A Societal impact

Our work focuses on extending object-centric representation learning to real-world videos. This
class of methods has the potential for enabling systems to more reliably solve down-stream tasks
requiring object representations, such as relational reasoning over entities in videos, and providing
better interpretation of model decisions. Some applications that may benefit from this approach
include perception in autonomous vehicles, robotics and classic computer vision problems such as
object detection. While the method demonstrated in this paper is still far from a state where it could
be directly employed in computer vision applications, we would like to raise awareness that—as with
most methods developed for computer vision—advances in this field might also aid the development
applications with potential negative societal impact such as surveillance.

B Additional results

Qualitative results In Figure 7, we show the effect of our mask thresholding heuristic applied for
our unsupervised model visualizations. The intention for this simple heuristic is to aid interpretability
of the discovered object segmentation masks. We further show qualitative results for emergent
tracking on long sequences in the unconditional setting (i.e. without bounding box conditioning) in
Figure 8. Compared to the conditional setting (shown for reference), tracking is less consistent and
slots explain not only cars, but also environmental objects or part of the background.

Input frame SIMONe SIMONe + depth SAVi++ (unconditional)  SAVi++ (conditional)

Figure 7: Comparison of qualitative result visualization without (top) and with (bottom) mask
thresholding. We apply a simple thresholding heuristic of dropping any masks that (on average across
frames) occupy more than 1300px per frame, which aids interpretability. Thresholding does not have
an effect on the conditional model.

t=0 t=5 t=10 t=15 t=20 t=25

Unconditional

Conditional

Figure 8: Qualitative results on long Waymo Open validation set videos (for SAVi++ models trained
on 6 frames). Top: Results for an unconditional SAVi++ model, trained and evaluated without
bounding box conditioning in the first frame. Bottom: Conditional setting shown for reference.
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Quantitative results We additionally compare SAVi and SAVi++ on the synthetic MOVi-A and
MOVi-B datasets [20]. In MOVi-A, scenes consist of a gray floor, four light sources, a fixed static
camera and between 3 and 10 simple geometric objects that vary in terms of their shape (cube, sphere,
cylinder), material (rubber, metal), size (small, large), and color (blue, brown, cyan, gray, green,
purple, red, yellow). MOVi-B is a straightforward extension, which adds additional variation to the
object shape, size, and color; background color; and static camera positions.

In Table 3 it can be seen how SAVi++ performs similar or worse in terms of mloU and FG-ARI
on these datasets. We mainly attribute this to our strategy for scaling in SAVi++, which appears
susceptible to overfitting on these much simpler domains. Additionally, the benefit of using depth
information is limited, since all objects are in motion for these datasets. The contrast between the
results presented in the main paper for MOVi-C to -E and Table 3 (MOVi-A and -B) emphasizes
the importance of considering benchmarks that are more representative of the real world for model
development.

Table 3: MOVi results in terms of mean score =+ standard error (5 seeds) from evaluating SAVi++ and
SAVi models on validation set video sequences of increased length (24 frames).

mIoUT (%) FG-ARI! (%)
Model MOVi-A MOVi-B MOVi-A MOVi-B

SAVi[37] 82.3+03 44.5+93 96.8+04 73.9+10.7
SAVi++ 76.1+09 25.8+11.3 982+0.2 483+157

Table 4: Breakdown of SAVi++ results from Table 2 in terms of three classes of objects: car, person,
and cyclist.

Metric Car Person Cyclist
Num. objects 15350 2102 275
CoM| 42402 6.4+0.1 1.9+0.1

B. mIoU? 52.5+0.8 27.0+05 42.2+2.1
B. Recallt 96.7+0.7 95.1+11 99.3+03

We report per category results for SAVi++ on the WaymoOpen dataset in Table 4. We find that, as
expected, this dataset is dominated by cars and performance is very good in this category. SAVi++
also performs very well on cyclists, which are very rare in this dataset, and indicates that SAVi++ has
not overfit to blobby car like objects.

We further report results for SAVi++ under the influence of noise in the sparse depth targets on Waymo
Open in Table 5. Our results indicate that emergent tracking performance is largely unaffected by
noise scales (standard deviations) of up to ¢ = 40 cm.

Supplementary videos We provide several video results in the supplementary material for both
SAVi++ (conditional, uncondtional, and high-resolution model variants) and the SIMONe [30]
baseline (both in its original form and in our adapted depth-prediction variant).

Table 5: Waymo Open results (mean 4 standard error in %, 3 seeds) from evaluating models on
sequences of 10 frames. SAVi++ was trained with noisy depth targets with standard deviation (o)
specified below.

(%)
Model CoM| B.mloU{ B.Recall 1
SAVi++ 4.4+02 49.7+o0.7 96.5+0.7

SAVi++ (0 =10cm) 4.3+02 50.1+03 96.8+0.3
SAVi++ (0 =20cm) 4.3+02 49.7+03 97.4+0.5
SAVi++ (0 =40cm) 4.2+00 50.1+03 96.9+0.5
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C Training setup

We train our models for 500k steps (300k steps for the ablation study) on Tensor Processing Unit
(TPU) accelerators with a batch size of 64 using Adam [35]. We linearly increase the learning rate for
2500 steps to 0.0002 (starting from 0) and then decay the learning rate with a Cosine schedule [43]
back to O for the rest of the training steps. We clip the gradients to a global norm value of 0.05 to
stabilize training. To create video examples for training, we split each video into sub-sequences of 6
frames each. We use a total of 24 slots on MOVi and 11 slots on Waymo Open for SAVi++ models. We
use 1 iteration per frame for the Slot Attention [42] module (as in prior work), unless stated otherwise.

Following the conditional setup in Kipf et al. [37], the initial state of the slots is obtained by encoding
bounding boxes corresponding to the objects in the first frame; thus providing the model with rough
cues of which objects to bind to initially. For the unconditional experiments, we initialize slots using
an equal amount of learnable parameter vectors. In experiments that use optical flow, we convert the
2D flow signal to three RGB channels following prior work [68]. As described above, we apply a
log-transform to the (sparse) depth signal (incremented by 1 to avoid underflow). We train our model
to minimize the squared error (L2 loss) between the predicted and ground-truth targets in pixel space.
We implement SAVi++ in JAX [3] using the Flax [23] neural network library. Training SAVi++ on a
single MOVi dataset on 8 TPUv4 chips with 32GiB memory each takes approximately two days for
500k training steps.

D Model details

D.1 SAVi++

Our architecture building blocks are similar to that of the SAVi model from Kipf et al. [37] with
all the parameters shared across time steps. SAVi++ uses exactly the same parameters for the slot
initializer and decoder as the SAVi model (except for SAVi++ HR where we use an additional 5 x 5
ConvTranspose layer with stride 2 and 64 channels to account for the higher resolution frame size).
Below we list the details and hyper parameters of all the modules of SAVi++:

Encoder We used a ResNet-34 [22] backbone with modified root convolutional layer that has
1 x 1 stride (except for SAVi++ HR that uses a root stride of 2 x 2). For all layers, we replaced the
batch normalization operation by group normalization [65]. We used a linear positional encoding
identical to that used in Slot Attention [42] with horizontal and vertical coordinates normalized to
[—1,1] range. These coordinates were then projected to the same size of the ResNet feature maps
using a learnable linear layer. Finally, the ResNet features and positional encoding are combined by
an addition operation. Following the backbone, the frame features are projected to 64 embedding
dimensions by a linear layer followed by ReLLU activation and then fed to a transformer network
with 4 transformer blocks, except for SAVi++ unconditional Waymo Open models where we found
that ResNet features alone produced clearer segmentations. This is likely due to the stronger CNN
image prior being beneficial with less supervision [59]. Each transformer block uses a multi-head
dot-product attention from [61] with pre-normalization [66] and 4 attention heads. For each attention
head, the query/key/value embedding size was set to 16. The output of each block is then processed
by a residual feed-forward block with pre-normalization, using an MLP with a single hidden layer of
1024 hidden units and ReL U activation function.

Corrector/Predictor Similar to SAVi [37], we use 1 iteration for the Slot Attention corrector
module. We increase the corrector query/key/value size to 256 compared to 128 embedding size used
in SAVi. For the predictor, we similarly increased the query/key/value projection size to 256, and
the MLP hidden layer size to 1024. We found that the larger embedding sizes for the corrector and
predictor increased SAVi++ mloU by a few percentage points.

Decoder Our decoder follows that of SAVi [37] with two exceptions: For Waymo Open, we use a
larger spatial broadcast grid of 8 x 12 as video frames have 128 x 192 resolution. For SAVi++ HR,
we use frames of a higher resolution of 256 x 384 and add an additional 5 x 5 ConvTranspose layer
with stride 2 and 64 channels to account for the higher resolution frame size. The decoder otherwise
uses four 5 x 5 ConvTranspose layers with stride 2 and 64 channels, followed by ReLU activations.
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Initializer Similar to SAVi, we consider two initializers conditional and unconditional to set the
initial state of the models’ K slots. For the conditional case, the initializer mapped each of K
bounding boxes (represented using 4D coordinates) via a trainable MLP to set the D dimensional
state of the corresponding slot. For the unconditional case, rather than associating a specific bounding
box in a specific video to a slot, we learn K D-dimensional initial slot states to be used in all videos.

Data augmentation As discussed in the main text, an Inception style [57] random crop is used for
data augmentation. Crops are afterwards resized to the target resolution (128 x 128 for MOVi and
128 x 192 for Waymo Open, unless otherwise mentioned). We ensure that the cropped view covers
at least 75% of the original frame in the MOVi datasets and 20% in Waymo Open. More aggressive
cropping worked best in WaymoOpen, perhaps because of the more structured frontal camera subset
that we are using. We take care to handle depth maps and flow fields during this operation as explained
next for each of the datasets. MOVi: Say the crop size is h x w, then optical flow fields are cropped,
resized, and then rescaled by [128, 128] Dense depth maps are simply cropped and resized. Waymo
Open: Sparse LiDAR point clouds are projected to 2D and retained as tuples (2D point, lidar-range)
throughout the data augmentation pipeline. The affine transformation equivalent to the crop and
resize operation is computed and applied to these 2D points. As a consequence, several points will
fall outside the cropped frame. These points are discarded when projecting them into a depth image
after data augmentation is complete.

D.2 Baselines

SAVi For the SAVi baseline, we use the best-performing model variant described in Kipf et al.
[37], i.e. SAVi trained with a Resnet34 backbone. Different from SAVi++, this baseline does not use
depth prediction (it only predicts optical flow), does not use data augmentation, and does not use
a transformer encoder after the convolutional backbone. We choose the same hyperparameters as
described in SAVi [37].

SIMONe This baseline [30] is a non-autoregressive model for encoding short video clips of
fixed lengths into a set of latent object variables (fixed across time) and a per-frame global latent
variable. Note that SIMONe cannot be applied auto-regressively and has to be applied to the same
sequence length at both training and test time. SIMONe uses a CNN encoder per frame followed
by a transformer encoder that is applied across frames to finally obtain object and frame latent
variables by pooling transformer tokens across time and space, respectively. The model is trained by
reconstructing input frames using a form of a spatial broadcast decoder and additionally uses a KL-
based regularizer on the latent variables. We use a JAX [3] reimplementation of the SIMONe model
for which we verified that it reproduces results mentioned in the paper on the CATER [15] dataset.
We train SIMONe on sequences of 6 frames (same as SAVi++) at a resolution of 128. We subsample
reconstruction targets by a factor of 4 (see Kabra et al. [30] for details). Other hyperparameters are
chosen as follows: reconstruction loss scale « = 0.2, pixel likelihood scale o,, = 0.08, object latents
KL loss weight 8, = le — 5, and frame latents KL loss weight 3y = le — 4. We encode frames
using a 4-layer CNN with 128 channels, (4, 4) kernel size and (2, 2) stride. Each transformer uses 4
layers, 5 heads, a gkv-size of 64 per head, and an MLP hidden layer size of 1024. Latents are of size
32. The decoder uses an MLP with 5 hidden layers of 512 units. To train SIMONe with sparse depth
targets, we replace the RGB target signal with the LiDAR-based depth signal and only compute the
loss for pixels that have a depth signal.

CRW Contrastive Random Walks (CRW) [28] is a cycle consistency based self-supervised learning
method for learning grid structured latent representations. After pre-training, a simple label propaga-
tion scheme can be applied on these latent representations to obtain tracking behavior. This typically
requires segmentation labels for the objects of interest in the first frame. The method tracks these
objects and outputs segmentation masks for them over subsequent frames. In order to use this method
with only bounding box conditioning in the first frame, we flood fill boxes into rectangular masks and
propagate those instead. Overlap between boxes is resolved based on the box order.

We adopted their training and evaluation best practices. We pre-trained stride-8 ResNet back-
bones [22] using their publicly available code and propagated labels using the activations output by
the second last ResNet stage. For pre-training we tuned edge-dropout, training temperature and for
tracking we tuned evaluation temperature independently on each of the three MOVi datasets. We
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found that, despite our efforts, a ResNet34 backbone was not able to train using the cycle consistency
loss. We obtained much better results using a ResNet18 backbone, which is the model we report
results for. Optimal hyper-parameters (dropout, training temperature, evaluation temperature) were as
follows: MOVi-C (0.0,0.001, 0.5), MOVi-D (0.05,0.001,0.5), MOVi-E (0.05,0.001,0.5). Other
relevant hyper-parameters are: training clip length (6), frame-skip (1), batch size (16), learning rate
(0.0001), training epochs (125) with a learning rate drop after the 100** epoch.

Bounding box copy We simply repeat the bounding boxes of the objects visible in the initial frame
for the rest of the video sequence. To obtain pixel-level segments for computing metrics, such as
FG-ARI, we ‘render’ the entire bounding box as a segment in pixel space. Bounding boxes are
rendered in the same order as they were provided in the initial frame, such that later boxes take
precedence when multiple of them cover the same pixel location.

Learned bounding box propagation In this baseline, we use the SAVi++ initializer and predictor
(without encoder, corrector, or decoder) to learn a bounding box propagation model. The model
receives (just as in SAVi++) bounding boxes for all objects in the first frame of the video, which are
passed to the initializer to learn initial slot representations. Afterwards, the predictor learns a mapping
of slots at time step ¢ to slots at time step ¢ + 1. We train the model by reading out individual slot
representations at each time step using an MLP with a single hidden layer of 256 units that predicts
the corner coordinates (top-left and bottom-right) of the bounding box associated with a slot at a
particular time step, supervised using ground-truth bounding boxes. We use the Huber [26] loss (L2
loss between [—1, 1] and L1 loss outside of this interval) to train the model. If an object is not visible
or present, its bounding box is set to [0, 0, 0, 0] in the ground-truth target.

K-Means clustering of flow/depth To evaluate how much information about instance segmentation
can be exctracted directly from the depth and optical flow modalities, we evaluate a k-Means clustering
baseline on videos from MOVi and Waymo Open. For that purpose we treat each pixel of a video as
a datapoint, each with 7 dimensions: one for log-depth (log 1 + d), three for optical flow converted
to RGB (only for MOVi), two for linear position encoding, and one for time. All dimensions are
normalized to the range of [0, 1]. For Waymo Open we discard all points that do not have an associated
depth value. To make it as comparable as possible to the conditional setup of SAVi++, we set k to the
ground-truth number of objects plus one for the background, and initialize each cluster-center to the
average value of points within the first-frame bounding box of each object. The background cluster is
initialized to the average value of all points in the first frame. K-Means is then run until convergence,
and we evaluate the resulting cluster-assignments using mloU and FG-ARI scores for MOVi, and
by computing the normalized distance of the center of mass of each segment to the corresponding
bounding box for Waymo Open.

Supervised baseline To estimate how much headroom there is in terms of tracking performance
given our model architecture, we train a variant of the SAVi++ model where we replace the depth
decoder with a bounding-box prediction head. Instead of self-supervised training using depth
prediction, this model is trained to directly predict object bounding boxes at every time step given
the slots of the model. This is similar to a TrackFormer [45] model, but we instead use the SAVi++
architecture and we train in a conditional setting (i.e. initial first-frame bounding boxes are provided as
slot initialization), which means we can train the model without using any form of matching. Similar
to the learned bounding box propagation baseline, we train the model by reading out individual slot
representations at each time step using an MLP with a single hidden layer of 256 units that predicts
the corner coordinates (top-left and bottom-right) of the bounding box associated with a slot at a
particular time step, supervised using ground-truth bounding boxes. We apply a Huber [26] loss (L2
loss between [—1, 1] and L1 loss outside of this interval) for training. If an object is not visible or
present, its bounding box is set to [0, 0, 0, 0] in the ground-truth target.

E Datasets

We used the synthetic Multi-Object Video (MOVi) datasets introduced in Kubric [20]. The Kubric
dataset generation pipeline is available under an Apache 2.0 license. For real-world experiments, we
used the Waymo Open dataset [56]. The Waymo Open dataset is licensed under the Waymo Dataset
License Agreement for Non-Commercial Use (August 2019): https://waymo.com/open/terms.
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Dataset details are summarized in the following:

e MOVi-C: uses approximately 380 high-resolution HDR photos as backgrounds and three to ten
dynamic objects obtained from a set of 1028 3D-scanned everyday objects [16], representing
various household objects. The camera in this dataset has a random pose, yet the camera pose is
static across the video sequence. Each video is sampled at 12 frames per second (fps). We trained
our models on randomly sampled sequences of 6 frames and evaluate on sequences of 24 frames.
We trained our models on 9.75k training set videos, and evaluated models on 250 evaluation set
videos. Model tuning was performed on a separately generated set of 250 videos.

e MOVi-D: has a similar camera setting as MOVi-C, but adds more objects, the majority of which
are initialized to be static. This dataset includes one to three dynamic objects and 10 to 20 static
objects in each video sequence. We used the same frame rate and train/evaluation sequence lengths
as for MOVi-C. We trained our models on 9.75k training set videos, and evaluated models on 250
evaluation set videos. Model tuning was performed on a separately generated set of 250 videos.

e MOVi-E: adds additional complexity compared to MOVi-D by introducing random linear camera
movement throughout the video sequence. We used the same frame rate and train/evaluation
sequence lengths as for MOVi-C. We trained our models on 9.75k training set videos, and evaluated
models on 250 evaluation set videos. Model tuning was performed on a separately generated set of
250 videos.

e Waymo Open: contains high-resolution video sequences with frame size of 1280 x 1920. We
solely use videos recorded from the front camera of the car. We down-sampled the videos to
128 x 192 (or 256 x 384 for SAVi++ HR). The dataset consists of 798 train and 202 validation scenes
of 20s video each, sampled at 10 fps. The dataset includes also 2D bounding box annotations,
which we used for the conditional experiments and to compute the B. mloU evlauation metrics.
The Waymo Open dataset further includes LiDAR data collected from five LIDARSs; one mid-range
LiDARs placed on top of the car and four short-range LiDARSs placed front, left, right, and rear.
The LiDAR data is used to compute sparse depth targets as discussed in the Methods section. To
slightly simplify the task as we train on lower-resolution frames, we discard any bounding box
labels in Waymo Open which cover an area of 0.5% or less of the first sampled video frame, both
during training and testing.

F Metrics

In the following, we give a detailed overview of the metrics used for each of the datasets.

F1 MOVi

On the MOVi datasets [20] we have access to ground-truth pixel-level segmentations, which lets us
directly measure the quality of the learned segmentations using the same segmentation metrics as
in prior work. Note that SAVi and SAVi++ are trained in a conditional setting where we initialize
slots using ground-truth bounding box information in the first frame. Because of this, we will only
measure metrics from the second frame onward.

Foreground Adjusted Rand Index (FG-ARI) A permutation-invariant clustering similarity met-
ric frequently used for evaluating scene decomposition quality [27, 51]. It compares discovered
segmentation masks with ground-truth masks while ignoring any pixels that belong to the background.
It is sensitive to temporal consistency of masks, but insensitive to their ordering.

Mean Intersection over Union (mIoU) A standard segmentation metric for measuring the quality
of predicted segments. Our implementation is identical to the semi-supervised DAVIS challenge
Jaccard-Mean metric for video [6, 50]. We note that this implementation is sensitive to the correct
ordering of masks, i.e. it also measures whether models used the conditioning signal (here, first-frame
bounding boxes) correctly.

Model selection on MOVi was done mainly using mIoU. On the one hand to avoid learned segments
bleeding into the background overly much, and on the other hand to ensure that the bounding box
initialization was properly utilized.

21



F.2 Waymo Open

On the Waymo Open dataset we only have ground-truth bounding boxes available, which necessitates
an alternative set of metrics for measuring quantitative performance. Similar to before, because of
conditioning, we will only measure metrics from the second frame onward.

Center-of-Mass (CoM) distance This tracking metric measures the average Euclidean distance
between the centroid of the predicted segmentation masks and the centers of the ground-truth
bounding boxes. The former are obtained by computing the geometric mean of the 2D coordinates
associated with the pixels belonging to a segment, where we exclude pixels that do not have a valid
LiDAR point associated with them (this is similar to how we compute the loss during training). To
allow for comparable CoM distance across multiple resolutions, we report the distance normalized by
the maximum achievable distance in the video frame (length of the diagonal). Objects that are fully
occluded in a frame (or have disappeared) are excluded from the computation. In the conditional case
(i.e. with bounding box information provided to the model in the first frame) we use the order of the
provided bounding boxes to compute the metric between each slot and ground-truth bounding box.
In the unconditional case, we use Hungarian matching to associate entire bounding box tracks with
decoded object masks and we assign a penalty of 1 (maximum CoM distance) for all empty segments.

Bounding Box Recall (B. Recall) This metric measures the fraction of cases where any sort of
segment is predicted when a valid ground-truth box exists. It serves a complement to CoM distance
when no matching is used and empty segments are not considered. In the case of unconditional
evaluation using Hungarian matching, we incorporate a matching penalty of the maximum possible
CoM distance for empty segments and thus do not separately report segment recall.

Bounding Box mIoU (B. mIoU) This metric is the bounding box analog of the segmentation
mloU discussed above. Given corresponding predicted and ground-truth bounding box tracks, their
per-frame intersection-over-union is computed and averaged over time exactly as in the average
IoU metric of the TAO benchmark [9]. Predicted bounding box tracks are obtained using a per-slot
readout MLP, with one hidden layer of 256 units. This is jointly trained with the SAVi++ model
by minimizing the Huber loss [26] between predictions and [0, 1] normalized ground-truth box
coordinates. A stop-gradient is used to prevent these loss gradients from propagating back into
SAVi++. Objects that are fully occluded across the entire video sequence are excluded from the
computation.

We initially conducted model selection on Waymo Open using a combination of B. mloU and a
heuristic metric to measure what fraction of the pixels belonging to a predicted segment are inside the
associated ground-truth bounding box. During the final stages of development, we primarily focused
on the B. mloU metric since it is analogous to mloU on MOVi.
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