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A Camera and Target Observations - Detailed Formulation

x y r
R
s
co
sϕ

R
s
si
n
ϕ

θ
R
s,
m
ax

∆
ϕ m

ax

∆
θm

ax

Publicly Accessible State (6 elements)

Privately Accessible State (9 elements)

(a) Overview on Camera States

x y Rs loaded vmax Wmax W (1) W (2) W (3) W (4) E(1) E(2) E(3) E(4)

Publicly Accessible State (4 elements) Goal Bits (NW elements) Empty Bits (NW elements)

Privately Accessible State (14 elements)

(b) Overview on Target States

Figure A.1: Schematic diagram of Agent States: the state of an agent contains two types of
information, its status, and its ability, among which only the public information can be obtained
by other agents.

The camera observation formulates as:
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(A.1)
where C means concatenation, F is the flatten operation, and ⊗ means element-wise multiplication.
The mask in each row, it’s a binary variable that indicates whether the entity is observable by the
current camera. The mask variable becomes 1 as the camera can perceive that corresponding target
or obstacle at the same row, otherwise, it’s 0. In the observation, each publicly accessible state will
be followed with an additional binary flag, which indicates whether the values of the state are valid.
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Figure A.2: Overview on Camera Observations

The target observation is defined by the following:
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Figure A.3: Overview on Target Observations
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B Built-in Wrappers and Agents

MATE ships with a variety of custom wrappers and built-in rule-based agents.

Table B.1: Built-in wrappers in MATE
Wrapper Description

observation

EnhancedObservation
Enhance the agent’s observation, which sets all observa-
tion mask to True. The empty bits for targets are set to
truth values.

SharedFieldOfView Share field of view among agents in the same team.

MoreTrainingInformation
Add more information to the info field of step(),
enabling full observability of the environment.

RescaledObservation Rescale all entity states in the observation to [−1,+1].

RelativeCoordinates
Convert all locations of other entities in the observation
to relative coordinates.

action
DiscreteCamera Allow cameras to use discrete actions.

DiscreteTarget Allow targets to use discrete actions.

reward
AuxiliaryCameraRewards Add auxiliary rewards for each individual camera.

AuxiliaryTargetRewards Add auxiliary rewards for each individual target.

single-team

MultiCamera
Wrap into a single-team multi-agent environment.

MultiTarget

SingleCamera
Wrap into a single-team single-agent environment.

SingleTarget

communication

MessageFilter
Filter messages from agents of intra-team communica-
tions.

RandomMessageDropout Randomly drop messages in communication channels.

RestrictedCommunicationRange Add a restricted communication range to channels.

NoCommunication
Disable intra-team communications, i.e., filter out all
messages.

ExtraCommunicationDelays Add extra message delays to communication channels.

miscellaneous RepeatedRewardIndividualDone
Repeat the reward field and assign individual done
field of step(), which is similar to Multi-Agent Par-
ticle Environment (MPE) [1].

Table B.2: Built-in rule-based agents in MATE

Rule-based Agent Description

random
camera Takes random action.

target Takes random action.

naive
camera Rotates anti-clockwise with the maximum viewing angle.

target Visits all warehouses in turn.

greedy
camera Arbitrarily tracks the nearest target.

target Arbitrarily runs towards the destination (the desired warehouse).

heuristic

camera
Greedily maximizes the heuristic scores as much as possible. All camera
agents send their observations to the centralized controller (agent 0). Then
the central controller sends the goal state (camera pose) to each agent.

target Greedy target agent with an additional drift speed, which escapes away
from the center of the cameras’ field of view.
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We represent the sample code at the following that wraps the environment into a single-team multi-
agent setting (targets against cameras with given policies) with discrete action spaces and individual
dense rewards.

import mate

env = mate.make('MultiAgentTracking-v0')
env = mate.DiscreteTarget(env, levels=5)
env = mate.MultiTarget(env, camera_agent=mate.GreedyCameraAgent(seed=0))
env = mate.RepeatedRewardIndividualDone(env)
env = mate.AuxiliaryTargetRewards(env,

coefficients={'raw_reward': 1.0,
'real_coverage_rate': -1.0,
'normalized_goal_distance': -1.0,
'sparse_delivery': 100.0,
'soft_coverage_score': -1.0},

reduction='none') # non-shared individual reward

dones = [False] * env.num_teammates
joint_observation = env.reset()
while not all(dones):

joint_action = env.action_space.sample()
joint_observation, rewards, dones, infos = env.step(joint_action)

C Configuration Generator

MATE ships with a generator to generate configurations with reasonable camera placement that
automatically adjusts based on the given number of entities. The configuration generator solves the
following optimization problem:

minimize max
x

min
ci

∥x− ci∥22,

subject to − 1 ⪯ x ⪯ +1,

− 1 ⪯ ci ⪯ +1,

x, ci ∈ R2, i = 1, . . . , n

(C.1)

where ci ∈ [−1,+1]× [−1,+1] is the location of camera i. The intuition is to cover the terrain with
a given number of circles and optimize the radius to be as small as possible, i.e., keep the overlap
area is as small as possible. A example result of the generator is shown in Fig C.1 and Fig C.2.

Figure C.1: An example camera placement of 24 cameras (the black dots).
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Figure C.2: An example camera placement of 64 cameras (the black dots).

D Scalability Benchmarking in Different Scales

We use a single-thread program to collect rollout samples on an Intel 12-core Core i7-8700 CPU
@ 3.20GHz (only one core is used by the sampling program). The sampling performance is tested
by the Python built-in module timeit . For each test, we sample 1000 steps with random actions.
The result is averaged over 10 tests with separated seeds. The snippet to perform our test is shown
below:

from timeit import timeit

MAX_STEPS = 1000
NUMBER = 10
CONFIG = 'MATE-4v8-0.yaml'

setup = f"""
import mate

env = mate.MultiAgentTracking('{CONFIG}')
env.seed(None)
env.reset()
"""

stmt = f"""
for i in range({MAX_STEPS}):

env.step(env.action_space.sample())
"""

fps = MAX_STEPS * NUMBER / timeit(stmt, setup, number=NUMBER)
print(f'FPS = {fps}')

In our default configuration (4 cameras, 8 targets, 9 obstacles), the sampling worker can collect 372
steps per second on average on our test machine.

We use the configuration generator to generate multiple configurations with different numbers of
agents. All these configurations are generated with 9 obstacles. As shown in Fig. D.1, in the case
of frames per second (FPS) is not less than 10, the MATE environment supports up to hundreds of
agents to interact simultaneously. With multi-process concurrent sampling, the throughput of the
MATE environment can be multiplied.
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Figure D.1: Sample performance in different scales.

E Ablation of Communication on Rule-based Agents

Figure E.1: A typical scene of commu-
nications in MATE.

In the ablation experiment of the communication network,
we test our built-in rule-based greedy agents with and
without communication in 100 cameras vs. 20 targets
setting. In our rule-based greedy camera agent, the
camera broadcasts its location to teammates at the first
environment step. The recipients (other cameras) will
use these messages to determine who their neighbors are
(distance less than the twice maximum sight range). At
other times, the camera only sends the detected target
locations to its neighbors. For a camera agent, there
is a random interval between two communications (up
to 40 timesteps). Our rule-based cameras achieved a
mean coverage of 69% without communication. After
introducing the communication mechanism, the mean
coverage rate of the camera network rose to 78%, gaining
a performance improvement of nearly 10%.

F Additional Results in Zero-sum Fully-competitive Game
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Figure F.1: The probability distribution of the meta-strategy for each PSRO [2] iteration for the
policy population of both camera and target teams. Both teams adaptively change their policy
according to the adversaries. The agents are trained under the 2C vs. 4T (0O) configuration.
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G Additional Results in Training Camera Agents at Different Difficulty
Levels
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Figure G.1: A comparison between three different settings (easy (4C vs. 2T (0O)) to hard (4C vs.
8T (0O))) shows the significance of the number of opponents in convergence speed for the camera
agents. The camera agents are controlled by the MAPPO [3] method with hierarchical control
(MAPPO + HRL). The target agents are controlled by (greedy) rule-based agents.

H Comparison with the HiT-MAC [4] algorithm for Camera Agents
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Figure H.1: A comparison between the HiT-MAC algorithm and MAPPO + HRL method for the
camera agents in the 4C vs. 8T (0O)) scenario. The target agents are controlled by (greedy) rule-
based agents.

The HiT-MAC [4] algorithm also utilizes a two-level hierarchical framework to solve the target
control problem. However, its high-level policy is a centralized superagent. That requires modeling
the joint policy with larger dimensions of observation and action space, which results in a harder
exploration. The HiT-MAC algorithm results in slower convergence due to the computational
complexity of MARL problems.
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I Experiment Hyperparameters

In this section, unless specified, we use the default hyperparameters in the RLlib [5] implementation.

I.1 QMIX [6] Hyperparameters with RLlib

Table I.1.1: Common hyperparameters for QMIX
QMIX
base_policy QMIX
fcnet_hiddens & activation [512, 256] & "relu"
mixer "qmix"
mixing_embed_dim 128
use_lstm True
lstm_cell_size 256
max_seq_len 10000
rollout_fragment_length 0
horizon 500
gamma 0.99
num_workers 16
num_envs_per_worker 8
batch_mode "complete_episodes"
buffer_size 2000 (episodes)
train_batch_size 1024
grad_norm_clipping 1E3
target_network_update_freq 500
lr 1E-4
seed [0, 1, 2]

Table I.1.2: Hyperparameters for QMIX Camera Agents
QMIX 4C vs. 2T (9O) / 4C vs. 8T (9O)
base_policy QMIX
reward coverage_rate
action_space Discrete(25)
discrete_levels 5 (25 discrete actions)
frame_skip 5

Table I.1.3: Hyperparameters for QMIX+HRL Camera Agents
QMIX 4C vs. 2T (9O) / 4C vs. 8T (9O)
base_policy QMIX+HRL
reward coverage_rate
action_space Discrete(4) / Discrete(256)
frame_skip 5
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Table I.1.4: Hyperparameters for QMIX Target Agents
QMIX 2C vs. 4T (0O) / 4C vs. 8T (0O)
base_policy QMIX
reward raw_reward
action_space Discrete(25)
discrete_levels 5 (25 discrete actions)
frame_skip 10

I.2 MADDPG [1] Hyperparameters with RLlib

Table I.2.5: Common hyperparameters for MADDPG
QMIX
base_policy TD3
actor_hiddens & activation [512, 256] & "relu"
critic_hiddens & activation [512, 256] & "relu"
vf_share_layers False
max_seq_len 25
rollout_fragment_length 25
horizon 500
gamma 0.99
twin_q True
policy_delay 2
smooth_target_policy True
target_noise 0.2
target_noise_clip 0.5
n_step 1
num_workers 16
num_envs_per_worker 8
batch_mode "truncate_episodes"
buffer_capacity 5E6
train_batch_size 1024
grad_norm_clipping 1E3
target_network_update_freq 0
tau 0.01
user_huber True
huber_threshold 10
actor_lr 1E-4
critic_lr 1E-4
seed [0, 1, 2]

Table I.2.6: Hyperparameters for MADDPG Camera Agents
MADDPG 4C vs. 2T (9O) / 4C vs. 8T (9O)
base_policy MADDPG
reward coverage_rate
action_space Box([-5. -2.5], [5. 2.5], (2,))
frame_skip 5
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Table I.2.7: Hyperparameters for MADDPG Target Agents
MADDPG 2C vs. 4T (0O) / 4C vs. 8T (0O)
base_policy MADDPG
reward raw_reward
action_space Box([-20. -20.], [20. 20.], (2,))
frame_skip 10

I.3 IPPO [7] Hyperparameters with RLlib

Table I.3.8: Common hyperparameters for IPPO
IPPO
base_policy PPO
fcnet_hiddens & activation [512, 256] & "relu"
vf_share_layers False
use_lstm True
lstm_cell_size 256
max_seq_len 25
rollout_fragment_length 25
horizon 500
gamma 0.99
use_critic True
use_gae True
clip_param 0.3
vf_clip_param 1E4
num_workers 16
num_envs_per_worker 8
batch_mode "truncate_episodes"
train_batch_size 3200
sgd_minibatch_size 256
grad_norm_clipping None
lr 5E-4

lr_schedule [[0, 5E-4], [4E6, 5E-4], [4E6, 1E-4], [8E6, 1E-4],
[8E6, 5E-5]]

entropy_coeff 0.05
entropy_coeff_schedule [[0, 0.05], [2E6, 0.01], [4E6, 0.001], [10E6, 0.0]]
seed [0, 1, 2]

Table I.3.9: Hyperparameters for IPPO Camera Agents
IPPO 4C vs. 2T (9O) / 4C vs. 8T (9O)
base_policy IPPO
reward coverage_rate
action_space Discrete(25)
discrete_levels 5 (25 discrete actions)
frame_skip 5
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Table I.3.10: Hyperparameters for IPPO+HRL Camera Agents
IPPO 4C vs. 2T (9O) / 4C vs. 8T (9O)
base_policy IPPO+HRL
reward coverage_rate
action_space MultiDiscrete([2 2]) / MultiDiscrete([2 2 2 2 2 2 2 2])
frame_skip 5

Table I.3.11: Hyperparameters for IPPO Target Agents
IPPO 2C vs. 4T (0O) / 4C vs. 8T (0O)
base_policy IPPO
reward raw_reward
action_space Discrete(25)
discrete_levels 5 (25 discrete actions)
frame_skip 10

I.4 MAPPO [3] Hyperparameters with RLlib

Table I.4.12: Common hyperparameters for MAPPO
MAPPO
base_policy PPO
actor_hiddens & activation [512, 256] & "relu"
critic_hiddens & activation [512, 256] & "relu"
vf_share_layers False
use_lstm True
lstm_cell_size 256
max_seq_len 25
rollout_fragment_length 25
horizon 500
gamma 0.99
use_critic True
use_gae True
clip_param 0.3
vf_clip_param 1E4
num_workers 16
num_envs_per_worker 8
batch_mode "truncate_episodes"
train_batch_size 3200
sgd_minibatch_size 256
grad_norm_clipping None
lr 5E-4

lr_schedule [[0, 5E-4], [4E6, 5E-4], [4E6, 1E-4], [8E6, 1E-4],
[8E6, 5E-5]]

entropy_coeff 0.05
entropy_coeff_schedule [[0, 0.05], [2E6, 0.01], [4E6, 0.001], [10E6, 0.0]]
seed [0, 1, 2]
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Table I.4.13: Hyperparameters for MAPPO Camera Agents
MAPPO 4C vs. 2T (9O) / 4C vs. 8T (9O)
base_policy MAPPO
reward coverage_rate
action_space Discrete(25)
discrete_levels 5 (25 discrete actions)
frame_skip 5

Table I.4.14: Hyperparameters for MAPPO+HRL Camera Agents
MAPPO 4C vs. 2T (9O) / 4C vs. 8T (9O)
base_policy MAPPO+HRL
reward coverage_rate
action_space MultiDiscrete([2 2]) / MultiDiscrete([2 2 2 2 2 2 2 2])
frame_skip 5

Table I.4.15: Hyperparameters for MAPPO Target Agents
MAPPO 2C vs. 4T (0O) / 4C vs. 8T (0O)
base_policy MAPPO
reward raw_reward
action_space Discrete(25)
discrete_levels 5 (25 discrete actions)
frame_skip 10

I.5 TarMAC [8] Hyperparameters with RLlib

Table I.5.16: Additional hyperparameters for TarMAC aside with the base policy
TarMAC
message_dim 64
message_key_dim 32
message_value_dim 32

I.6 I2C [9] Hyperparameters with RLlib

Table I.6.17: Additional hyperparameters for I2C aside with the base policy
I2C
message_dim 64
policy_corr_reg_coeff 0.01
temperature 0.1
prior_buffer_size 1E5
prior_percentile 50
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