability Guarantees for the Unknown System) Let ¢ be the approximated dynamics
of right-hand side of the closed-loop system (2)) trained by the first neural network. There exists a
neural Lyapunov function V which is learned using ¢ and verified by an SMT solver that satisfies
the Lyapunov conditions with respect to the actual dynamics f. Furthermore, if the system satisfies
Assumption[Bland V satisfies Assumption[) then the origin is UAS for the closed-loop system ().

Proof. Fix > 0 and let M > 0 be chosen such that || %—‘; || < M. AsV is learned using the learned
dynamics ¢, V satisfies V' > 0 and —V4V(z) < —f5 on D \ B.. To certify that V satisfies the
Lyapunov conditions on D \ B, it suffices to verify that V¢V < 0. By the universal approximation

theorem, there exists a neural network ¢ approximating f such that || f(x, k(z) — ¢(z, K(2)]| 0o < %
on the D\ {||z|| < e}. Asin (10), the following holds

ViV(z) < VgV(x)+8<—-B+8=0, VzeD\{0}. (18)
Therefore, V satisfies the neural Lyapunov conditions on D \ B..

(Uniform Stability). The uniform stability property follows from the Assumption [3as the quadratic
Lyapunov function guarantees uniform stability at the origin.

(Uniform Attractivity). We show that under these assumptions, the neural Lyapunov function is
able to verify uniform attractivity. As uniform attractivity is equivalent to attractivity for autonomous
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systems, it suffices to verify that any level set of V, denoted V' ¢, which contains B; is a ROA for this
dynamical system. By a similar argument to the Uniform Stability part of Theorem 3] any trajectory
starting in V' must eventually enter B.. Since B is contained in the ROA of the closed loop system
provided by the quadratic Lyapunov function, it follows that ||z(t)|| — 0 as t — oc.

As a remark, it can be seen from this proof that if Assumption [3]is satisfied then any level set
containing the ball must be a ROA of the system. This is because trajectories flow from one level set
to a sublevel set. Eventually trajectories must enter the level set contained in B..

To prove Theorem 2] we introduce concepts that will allow us to approximate Lipschitz functions
smoothly. Let us first restate this theorem.

Theorem 2. (Approximation of Lipschitz constants). Suppose that K C R" is a compact set.
(a)If f : K — R™ is L-Lipschitz in the uniform norm, i.e.

1 (@) = f(W)lloe < Lllz =y, (13)
then for every € > 0 there exists a neural network of the form ¢(x) = C(o o (wx + b)) for
o € CY(R) and not a polynomial, w € R¥*™ b € R* and C € R**" for some k € N such that
sup,cx | f(x) — ¢(2)| < € and ¢ has a Lipschitz constant of L + € in the same norms as ([I3).

(b) If f : K — R™ is L-Lipschitz in the two norm, i.e.
1f(@) = f()lloo < Lllz = yll2, (14)

then for every € > 0 there exists a neural network ¢ of the same form such that sup,¢ g | f(z) —

¢(x)| < € and ¢ has a Lipschitz constant of L + € ( /e + L) in the same norms as )

2

The idea will be to first approximate f by a smooth function and then approximate this smooth
function by a neural network. In this end, define n € C*°(R"™) by

C'exp (%) if |[z] <1
n(w) = Frr) el
0 if || > 1

where the constant C' is some normalizing constant, that is C' > 0 is selected so that fRn ndxr = 1.
Some standard properties of 7(z) is that n > 0,7 € C°°(R"™) and spt(n) C B1(0) which is the unit
ball in R". For each € > 0, set
@) == (%)
(x) = —n(—).
K €n n €

We call 7 the standard mollifier. The functions 7. are C*° and satisfy

t/mmszHmCB@d

Then, by taking the convolution of f with the mollifier 7., denote f. = f * 1. which can be further
simplified to

fola) = [ Fwpneta—y)dy

= [ flz—ym(y)dy
]R'n
-1 flz—y)n(

en B(0,¢)
= / J(x —ey)n(y)dy.
B(0,1)

It is well known that f. € C'*°. Additionally, by the Lipschitz continuity of f, uniform convergence
holds on R™:

(@) — ful)| < / (F& — ey) — f@)n(w)ldy < L / lewllne(w)dy

B(0,1) B(0,1)

NS

)

< Le/ ne(y)dy < Le.
B(0,1)

However, to define f., we need this function to be defined on R™. Therefore, we need a specific case
of the following lemma called the Kirszbraun theorem. The proof of this result can be found in [34].
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Lemma 4. Suppose that U C R™. For any Lipschitz map f : U — R™ there exists a Lipschitz-
continuous map

F:R" —R™
that extends f and has the same Lipschitz constant as f.

We are now ready to prove Theorem 2]

Proof. As the proof of (a) is analogous to the proof of (b) and simpler, we elect to prove (b) only.
Since f is L-Lipschitz in the uniform norm, we have that the component functions f; are L-Lipschitz.
Since neural networks can be stacked in parallel, it suffices to prove this result for the case that m = 1.
Moreover, since K is compact, by taking the approximation on some hypercube containing K and
then restricting onto K we can also assume without loss of generality that K is convex. The uniform
norm is still well-defined as the restriction of a continuous function is continuous. By the Kirszbraun
theorem there exists an extension F' to R™ with the same Lipschitz constant L so we can suppose
without loss of generality that f is deﬁned on R™ and has Lipschitz constant L. Denote f. := f x 7.
Since we have that f,(z fRn 1 (y)dy from the above calculation, we see that

) = fulaz)| < / 1= 9) = Sz = ) nlw)dy

< [ 1= ) = fea =)o)l dy
< Lilzy — o /}Rn ne(y)dy

= L”ZL’l — ZL’QH

This shows that f, is L-Lipschitz. Since f. — f uniformly we can choose ¢ > 0 sufficiently
small so that || f — fe|| < €/2. Therefore, by Theorem [5| there exists a neural network ¢ such that

sup,ci | f(x) — ¢(x)| < €/2 and sup,¢ |%($) - ﬁ(wﬂ < €/2foralli=1,...,n. Since f
is L-Lipschitz it follows that ||V f||2 < L. By the uniform bound on the partial derivatives and the
following inequality, (a + b)? < (1 + €)a® + (1 + 1/€)b?, this gives

oot = (22) o+ (22)
() e (s)

e () v () o
SLH(WH)

2

IN

Therefore, by the mean value theorem and the convexity of K, it follows that ¢ is L +

€ ( vrinfe | L) Lipschitz. 0

A.3 Appendix C: Experiments

As stated in Section [5| the learned dynamics is of the format ¢ = Wy tanh (W1 X + B;) + Bo
where X = [z,u]. In VNN, the valid neural Lyapunov function is of the following form Vy =
tanh (Ws tanh (Wi + By) + Bs). It is worth mentioning that we have access to the nonlinear
dynamics for the cases in Section [5] and consequently, we are able to test the neural Lyapunov
functions on the actual dynamics. In all three experiments, we observe that the neural Lyapunov
functions are indeed valid Lyapunov functions for the actual dynamics, which shows the effectiveness
of the proposed algorithm. The code is open sourced at https://github.com/RuikunZhou/
Unknown_Neural _Lyapunov.
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A.3.1 Van der Pol oscillator

The dynamics of the Van der Pol oscillator are:

.’kl = —X2 (19)
f.tQ = + (SE% — 1) Z9g.

Correspondingly, the phase plot and the limit cycle of this nonlinear system are shown in Figure ] [22].

Figure 5: Phase space plot and the limit cycle (bold black line) of Val Der Pol oscillator without
controller, where the area within the bold black curve forms the actual ROA.

Clearly, we can write x = |21 xg]T, and we use 100 hidden neurons to learn the dynamics in FNN.
With the learned dynamics, the weights and biases matrices of obtained neural Lyapunov function in
VNN are:

~1.82004 —0.70762 3.35979 —6.42827 —1.14237  0.39034 |"

Wi = 1.30866  0.57501 0.27398  0.32546 —1.16843 —0.03503 ’
Wy =] —1.32270 —0.73489 1.87897 0.89612 1.65451 1.17499 |,
By = —2.30191 0.38658 0.47604 0.83902 0.87791 1.18262 | and B2 = [0.62172].

A.3.2 Unicycle path following

In this case, we have two state variables, the angle error 6. and the distance error d., and the dynamics
of this system can be written as:

_ wcos(6,)
T deri(s)’
d, = vsin (6,), (20)
;o vk(s) cos (6.)
O =w— 1 —der(s) ~

Here we assume the target path is a unit circle £(s) = 1 and take w as the input v with z = [d, GC]T,
consequently the dynamical system is of the format & = f(x, u). Similarly, after obtaining the learned
dynamics ¢(x, u) with 200 hidden neurons, the weights and biases matrices of Vj for this experiment

19



are recorded below.

| —2.13787 —0.02771 2.83659 —3.33855  0.61321 4.98050 ’

W = 1.07949 —0.25036 0.69794 —2.23639 —1.62861 0.11680 ’
Wy =] —1.23695 1.08396 —2.13833 —0.76877 —0.84737 1.47562 |,
By =[] —1.90726 0.87544 0.18892 0.73855 1.09844 —0.79774 ] and B, = [0.59095],

and the nonlinear controller function is « = 5 tanh(—5.95539d, — 4.034266, + 0.19740)

A.3.3 Inverted pendulum

The system dynamics of inverted pendulum can be described as

mglsin(f) +u — 0.10
5 :

é:

ml

2n

In this example, the only nonlinear function we need to learn for FNN is (21)). Therefore, the input
[z )T is 3-dimensional and the output is 1-dimensional. Using constants g = 9.81,m = 0.15 and
£ = 0.5, by the same process as the previous experiment, the weights and bias matrices of the neural
Lyapunov function for this experiment are listed below, and the corresponding parameters can be

found in Table[3]
W, — 0.03331 0.03467 2.12564 —0.39925 0.12885 0.95375 r
1= —0.03113 —0.01892 0.02354 —0.10678 —0.32245 0.01298 ’
Wy = [ —0.33862 0.65177 —0.52607 0.23062 —0.04802 0.66825 } ,
B; =[ —0.48061 0.88048 0.86448 —0.87253 0.81866 —0.26619 | and By = [0.22032],

and the nonlinear controller function is u© = 20 tanh<—23.286320 —5.27 0559)

Table 3: Parameters in inverted pendulum case
Ky Ky 5 - 1%l 8 e
<33.214 633.806 5Se-5 5e-3 0.51 0.02 04

A.4 Appendix D: Limitations and future work

This work is concerned with formulating an algorithm to learn the unknown dynamics with stability
guarantees using Lyapunov functions with nonlinear controllers. Since the experiments are run in an
ideal setting, we acknowledge the following limitations, which will be further addressed or taken into

consideration in future work.

1. The data set used to train the unknown dynamics and learn the Lyapunov function is

generated from the trajectories of solutions to ordinary differential equations, but in practice
noise typically pollutes state measurements, and sometimes it is difficult to have direct
access to the states measurements and obtain a significant number of data points. In this
paper, we first try to prove the proposed approach works well with ideal measurements both
practically and theoretically. In the future, we will study the question of how to learn the
unknown dynamics and a robust Lyapunov function with different values of 3 in (TI)) to
guarantee stability with noisy measurements. Further, the implementation of this algorithm
on real dynamical systems will be investigated as well afterwards.

. Although all the nonlinear systems in Section [5|are widely studied and standard nonlinear
problems, the systems considered here are relatively low-dimensional. This decision is
made in view of the lack of expressibility of shallow neural networks with limited width
and the scalability of the SMT solvers. As in all tasks, we have to consider the trade off
between computational time and performance so the proposed number of neurons in Section
[5] achieves this balance. For now, the main bottleneck we experienced is approximating
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high-dimensional dynamics with the one-hidden-layer shallow neural networks. Regarding
the scalability of the SMT solver, we have seen dReal works well with learned complex
high-dimensional system in [S]] and [36]. In our future work, we will try to learn high-
dimensional unknown dynamics, for instance quadrature dynamics in six dimensions with
deeper neural networks. We believe that dReal should be able to handle such a case.

. Computing a valid Lyapunov function is challenging and has been a well-studied topic for
dynamical systems. We admit that our method is not complete, that is, it does not guarantee
that we can obtain a valid Lyapunov function after running the algorithm. The original
paper of this framework [5] similarly suffers from this same issue and to the best of our
knowledge, we are unaware of any papers in the literature that have addressed this issue.
Finding a complete algorithm for computing Lyapunov functions is an interesting topic for
future research.
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