
A Differential Privacy

An algorithm is said to be differentially private if its outputs on adjacent inputs (in our case, datasets)
are statistically indistinguishable. Informally, the framework of differential privacy requires that the
probabilities of an algorithm making specific outputs be indistinguishible on two adjacent input
datasets. Two datasets are said to be adjacent if they only differ by at most one training record. The
degree of indistinguishibility is bounded by a parameter denoted ". The lower " is, the stronger the
privacy guarantee is for the algorithm because it is harder for an adversary to distinguish adjacent
datasets given access to the algorithm’s predictions on these datasets. In the variant of differential
privacy we use, we can also tolerate that the guarantee not hold with probability �. This allows us to
achieve higher utility.

B Shifting Distributions

In Section 3, we explain that we shift our histogram estimate by a constant to account for the number
of teachers known to the attacker. The following theorem shows that the number of teachers does
not affect the attacker’s computation

Theorem 2. For two histograms, H
1 = [h1

1, . . . , h
1
m
] and H

2 = [h2
1, . . . , h

2
m
], QH

1
,� = Q

H
2
,�

if

h
1
i
� h

2
i
= h

1
j
� h

2
j

for all i, j = 1, . . . ,m.

Proof. let d = h
1
i
� h

2
i
= h

1
j
� h

2
j

for all i, j = 1, . . . ,m.

P(g2
i
> g

2
j
) ⇠ N ((h2

i
� h

2
j
), 2�2)

= N ((h1
i
+ d)� (h1

j
+ d), 2�2)

= N (h1
i
� h

2
j
, 2�2)

= P(g1
i
> g

1
j
)

for all i, j = 1, . . . ,m.

Q
H

1
,�

k
= P([g1

k
> g

1
1 , . . . , g

1
k
> g

1
k�1,

g
1
k
> g

1
k+1, . . . , g

1
k
> g

1
m
])

= P([g2
k
> g

2
1 , . . . , g

2
k
> g

2
k�1,

g
2
k
> g

2
k+1, . . . , g

2
k
> g

2
m
])

= Q
H

2
,�

k

What Theorem 2 states is, if the difference between two histograms is uniform, then the probability
distribution of the outcomes is the same. With the support of Theorem 2, H can be safely shifted by
a constant amount to sums up to the number of teachers, N .

C Chosen histograms for evaluation

Table 1 shows the histograms we chose for evaluation in the 3 consensus-level categories.

13



MNIST SVHN
High consensus

H1 [4, 7, 6, 8, 4, 2, 0, 214, 4, 1] [0, 0, 0, 0, 250, 0, 0, 0, 0, 0]
H2 [4, 7, 207, 10, 4, 4, 0, 10, 3, 1] [0, 0, 250, 0, 0, 0, 0, 0, 0, 0]
H3 [5, 205, 7, 8, 4, 3, 0, 11, 6, 1] [0, 0, 0, 250, 0, 0, 0, 0, 0, 0]
H4 [4, 7, 6, 7, 4, 200, 4, 10, 7, 1] [0, 250, 0, 0, 0, 0, 0, 0, 0, 0]
H5 [4, 7, 210, 7, 4, 4, 0, 10, 3, 1] [0, 0, 0, 0, 0, 0, 250, 0, 0, 0]

Median consensus

H1 [5, 183, 9, 16, 4, 3, 1, 10, 17, 2] [0, 0, 1, 0, 249, 0, 0, 0, 0, 0]
H2 [6, 7, 6, 30, 4, 181, 0, 10, 5, 1] [0, 10, 1, 232, 1, 3, 0, 1, 0, 2]
H3 [4, 7, 6, 10, 13, 4, 0, 17, 3, 186] [0, 0, 0, 6, 0, 243, 0, 0, 0, 1]
H4 [6, 18, 184, 7, 10, 4, 7, 10, 3, 1] [236, 0, 0, 7, 0, 0, 6, 0, 1, 0]
H5 [7, 7, 8, 7, 4, 9, 193, 10, 4, 1] [234, 2, 0, 4, 0, 0, 0, 1, 9, 0]

Low consensus

H1 [12, 7, 6, 30, 4, 161, 0, 10, 19, 1] [1, 1, 20, 12, 0, 0, 2, 207, 7, 0]
H2 [4, 8, 7, 11, 38, 16, 1, 13, 8, 144] [0, 158, 1, 6, 4, 38, 0, 40, 1, 2]
H3 [4, 7, 15, 33, 6, 5, 0, 171, 5, 4] [0, 184, 0, 2, 3, 0, 0, 61, 0, 0]
H4 [4, 7, 117, 99, 4, 4, 0, 10, 4, 1] [0, 0, 24, 0, 0, 0, 0, 0, 0, 226]
H5 [4, 17, 6, 11, 154, 4, 0, 11, 5, 38] [10, 1, 2, 19, 7, 109, 73, 0, 19, 10]

Table 1: The 30 MNIST and SVHN vote histograms sampled from the collection of histograms pro-
vided by Papernot et al [1] (divided into 3 equally-sized consensus groups). We refer to histograms
denoted here by H1-5 in the different consensus groups throughout the presentation of our results.

D Fittig Random Forests

Every one of our teachers in Section 2 fits a random forest classifier using the sklearn package; each
teacher performed a grid search over the following hyperparameters, and picked the values that lead
to the lowest training loss.

• max depth : the maximum number of levels that a tree has, an integer chosen between 1
and 11 inclusively;

• max features : the maximum number of features, while splitting a node, one of sqrt(number
of features), log(number of features), 0.1*(number of features), 0.2*(number of features),
0.3*(number of features), 0.4*(number of features), 0.5*(number of features), 0.6*(number
of features), 0.7*(number of features), 0.8*(number of features), 0.9*(number of features);

• n estimators : the number of trees that the forest has, an integer chosen between log(9.5)
and log(300.5);

• criterion: the loss function, one of gini impurity and entropy;
• min samples split : the minimum number of instance for a node to split, one of 2, 5, 10;
• bootstrap: one of True or False

E End-to-end sensitive-attribute inference

In Section 2, we showed that histograms leak by mounting an attack that classifies histograms to
low-consensus and high-consensus groups, which reveals information about minority-group mem-
bership. In Section 4, we showed that we can extract histograms by querying PATE instances. Now,
we combine these two attacks, to extract minority-group membership information directly from a
PATE instance. Our setting mirrors the setting from Section 2, but the attacker does not have di-
rect access to histograms of individuals, and instead they extract them from PATE’s answers using
our methodology (Section 3). We used the same ensemble from Section 2, but this time, the 250
teachers’ vote histogram was noised, again using � = 40, � = 0.00001 and a privacy budget of 1.9

14



as in [2]. We sampled 10 low-consensus and 10 high-consensus members of the test set, and ran
the attack on them: we queried PATE with each member’s data record until exhausting the privacy
budget, computed the Monte Carlo estimators, ran the optimization to recover the vote histogram,
and then classified it to low-consensus/high-consensus as in Section 2. Results are given in Figure 8,
and indeed, they mirror the results of the attack in Section 2.

Figure 8: High vs. low-consensus distributions of the PhD-detection attack on PATE: vote his-
tograms of minority-group members present lower consensus, allowing an attacker to identify them.

F Edge values for noise

Here, our purpose is to evaluate our attack given extremely low and extremely high values of �. We
repeated the query-number-limited attack from Section 4.1 where adversaries perform 104 queries.
This time, we used a � value approaching 0 and a very high one (400). Figure 9 shows that when
noise is close to 0, the error rate is the highest, it then drops and climbs again as we increase the
error. This is consistent with what we would expect: we know that when � = 0, the attacker cannot
learn anything but the argmax class, whereas if � is infinitely large, PATE’s output distribution is
uniform regardless of the underlying votes, and the attacker again cannot learn anything.

Figure 9: Error rates with baselines of a median-consensus histogram (from H3) in SVHN. When
the noise is close to 0, the error is the largest; at some point, the error starts moderately increasing
as the noise increases.

15


	Introduction
	Vote Histograms are Sensitive Information
	How to Extract PATE Histograms
	Problem Formulation and Attack Model
	Our histogram reconstruction attack

	Evaluation
	Experimental Setup
	Results

	Discussion
	Differential Privacy
	Shifting Distributions
	Chosen histograms for evaluation
	Fittig Random Forests
	End-to-end sensitive-attribute inference
	Edge values for noise

