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A WWbl algorithm without selective search

In this section, we present an algorithm for wwbl without the selective search method for describing
the objects in the image.

The algorithm runs N iterations with a break option when no object was found. In line 2 of the listed
algorithm, we obtain the caption of the input image T0 = BLIP (I).

Lines 4-16 of Alg. 2 describe the iterative algorithm used to extract objects from a single image. The
first operation is to encode the text in the current iteration with the CLIP text encoder. The next step
is to generate a map with g. From the output map Mi we extract the largest bounding box (Bi), using
the algorithm described in section 3.1. For the extracted bounding box, the algorithm crops a relative
patch from the image (Pi), and updates the image, such that the patch pixels are zero. The new
image is used for generating the new caption TP

i = BLIP (Pi). Next, the algorithm calculates the
similarity between Et(T0) and Et(T

P
i ). Only if the similarity is above τ = 0.6 does the algorithm

add this bounding box to the predicted output and continues with the iterations. Otherwise, it stops
the routine and returns the predicted output.

Tab. 8 compares the performances of algorithm 1 and 2. Evidently, while Alg. 2 addresses WWbL to
some degree, Alg. 1 is considerably better.

Algorithm 2 WWbL Inference

Require: Input image I
1: Load networks g, CLIP, BLIP
2: T0 = BLIP (I)
3: D ← ϕ ▷ Empty output dictionary
4: for i = 0....n− 1 do
5: Zi = Et(Ti) ▷ CLIP text encoder
6: Mi = g(I, Zi) ▷ Generate map
7: Bi ← C(Mi) ▷ Extract bounding box
8: Pi ← I[Bi] ▷ Crop patch
9: TP

i = BLIP (Pi) ▷ Caption patch
10: S = CLIP (TP

i , T0)
11: if S ≥ 0.6 then
12: D = D ∪ (Bi, T

P
i ) ▷ Add object

13: I[Bi] = 0 ▷ Delete the object
14: Ti+1 = BLIP (I) ▷ New caption
15: else
16: break
17: return D

Table 8: WWbL results: “pointing game" accuracy on Visual Genome (VG), Flickr30K, and ReferIt

Method Backbone Training Test Accuracy
VG Flickr30K ReferIt

Algorithm 2 CLIP+VGG VG 35.02 42.57 37.56
Algorithm 1 CLIP+VGG VG 43.91 58.59 44.89
Algorithm 2 CLIP+VGG COCO 32.80 41.86 37.08
Algorithm 1 CLIP+VGG COCO 44.20 61.38 43.77
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B Visualization of baselines - task WSG

We present visualization of our network g for different scenarios, together with the GAE method,
to emphasize the refinement of our network, as can be seen at Fig. 6. The proposed loss terms for
training g encourage the output mask to capture the whole shape of the object instead of specific
regions of GAE which tend to focus more on discriminate regions.

image of a man

image of a dog

image of a blue sweater

image of a comforter

image of the elephant’s head

image of red pillows

(a) (b) (c)

Figure 6: Sample phrase-grounding results for our method compared with GAE of CLIP [12] where (a) the
input image (b) our output map (c) GAE of CLIP
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C λ3 sensitivity

The proposed loss terms have four coefficients that balance the final loss function. To avoid an
excessive search for hyperparameters, we set λ1, λ2 and λ4 to one and only set λ3 at a different value.

In Tab. 9 we study the effect of λ3 on the performance of the learned g for the WSOL task on the
CUB benchmark [76] and for WSG on Filckr30K. Evidently, the value of λ3 = 4 is optimal for
both experiments (this is the value used throughout our work). However, performance is relatively
stable in a wide range of values. As noted in the ablation experiments of the paper, a value of zero
(canceling this term), leads to a drop of 6% for WSOL on CUB. The current results indicate an even
larger drop for Phrase grounding.

Table 9: The effect of varying λ3 on the accuracy of weakly supervised localization, as evaluated on CUB, and
on that of phrase grounding, evaluated on Flickr30K.

λ3 0 0.01 0.1 1 2 4 8 16

CUB localization accuracy[%] 90.0 88.7 90.6 92.6 94.1 96.5 93.8 93.23
Phrase grounding accuracy [%] 41.9 41.3 44.5 61.8 73.1 75.6 75.4 75.1

D Visualization of bounding box extraction from localization map

In this section, we present visualization for bounding box extraction, which is used for WWbl, and
also for WSG. We first set each pixel in the localization map that is below 50% under the maximum
value in the map to zero. Next, we apply the algorithm of Suzuki et al. [70] to find the contours of all
objects in the map. We consider the bounding box of each contour. We then calculate the sum of
all values of the map g inside the bounding box, which we refer to as “energy”. The final stage is to
filter out bounding boxes via non-maximal suppression using the energy values, for all overlapping
bounding boxes with an IOU larger than 0.3. The bounding boxes are then filtered further, keeping
only the ones with energy values of at least 50% of that of the bounding box with the maximal energy.

Fig. 7 presents a visualization of the method where (a) the input image (b) the localization map
(c) localization map after thresholding with bounding box proposals (d) localization map after
thresholding with the final bounding boxes (e) the input image with the final bounding boxes. As can
be seen, the first step of zeroing low-value pixels allows the method to focus on the relevant regions
in the image based on the text. The importance of filtering non-relevant bounding boxes based on
NMs and low energy also rises from the next examples.
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image of a man

image of a lady

image of a child

image of a golfer

(a) (b) (c) (d) (e)

Figure 7: Visualization of bounding box extraction from localization map where (a) the input image (b)
localization map (c) localization map after thresholding with bounding box proposals (d) localization map after
thresholding with the final bounding boxes (e) the input image with the final bounding boxes

E WSOL visualization

In this section, we present a visualization of WSOL task for fine-grained datasets where the first row
is the Stanford-cars dataset, the second row is the CUB dataset, and the last row is Stanford-dogs.
Fig. 8 present our results together with GAE[12] which emphasizes our improvements for the relevant
map of the GAE (this is used, during training only, as one of our losses) for the localization task.

F Multiple instances of the same object

In Fig. 9, we present our method’s results for images with multiply instances of the same object, such
as apples and dogs. On the left side, we present the results of the WWbL method. On the right side,
we present results for grounding specific sentences that are provided to study the output of network g.

As can be seen, WWbL does not typically select sentences that distinguish between the various
objects. However, network g can separate between different objects of the same class given specific
captions. When there are multiple objects of the same type, e.g., multiple green apples, g marks all
of them. We note that g’s heatmap does peak at specific parts of the objects, which may facilitate
instance separation (this direction is out of scope for the current study).
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Figure 8: Sample localization results, where the first row is the visualization of the Stanford-cars dataset, the
second row is the CUB dataset, and the last row is Stanford-dogs. The green bounding box is the ground-truth,
the red is the bounding box of the CLIP explainability map, obtained wtih GAE, and the blue bounding box is
the output of our algorithm.

a red apple an applea green apple

a red apple an applea green apple

some apples in

 the basket

a red apple surrounded by
green applesA basket bug

apples

a black doga ginger dog a dog

a black doga white dog a dogtwo dogs in the grassbrown and black dog

A dog sitting on a white
background A dog

Figure 9: The heatmap obtained by network g for WWbL predictions (left side) and specific captions (right
side).

G Employing different pre-trained CLIP models

In this section, we examine the ability of g to perform weakly supervised localization on CUB and
Filckr30K for WSG task, when employing CLIP that is pre-trained on different datasets.

The models were taken from the OpenCLIP open-source repository [32], which provides both the
pre-trained CLIP models and the obtained imagenet1K zero-shot accuracy.

As can be seen in Tab. 10, while the zero-shot classification varies considerably, the performance
of g on the localization task varies much less. Also, there does not seem to be a strong correlation
between the amount of training data used for training CLIP and the localization performance of g.
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A similar experiment was conducted for the phrase grounding task, with similar results. As Tab. 10
indicates, the ResNet50 model slightly outperforms the results obtained by the ViT32 model, when
both are trained on the openai dataset. Other datasets, both bigger and smaller, do not lead to better
performance.

We note that the gap observed for both WSOL and Phrase Grounding is much narrower than the gap
that we see in top-1 accuracy for zero-shot classification. This indicates that our method is relatively
stable concerning the CLIP model used during training.

Table 10: Results obtained by network g in the task of (1) weakly supervised localization on the CUB benchmark,
(2) phrase grounding on the Flicker benchmark, for different CLIP models. Also reported is the top-1 zero shot
accuracy on ImageNet.

Clip version Performance metrics

Clip backbone CLIP training dataset Num. samples CUB-Acc[%] Flicker-Acc[%] top1 ImageNet Acc[%]

RN50 openai 400M 89.3 76.0 59.8
RN50 yfcc15m 15M 88.1 72.9 32.4
RN50 cc12m 12M 94.1 73.3 35.9

RN101 openai 400M 96.5 75.1 62.3
RN101 yfcc15m 15M 87.2 69.5 34.0

ViT32 openai 400M 96.5 75.6 63.4
ViT32 laion2be16 2B 92.5 73.4 65.6
ViT32 laion400me32 400M 94.2 75.3 60.2
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